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Abstract Highly differentiated brain structures with distinct-
ly different phenotypes are closely correlated with the unique
combination of gene expression patterns. Using a genome-
wide in situ hybridization image dataset released by Allen
Mouse Brain Atlas, we present a data-driven method of dic-
tionary learning and sparse coding. Our results show that
sparse coding can elucidate patterns of transcriptome organi-
zation of mouse brain. A collection of components obtained
from sparse coding display robust region-specific molecular
signatures corresponding to the canonical neuroanatomical
subdivisions including fiber tracts and ventricular systems.
Other components revealed finer anatomical delineation of
domains previously considered homogeneous. We also
build an open-access informatics portal that contains the
detail of each component along with its ontology and
expressed genes. This portal allows intuitive visualization,

interpretation and explorations of the transcriptome archi-
tecture of a mouse brain.
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Introduction

Highly differentiated brain structures with distinctly different
phenotypes are closely correlated with the unique combina-
tion of gene expression patterns (Jiang et al. 2001; Mody et al.
2001). Many studies have reported that transcriptomes can
serve as important, informative modalities to classify cell
types and reveal deeper organization of brain structures
(Heintz 2004; Nelson et al. 2006; Winden et al. 2009;
Hawrylycz et al. 2010). A number of molecular markers, such
as calcium-binding proteins and growth factors, were found to
show distinct patterns that can be utilized to distinguish be-
tween field CA1 and field CA3 in adult mouse and rat brains
(Woodhams et al. 1993). Tole et al. (Tole et al. 1997) further
discovered that two field-specific genes display unique pat-
terns distinguishable between CA1 and CA3 a week before
the distinctions in morphology are displayed. Later, with the
improvement of DNA microarray and in situ hybridization
(ISH), a large number of gene expression patterns were report-
ed to mirror the gross anatomical partitioning in hippocampus
and some subregion-specific gene expression patterns can de-
lineate the brain into finer subdivisions (Zhao et al. 2001; Lein
et al. 2004). As the current preeminent methodology in tran-
scriptomics, the explorative single-cell RNA sequencing
(RNA-seq) (Mortazavi et al. 2008) showed its power by clas-
sifying cells in the mouse somatosensory cortex and hippo-
campal CA1 region into 47 subclasses (Zeisel et al. 2015).
These results, together with many others (Heintz 2004;
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Molyneaux et al. 2007; Belgard et al. 2011), provide strong
evidence that gene expression patterns are useful features in
revealing the cellular makeup of different brain regions.

Led by the exciting discoveries revealed by gene expres-
sion studies, a global systematic study on a wide range of
cellular markers with fine resolutions is essential to make
quantitative associations between genetic and anatomical ar-
chitecture of the entire brain. One enormous effort is the open-
ly available Allen Mouse Brain Atlas (AMBA) (Lein et al.
2007), which provides genome-wide in situ hybridization
(ISH) image series of the adult mouse brain at cellular resolu-
tion. To investigate the differences between the Btranscriptome
fingerprints^ of different brain locations, ISH image series for
each mRNA is registered to a common atlas space, the Allen
Reference Atlas (ARA) (Dong 2008) so that a global compar-
ison across regions and against the classical neuroanatomy is
possible. (Thompson et al. 2008; Ng et al. 2009; Hawrylycz
et al. 2010).

Multiple tools and methods have been developed for
mining the ISH dataset. The Anatomic Gene Expression
Atlas (AGEA) (Ng et al. 2009), for instance, is a publicly
available computational tool specifically designed to visu-
alize the spatial correlations of gene expression patterns in
the mouse brain. In AGEA, gene expression patterns are
seen as features of each voxel and Pearson correlation
metric is used to measure the similarity between voxels.
Based on the calculated similarity, a hierarchical cluster-
ing is applied to parcellate apparent anatomical subdivi-
sion. Yet the tool requires regions defined for enrichment
a-priori. On the other hand, Bolhand and colleagues
(Bohland et al. 2010) have shown that singular value de-
composition (SVD) was able to reveal structures in rough
concordance with classical anatomy, yet finer structures
were not resolved and an extra step of K-means clustering
was required to clusters voxels with similar gene expres-
sion profiles. Relatedly, a modified non-negative matrix
Factorization (mNMF), was also used to study ~2600
genes expressed in hippocampus and led to the identifica-
tion of a large groups of regionally enriched transcripts
(Thompson et al. 2008).

Inspired by the above promising findings, we proposed to
apply dictionary learning and sparse coding (DLSC) on geno-
mic data. DLSC is a data-driven method aiming at obtaining
parsimonious representation of data. The popularity of apply-
ing DLSC on images derived from the observations that neu-
rons encode sensory information using a small number of
active neurons at any given point in time (Olshausen &
Field, 2004). It is reported that sparsification can Bweed out^
those basis functions not needed to describe a given image
structure, thus obtaining an easier interpretation (Olshausen
& Field, 2004). Due to these properties, DLSC has found great
success in applications such as image denoising, demosaicing
and inpainting (Elad and Aharon 2006; Mairal et al. 2008). In

the context of revealing the transcriptome organization based
on gene expression profiles, we assume that if multiple voxels
use the same dictionary atom for sparse representation, then
these voxels must share the features described by the shared
dictionary atom and thereby should belong to the same sub-
region. On the other hand, it is reported that most genes are
expressed in a fairly small percentage of cells (70.5% of genes
are expressed in less than 20% of total cells in the ISH dataset)
(Lein et al. 2007). We assume this notion can be captured by
imposing a sparsity constraint that limits the number of voxels
that a gene can be active on. Thus, DLSC can serve as a useful
tool that learns the internal transcriptome architecture from the
ISH dataset without any prior knowledge.

In this study, we performed a comprehensive analysis
on the genome-wide in situ hybridization data of the
mouse brain and showed that DLSC can effectively elu-
cidate patterns of transcriptome organization. A number
of components obtained from sparse coding display robust
regional specific molecular signatures corresponding to
the canonical neuroanatomical subdivisions. Other com-
ponents revealed finer anatomical delineation of domains
previously considered homogeneous. An informatics por-
tal was built as an open-access resource for result visual-
ization and further explorations. The webpages contain
the spatial distribution of the components and the corre-
sponding ARA ontology of neuroanatomical structures, as
well as the genes that are regionally enriched. The links to
the original dataset affords a direct comparison and a con-
venient interpretation.

Methods

The computational pipeline is outlined as follows (Fig. 1).
First, images of gene expression patterns were downloaded
from AMBA dataset (Lein et al. 2007). Based on the corre-
sponding annotation map, foreground voxels were extracted
for analysis. Those voxels with missing data were either ex-
cluded from analysis or estimated from the neighboring
voxels (Fig. 1a). Then the 3D expression energies for one gene
were flattened out into one line so that all gene expression data
can be arranged into a big matrix where each row corresponds
to one gene and each column corresponds to one voxel. The
matrix was next decomposed into a fixed number of dic-
tionaries and its corresponding coefficient matrix (Fig. 1b).
Due to the sparse constraints on the energy function, the
coefficient matrix is sparse and encodes the spatial distri-
bution of each dictionary. Finally, we compared the spatial
patterns of the learned dictionary components with the
manual annotation atlas from ARA (Fig. 1c). An informat-
ics portal was built to present the whole mouse brain’s
transcriptome architecture (Fig. 1d).
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In Situ Hybridization Data

The AMBA (Lein et al. 2007) provides genome-wide in
situ hybridization (ISH) image data for approximately
20,000 genes in 56–day-old male C57Bl/6 J mouse brain.
Processed brain tissues were first cut into slices and a set
of 2-dimensional (2-D) ISH images were generated for
each transcript tested. So far, ISH images of 4345 tran-
scripts were acquired on coronal sections. These ISH im-
ages were then processed in an informatics pipeline to
obtain a 3-dimensional (3-D) expression grids for each
examined gene. In brief, image series were reconstructed
into a 3D volume. Then each ISH image was registered to
a common atlas space ARA. To enable quantification,
each image was divided into a 200 μm isotropic grid
and pixel-based statistics were collected. Eventually, the
output was a 3-D summary of the gene expression statis-
tics for each transcript. In the paper, expression energy
metric was used for all analyses. As seen in Eq. (1–3),
this metric is correlated with total transcript count incor-
porating both area occupied by expressing pixels as well
as pixel intensity.

expression density ¼ sum of expressing pixels

� sum of all pixels in division ð1Þ

expression intensity ¼ sum of expressing pixel intensity

� sum of expressing pixels ð2Þ

expression energy ¼ expression intensity� expression density

ð3Þ

We downloaded the 4345 3-D volumes of expression en-
ergy of coronal sections from the website of ABA (http://
mouse.brain-map.org/) to perform our analysis. Coronal
sections are chosen because they registered more accurately
to the reference model than the counterparts of sagittal
sections. A 3-D volume of brain anatomical annotation based
on the ARA (Version 3) was also downloaded. The dimension
of all 3-D volume is 67 (posterior-anterior) by 41(inferior-
superior) and by 58 (right-left).

Data Preprocessing

Based on the 3-D annotation, a mask of brain volume was gen-
erated and applied to extract foreground voxels (62,529 voxels).
By observation, data were missing for many foreground voxels
(−1 in expression energy). The lack of data was assumed mostly
due to problems during data acquisition such as missing slices,
broken tissues, and slice misalignment. Mainly the missing data
were categorized into three groups: 1) An entire slice was lost; 2)
Part of a slice was lost; 3) A few voxels were missing. To reduce
the impact of missing data, two filtering steps and an estimation
step were performed at the preprocessing stage. First, a filtering
step was applied to mask out Bunreliable^ voxels. A foreground
voxel with gene expressions missing in over 10% of the total
transcripts was removed. In this step, about 7% of foreground
voxels were eliminated. Second, a filtering step was applied to
filter out Bunreliable^ transcripts. A transcript with expressions
missing for an entire slice was excluded. After this step, 67%
(2905/4345) transcripts were retained for further analysis. Most
missing values were resolved in the two filtering steps. The re-
maining missing values were estimated as the mean of fore-
ground voxels in its 26 neighborhood. Recursive mean

Fig. 1 Computational pipeline of
the proposed method. a
Preprocessing steps for ISH data
from Allen Mouse Brain Atlas. b
Dictionary learning and sparse
coding of ISH matrix. c
Comparisons between
transcriptome spatial patterns
with the neuroanatomy. d
Informatics portal to facilitate the
exploration of transcriptome
architecture
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calculations were performed on the images until all missing
values were filled. Eventually, 2905 transcripts on 60,904 fore-
ground voxels were sent to the DLSC module.

Dictionary Learning and Sparse Coding

Dictionary learning and sparse coding is a useful tool that
can extract meaningful patterns from signals. Given a matrix
X ∈ℝN ×M, it can be approximated by the matrix factorization
such that:

X ¼ D� αþ ε ð4Þ
where D ∈ℝN×K is the dictionary matrix, α ∈ℝK×M is the cor-
responding coefficient matrix, and ε ∈ℝN×M is the reconstruc-
tion error. This matrix decomposition problem is solved with a
sparse constraint on α, which limits the number of dictionaries
used to reconstruct the original signals. The factorization
can be formulated as the following optimization problem:

< D;α >¼ argmin
1

2
X−D� α 2

2 þ λ α 1kk�
�

�
� ð5Þ

where ‖∗‖2 is the summation of ℓ2 norm of each column and ‖∗‖1
is the summation of ℓ1 norm of each column. λ regulates the
tradeoff between the sparsity of α and the reconstruction error.

The optimization problem is solved by an alternating min-
imization procedure through lasso and least-square steps that
iteratively updates to improve the estimate of the sparse codes
while keeping the dictionaries fixed and then updating dictio-
naries that fit the sparse codes best. At all times, the energy
function in Eq. (5) should be minimized (Mairal et al. 2010).

In practice, we arranged the gene expression energies into a
single matrix X ∈ℝN ×M, such that N rows correspond to N
genes and M columns correspond to M foreground voxels.
Then, each column of the matrix was centered and then nor-
malized by the standard deviation of the elements in each
column. After normalization, the publicly available online
dictionary learning and sparse coding package was applied
to solve the matrix factorization problem proposed in Eq. (5)
(Mairal et al. 2010). Eventually, the gene expression energy
matrix X was decomposed into a dictionary matrix D and a
sparse coefficient matrix α. Further explanations on the ma-
trix factorization step can be found in supplementary material.

The key idea of applying sparse coding to the ISH dataset is
that if multiple voxels use the same dictionary atom for sparse
representation, then these voxels share the features described by
the shared dictionary atom and thereby should form a subregion.
The major assumptions of applying sparse coding to the ISH
data is that each gene is expressed in a limited number of voxels
in the brain. This assumption is supported by the fact that most
genes are expressed in a fairly small percentage of cells (70.5%
of genes are expressed in less than 20% of total cells in the ISH
dataset) (Lein et al. 2007). The other assumption is that the gene

expression energies can be linearly combined because in DLSC
each dictionary is a linear combination of gene expressions. If
the integration of two gene expression follows a non-linear re-
lationship, DLSC would not be able to reconstruct the original
signals correctly. The similarities between the reconstructions
and the raw signals validate that this assumption holds here.

The degree of sparsity α is controlled by the regularization
parameter λ. Too large of a λwill result in very sparse networks,
potentially losing important patterns, while a small λ will intro-
duce irrelevant features into the results. In addition to λ, the
number of dictionaries can also impact the sparsity of α and
the decomposition accuracy. As no gold standard exists for pa-
rameter selection, we proposed three criteria, the reconstruction
error, the density ofαmatrix and themutual informationwith the
reference atlas, to evaluate the performance of DLSC and then
carried out a grid search on the optimized parameters
(Supplementary materials). λ = 1.5 was selected and different
dictionary sizes were tested fixing the λ. By visual check, the
parameter combinations resulted in meaningful brain
delineations.

Results

Transcriptomic Anatomy

Based on the method proposed, gene expression energy signals
of a whole mouse brain were decomposed into multiple com-
ponents. After mapping the coefficient matrix back to 3D vol-
ume space, different spatial patterns were observed for different
dictionary atoms. A visual inspection showed that voxels with
high coefficients smoothly distributed in 3D space and form
tight clusters. The formed clusters correspond to various canon-
ical anatomical regions spanning the entire brain - ranging from
isocortex, olfactory area, striatum to thalamus, midbrain and
cerebellum etc., conceptually validating sparse coding as a use-
ful data-driven approach to extract region-specific gene signa-
tures from transcriptome and obtain meaningful brain divisions
(Fig. 2). This clustering patterning agrees with the brain’s orga-
nizational principle that transcriptome similarities are strongest
between spatial neighbors, both between cortical areas and be-
tween cortical layers (Bernard et al. 2012), which has been seen
in a range of methods including unsupervised hierarchical clus-
tering, analysis of variance (ANOVA) and etc. Interestingly,
multiple white fiber pathways, as well as the ventricular system,
were also extracted by DLSC (Fig. 2).

Different numbers of dictionaries (100, 200, 400, 600, 800,
and 1000) were tested for matrix decomposition (Fig. 3).
Intuitively, larger numbers of dictionaries would be expected to
result in finer parcellation of the mouse brain. It should be noted
that when the dictionary number is set to 200 or below, the gene
expression based laminar structures are not obvious. With a
growing number of dictionaries, the coarsely parcellated
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subcortical areas were further parcellated into subregions and
more details of layered and laminar architectures of neocortex
were observed (Fig. 3).

Hippocampal Formation

To show as an example, we analyzed the hippocampus-related
components. The components obtained from 100, 200 and 400
dictionaries were identified by overlapping measurement with
ARA (Fig. 4). With 100 dictionaries, the proposed method
successfully separated major anatomical structures in hippo-
campus including field CA1, field CA3, dentate gyrus (DG),
subiculum (SUB), and entorhinal area (ENT). With more dic-
tionaries, layered structures of these regions gradually emerge.
Specifically, as shown in Fig. 5, field CA3 was identified as a
complete piece when 100 dictionaries were used. When 200
dictionaries were used, field CA3 was decomposed into 4
sub-components including 2 frontal components and 2 posteri-
or components. When 400 dictionaries were used, 6 finer com-
ponents related to field CA 3 were identified. For the lateral
components, field CA3 was completely separated into septal
and temporal parts as highlighted in Fig. 5. These components
might be associated with the various pyramidal neurons that
send and receive signals from other parts of the hippocampus
and reflect the distribution of intrahippocampal projections
(Ishizuka et al. 1990). A non-symmetric component was shown
on the right hemisphere only. Having examined the ISH im-
ages, the unilateral component was a result of artefacts during
image acquisition and preprocessing (Supplementary material
Fig. S1).

Fiber Tracts and Ventricular System

One of the most interesting findings is that the DLSC can
extract expression patterns that correspond to fiber tracts and
ventricular system. One example is dictionary 17 that corre-
sponds to the white matter pathways. Specifically, the fiber
tracts observed here are mainly corpus callosum (Fig. 6a–c
white arrows), internal capsule (Fig. 6b yellow arrows) and
fimbria (Fig. 6c blue arrows). Even though the signals at other
regions are relatively strong, the distinctly high expressions at
corpus callosum and internal capsules agree well with the
reference atlas for fiber tracts. Many transcripts that showed
enhanced signals at these regions are also markers for oligo-
dendrocyte (Cahoy et al. 2004). The two presented
transcripts Mbp, Cdn11 encode myelin basic proteins
(Fig. 6g–i, j–l). Other transcripts that heavily use the dic-
tionary for representation such as Plp1 and Cnp are also
related to myelination, which is a featured function for
oligodendrocyte. The increased myelin level is presumed
the reason for the enhanced signals in white matter in com-
parison with other regions because it is known that oligo-
dendrocytes produces myelin membranes in the white mat-
ter. Another example is Dictionary 71, which features en-
hanced expressions at lateral ventricle (Fig. 6A–C white
arrows), third (Fig. 6B–C yellow arrows) and fourth ven-
tricles (Fig. 6C blue arrows). As seen in Fig. 6, both tran-
scripts Cd63 and Slc38a3 showed prominent signals at
these regions (Fig. 6I–P), corroborating the spatial map
of dictionary 71. Notably, both transcripts are markers for
astrocyte (Cahoy et al., 2004; Ng et al., 2009). The signif-
icantly high expressions at the ventricles is reminiscent of

Fig. 2 Visualization of selected 3D spatial maps of the coefficient matrix. Results were obtained using 200 dictionaries. 12 dictionaries corresponding to
12 major canonical regions were selected
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that the subventricular zone is rich with astrocytes
((Quinones-Hinojosa and Chaichana, 2007)). The abun-
dance of astrocytes is likely the reason for the enriched
expression at ventricular regions. The above two examples
demonstrate that DLSC can extract expression patterns that
are restricted to white matter and ventricular systems pos-
sibly via cell-type markers that are enriched at these
regions.

Comparative Analysis with Principal Component
Analysis (PCA) and Independent Component Analysis
(ICA)

To benchmark with the alternative matrix factorization
methods, we performed PCA and ICA on the same gene ex-
pression matrix. For PCA, data was first centered and then
whitened. Singular value decomposition algorithm was used

Fig. 3 A comparison of transcriptome anatomy obtained for different
dictionary numbers. A random color was chosen for each dictionary
and the intensities were scaled by dictionary coefficients. 4 coronal

slices were selected for visualization. The corresponding Nissl stain
image was shown in the first row. From top to bottom, finer
delineations of the mouse brain were shown
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as the solver. To visualize the spatial distributions, we
projected each individual mode back to the brain space
(Supplementary material Fig. S3). The top four modes ac-
count for over 80% of variance. The first two modes have a
very broad distribution across the brain. The third mode is also
broadly distributed with enhanced specificity for the cerebel-
lum, and the fourth mode is particularly prominent in the
striatum and CA3. For modes that account for less variance,
the spatial distributions span the entire brain and the agree-
ment to the anatomy is less obvious. In summary, the first few
modes contain spatial structures in rough concordance with
classical anatomy. However, it is also apparent that finer struc-
ture cannot be revealed by PCA.

A comparison with the results from the application of ICA
also confirmed that DLSC is a better fit in the context of
deriving the transcriptome organizations. The basic goal of
ICA is to determine a transformation so that the transformed
components are statistically as independent from each other as
possible. The goal is realized by finding a direction that

maximizes the negentropy (Comon 1994). Therefore, ICA
requires a strong assumption that the components are indepen-
dent. In comparison, DLSC minimizes the total loss of recon-
struction error and the ℓ1 penalty of the coefficient matrix,
without imposing assumptions on the relationship between
components. To ensure a fair comparison, 100 components
were generated using ICA. The algorithm used was FastICA
(Hyvärinen 1999). Spatial maps were obtained by projecting
the coefficient matrix to the brain space and then classified
into 10 major brain regions (Supplementary material Fig. S4).
The biggest difference observed between DLSC and ICA is
that DSLC was able to produce components that cover most
part of major anatomical brain regions including thalamus,
striatum, midbrain, olfactory area etc. (Fig. 2). In comparison,
almost all components generated by ICAwere in concordance
with only a small portion of the major brain regions. Such
example components were seen in thalamus, hindbrain, mid-
brain, cerebellum etc. A few exceptions were ventricular sys-
tem, field CA3, field CA1 and dentate gyrus. The lack of

Fig. 4 Hippocampal formation related dictionaryies obtained from
different dictionary numbers (100, 200, 400). A random color was
chosen for each dictionary and the intensities were scaled by dictionary

coefficients. Here 5 coronal planes of sections were selected for
visualization and the corresponding Nissl stained image as well as
anatomical annotation downloaded from ARAwere shown on the left
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components that correspond to the complete brain regions is
probably a result of unsupported assumptions. ICA assumes
the components to be independent and solves the matrix fac-
torization by maximizing the statistical independence of the
estimated components. However, it is likely that two genes are

regulated by the same transcription factors and thereby their
expressions are dependent. In comparison, the assumption of
DLSC is the sparsity of the coefficient matrix and supported
by that 70% genes are expressed in a limited number of cells.
The advantage of sparse coding over ICA has also been

Fig. 6 Slice-based views of the spatial distribution of components that
correspond to the fiber tracts (dictionary 17) and ventricular system
(dictionary 71). Each column is a different slice. First row are the
reference atlases for fiber tracts (left) and ventricular system (right).

Second row are the spatial distribution of the components. Third and
fifth rows are the normalized energy expression of selected genes.
Fourth and sixth rows are the raw ISH data for the selected genes. Gene
acronyms are on the left of ISH images

Fig. 5 3D renderings of spatial
pattern of field CA3 related
components obtained using
different dictionary numbers. The
color code of each region is listed
at the bottom of subfigure and is
the same as Fig. 4
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demonstrated in other data modality such as functional mag-
netic resonance imaging (Lv et al. 2015).

Online Informatics Portal for Further Explorations

To allow other researchers to explore the comprehensive tran-
scriptome architecture identified by the proposed framework,
all the information was organized into web pages and
can be easily accessed at: http://mbm.cs.uga.edu/mouse/
transcriptome_architecture. To facilitate the exploration of
components, the portal provides two main ways to view the
transcriptome architecture - by dictionary number and by an-
atomical brain regions. Altogether, there are 6 levels of brain
delineations with the dictionary number varying from 100,
200 to 1000 and 13 canonical brain divisions. For each com-
ponent, there is a webpage showing both the anatomical and
genomic information (Fig. 7). As to the anatomical informa-
tion, in addition to the selected Nissl stained image and its
ontology that afford the context for interpretation, a 3D spatial
map corresponding to its coefficient matrix (Fig. 7a) was vi-
sualized. To quantify the composition of the obtained compo-
nent, the percentage of the overlapping volume between the
component and ARAwas calculated. The top 20 regions along
with the number of voxels occupied by the component and the
overlap percentage were tabulated (Fig. 7b). Each of the ob-
tained components can be downloaded as a zip file for further
investigation. With respect to the genetic information, the re-
gionally enriched and restricted transcripts were retrieved and
the related ISH raw data were shown alongside, offering a
direct link to the original data in the database. For the conve-
nience of comparison, we only visualized the slice with the
highest expressions of the component (Fig. 7c). The differen-
tially expressed transcripts were not determined from the ab-
solute expression levels, but ranked by the average expression
energy within each component weighted by the dictionary
coefficients. Transcripts with the top two highest (lowest) ex-
pression energies in a specific components were taken as a
relatively expressed (non-expressed) gene in this component.
In addition to the differentially expressed transcripts, we also
included the transcripts that heavily used the dictionary for
signal reconstructions (Fig. 7e). To evaluate the importance
of a dictionary for a particular transcript, we first calculated
the error changes in reconstructions of each transcript after
removing this particular dictionary and then weighted the
changes by the ℓ2 norm of the raw signals because transcripts
with higher signals overall tend to use more dictionaries for
representation. The obtained scores were the indicator of the
importance of this particular dictionary for each transcript.
Accompanying the above-mentioned two ways to examine
the components, a slice-by-slice view (Fig. 3) was also en-
abled for comparisons on each slice between the components
obtained from different dictionary numbers.

Discussions

We have presented a data-driven DLSC framework that
delineates the entire mouse brain into multiple compo-
nents based on the whole-genome transcriptome.
Visualizations of the components reveal meaningful pat-
terns spanning the entire brain. When the input dictionary
number is low, most of the obtained components corre-
spond to the classical anatomical regions while other
components, intriguingly, accord well with the white mat-
ter pathways and ventricular systems. At higher dictionary
number, a deeper and more detailed parcellation was seen,
reflecting a more complex nature of the brain organiza-
tional principle. However, one caveat is that a higher dic-
tionary number does not always result in a more intricate
parcellation. A main cause is the artifacts associated with
tissue handling, image acquisition and registration integrity.
Although DLSC has proved a robust analytical method and
can de-noise images (Elad and Aharon 2006), some of the
obtained components were clearly identified as products of
artifacts by visual inspection (Supplementary material).
Another reason is concerning to the limited resolution of cur-
rent ISH image mapping. The voxel size is 200 μm on a side
and exceedingly large to discern cells of different types and
classes. Nonetheless, we have shown that the parcellation of
fiber tracts and the ventricular systems is probably via markers
for oligodendrocytes and astrocytes that are enriched in these
regions.

As mentioned earlier, the two key assumptions of the
DLSC framework are 1) each gene is expressed in a limited
number of cells in the brain. 2) The integration of two gene
expression follows a linear relationship. The second as-
sumption is necessary for all matrix factorization methods.
The comparative analysis of the results generated from
ICA and PCA showed that DLSC was able to produce
localized components that correspond to the major brain
regions. In contrast, the modes obtained from PCA usually
span multiple brain regions and finer structures cannot be
directly resolved. Most of the components obtained from
ICA either distributed across multiple brain regions or
corresponded to a small portion of major brain regions.
The explanation to these components is the unsupported
assumption that gene expressions were independent from
one another. Interestingly, the ventricular system was also
revealed by ICA.

In addition to the proposed framework, we have con-
tributed a comprehensive transcriptome architecture of the
adult mouse brain. It is comprehensive on two levels.
First, the input of the framework is the whole-genome
ISH data of the entire mouse brain. Second, the compo-
nents generated by the framework are brain-wide, cover-
ing not only the canonical anatomical areas but also white
matter pathways and ventricular systems. Further work
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will include a detailed analysis of the relationship between the
mouse brain connectomes and the revealed white matter path-
ways, as well as the functioning genes. Another focus will be a
comprehensive characterization of co-expressed gene net-
works of the whole mouse brain. A deeper knowledge of these
networks is an essential step toward understanding protein
interactions, regulatory pathways and, ultimately, brain

organization of structures and functions. Additionally, the ge-
netic architecture, especially when it is coupled with system-
atic profiling in various stages of brain development and aging
processes (Jiang et al. 2001; Mody et al. 2001), can serve as an
informative and complementary approach to the on-going,
large-scale brain mapping and decoding efforts (Tsien et al.
2013; Chen et al. 2015).

Fig. 7 Illustration of anatomic and genetic information of a dictionary
component on the informatics portal. a 3D spatial map of the component.
b The 20 regions that showed the highest overlaps with the spatial
distribution of the component. c Nissl stained image, reference atlas and

spatial distribution of the coronal slice that showed major expressions. d
ISH raw images of transcripts that showed high and low expressions
regionally. e ISH raw images of transcripts that use the dictionary for
signal reconstructions
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