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The exponential growth of fMRI big data offers researchers an unprecedented

opportunity to explore functional brain networks. However, this opportunity has not been

fully explored yet due to the lack of effective and efficient tools for handling such fMRI

big data. One major challenge is that computing capabilities still lag behind the growth

of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning

and sparse coding of whole-brain fMRI data for an fMRI database of average size.

Therefore, how to reduce the data size but without losing important information becomes

a more and more pressing issue. To address this problem, we propose a signal sampling

approach for significant fMRI data reduction before performing structurally-guided

dictionary learning and sparse coding of whole brain’s fMRI data. We compared the

proposed structurally guided sampling method with no sampling, random sampling and

uniform sampling schemes, and experiments on the Human Connectome Project (HCP)

task fMRI data demonstrated that the proposed method can achieve more than 15 times

speed-up without sacrificing the accuracy in identifying task-evoked functional brain

networks.
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INTRODUCTION

The increasing spatial and temporal resolutions as well as larger sample sizes lead to a rapid
increase in the amount of fMRI data. For instance, the ongoing Human Connectome Project
(HCP) (Barch et al., 2013) released its task fMRI data with around 240,000 signal time series of
a few hundred time points for each of 1,200 subjects. However, the opportunities offered by the
availability of fMRI big data from a large number of subjects are accompanied with challenges
(Akil et al., 2011; Boubela et al., 2015). In particular, the challenge to address the computational
demands associated with the increase in data size becomes clear (Cunningham and Byron, 2014),
especially for fMRI big data (Li et al., 2016). Thus, this fMRI big data challenge more and
more stresses the significance of data reduction and meaningful information extraction for brain
mapping.

To deal with this big data challenge, some existing approaches achieved good performance
(Mwangi et al., 2014; Smith et al., 2014), Two popular reduction techniques in neuroimaging
are principal component analysis (PCA) (Smith et al., 2014), independent component analysis
(ICA) (Calhoun et al., 2008) and its variants. PCA constructs relevant features by linearly
transforming correlated variables (e.g., raw voxels in a brain scan) into a smaller number of
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uncorrelated variables, also known as principal components.
ICA is a multivariate data-driven technique which belongs
to the broader category of blind-source separation methods
used to separate data into underlying independent information
components, while ICA separates a set of “mixed signals” (e.g.,
raw data from an fMRI scan) into a set of independent features.
However, these methods have difficulty in reconstructing
concurrent interacting functional networks (Friston et al., 1994;
Calhoun et al., 2001; Smith et al., 2014), because their implicit
assumption is that different components are independent (Smith
et al., 2014) or uncorrelated (Calhoun et al., 2001). Recently,
dictionary learning and sparse representation (Mairal et al., 2010;
Wright et al., 2010) have been explored to represent whole-
brain fMRI signals and to reconstruct concurrent functional
brain networks (Li et al., 2009, 2012; Lee et al., 2011, 2013;
Oikonomou et al., 2012; Lv et al., 2014a; Abolghasemi et al.,
2015). Different from ICA and PCAmethods, dictionary learning
and sparse representation make a sparsity assumption instead of
independence or uncorrelation, which is more aligned with the
sparseness of neuronal activity property, and promising results
have been reported in the literature (Lv et al., 2014a,b). However,
these dictionary learning methods still cost significant amount of
time and memory space to learn the dictionaries for one brain’s
single fMRI scan since the input data is huge, for example,a 4-
D fMRI data in HCP dataset (Barch et al., 2013) used in this
work has about 200 Megabytes with a number of over 106 voxels,
each of which contains a time series of hundreds of time points.
The computing time cost thus would significantly hamper the
wider application of sparse representationmethods to larger scale
fMRI datasets such as the HCP task fMRI data. Therefore, this
challenge urges and motivates us to investigate an efficient signal
sampling method in this paper to extract the most representative
signals from task fMRI data without losing crucial information
for functional network reconstruction but can significantly speed
up the computing. Our rationale is that the sampled fMRI signals
can statistically, computationally and biologically well represent
the original whole-brain fMRI data for concurrent brain network
reconstruction based on prior successful applications of sampling
methods in the statistical science fields (Rao, 2000; Mahoney,
2011; Meng et al., 2014).

In this paper, we present a structurally guided fMRI
signal sampling method for dictionary learning and sparse
representation of task fMRI data. Specifically, it effectively
extracts the fMRI signals according to the key structural
brain information contained in the Dense Individualized and
Common Connectivity-based Cortical Landmarks (DICCCOL)
system (Zhu et al., 2013). We compared this DICCCOL-
based sampling method with no sampling, random sampling,
and uniform sampling schemes, and experimental results on
the HCP task fMRI data showed that the DICCCOL-based
sampling scheme can speed-up the computation by more
than 15 times without losing much information. Meanwhile,
we learned the common network dictionaries in a group-
wise fashion by aggregating the sampled task fMRI signals
of multiple subjects into a big data matrix, which further
significantly reduced the computation time. This group-wise
sampling and aggregation method also contributes to the

identification of group-wise consistent functional brain networks
across individual subjects. It should be noted that we have
proposed a signal sampling and associated dictionary learning
strategy for the sparse representation of resting-state fMRI
data in our previous studies (Ge et al., 2015) and the major
differences between this work and our previous one (Ge et al.,
2015) lie in three aspects. First, in this paper, we focus on
using signal sampling and sparse coding on task fMRI data,
while the data type of the previous work (Ge et al., 2015) was
resting state fMRI. Second, the previous dictionary learning
step in Ge et al. (2015) learned one dictionary set for each
subject, while the current work in this paper learns a common
group-wise consistent dictionary set for a population of subjects.
Thus, the data input in this work is the aggregated task fMRI
signals from the group. Third, with the availability of the
abovementioned common dictionary within a group of subjects,
we can identify and examine common functional networks
easily in each individual subject. The intrinsically established
correspondences of these common networks make it possible
to examine brain networks at both of individual level and
population level (Lv et al., 2015), while the previous work
identified the corresponding networks by matching technique
without intrinsic correspondence.

EXPERIMENT PROCEDURES

Overview
Our computational framework is shown in Figure 1. First, we
sampled the whole brain task fMRI signals using DICCCOL-
based sampling, no sampling, random sampling, and uniform
sampling, respectively. The sampled signals of all subjects were
then aggregated into a big data matrix, after which we applied
the online dictionary learning and sparse coding method (Mairal
et al., 2010) to learn a group-wise common dictionary shared by
all subjects. Finally, we used the common dictionary to sparsely
represent each fMRI signal and to identify functional brain
networks in each subject.

Materials and Pre-processing
Materials

The motor task fMRI and DTI data from the HCP dataset
(Barch et al., 2013) were used in our work. There were 6 task
designs altogether in the paradigm, in which participants were
presented with visual cues instructing them to tap their left
or right fingers, squeeze their left or right toes, or move their
tongue. The total run time is 284 TRs. Each block of a movement
type lasts 12 s (10 movements), and is preceded by a 3 s cue.
There are 13 blocks, with 2 of tongue movements, 4 of hand
movements (2 right and 2 left), 4 of foot movements (2 right
and 2 left) and three 15 s fixation blocks per run. Whole-brain
EPI acquisitions were acquired with a 32 channel head coil on a
modified 3 T Siemens Skyra with TR = 720ms, TE = 33.1ms,
flip angle = 52◦, BW =2,290 Hz/Px, in-plane FOV = 208 ×

180mm, 72 slices, 2.0mm isotropic voxels, with a multi-band
acceleration factor of 8, the total run time is 284 TRs. The
additional details about DTI and motor task are referred to Barch
et al. (2013).
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FIGURE 1 | The overview of our computational framework. The sampling step (step 1) includes four types of sampling methods (DICCCOL-based sampling, random

sampling, uniform sampling, and no sampling). More details are referred to Dictionary Learning and Sparse Coding to Group-wise DICCCOL-based Dictionary

Learning and Sparse Coding.

Pre-processing

The preprocessing of task fMRI data included skull removal,
motion correction, spatial smoothing, temporal pre-whitening,
slice time correction, and global drift removal. Preprocessing of
the DTI data included skull removal, motion correction, and
eddy current correction.

Dictionary Learning and Sparse Coding
Different from other matrix decomposition methods such as
independent component analysis (Smith et al., 2012), principal
component analysis (Andersen et al., 1999) and etc., dictionary
learning algorithms (Mairal et al., 2010; Lee et al., 2011; Eavani
et al., 2012; Yang et al., 2014; Abolghasemi et al., 2015) aim to
learn an over-completed dictionary and do not impose that the
basis vectors be orthogonal, which better agrees with the current
neuroscience perspective, that is, a variety of cortical regions and
networks exhibit strong functional diversity and heterogeneity
(Kanwisher, 2010; Anderson et al., 2013; Fedorenko et al., 2013).
For instance, it was suggested that “areas of the brain that
have been associated with language processing appear to be
recruited across other cognitive domains” (Gazzaniga, 2004). In
addition to the above principle that cortical regions/networks
have strong functional diversity and heterogeneity, another
important principle is that the number of functional networks
that a cortical region is involved in at a specific moment is sparse
(Anderson et al., 2013), typically from several to one or two
dozen. Therefore, dictionary learning and sparse coding method
have been shown to be a powerful tool in constructing functional
networks from various types of fMRI signals (Lee et al., 2011; Lv
et al., 2014b).

We represented whole brain fMRI signals sparsely and
reconstructed the task-evoked functional brain networks by the
online dictionary learning and sparse coding method (Mairal
et al., 2010; Lv et al., 2014b) with the basic premise: the
observed fMRI signals are the result of linear combination from
the signals of many latent sources, noises and artifacts signals
(Biswal and Ulmer, 1999; Calhoun et al., 2008). Generally, the
dictionary learning and sparse coding method decomposes an
fMRI signal into a group of latent sources (i.e., dictionary) and
corresponding combination coefficients, as shown in Figure 2A.
That is, given the whole-brain task fMRI signal matrix SǫRt×n,

we can represent S as S=D× A, whereDǫR
t×m is the dictionary

and A ǫRm×n is the coefficient matrix. Here, each column of S
represents a task fMRI signal time series with a time length of t,
and altogether n signals in whole brain; each column in D is a
learned dictionary atom and m denotes the number of dictionary
atoms (i.e., latent sources). For each task fMRI time series Si, it
can be represented as linear combination of atoms of dictionary,
that is, Si = D × Ai, where Ai is i-th column of A that gives the
sparse weights for the combination, as shown in Figure 2A.

The matrix decomposition is regularized by the L-1 norm
(i.e., sum of the absolute value of all elements) of matrix A, thus
adding the sparsity constraint on the number of basis dictionary
atoms to represent the input fMRI data. Dictionary matrix
Di,j and its corresponding loading coefficient Ai,j are obtained
simultaneously by an iterative optimization process implemented
by the online dictionary learning method (Wright et al., 2010),
with the loss function defined below:

min
D∈Rt×m ,Ai∈Rm

1

2
||Si − DAi||F + λ||Ai||1

Finally, each row of the A matrix characterizes how each
dictionary atom contributes to the formation of each functional
signal across all voxels, which is the spatial volumetric
distributions in the brain that have references to certain
dictionary atoms. More details of dictionary learning and sparse
coding procedures are referred to Mairal et al. (2010) andWright
et al. (2010).

When n (the number of whole brain’s signals) is very large,
the estimation of A and D through penalized least squares is
very time consuming, especially when we computed the group-
wised consistent dictionary which need to load a group of brain’s
signals in the later step. Therefore, we intended to sample a small
proportion of the observations, which were expected to be able to
represent whole brain’s signals for this matrix decomposition.

Group-Wise DICCCOL-Based Dictionary
Learning and Sparse Coding
It has been demonstrated that DICCCOL provided 358 consistent
structural corresponding landmarks across different individual
subjects, and they can also be predicted on a new brain (Zhu
et al., 2013). The process of generating these landmarks is briefly
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FIGURE 2 | Illustration for the online dictionary learning and sparse representation framework. (B) The 2-ring neighborhood DICCCOL sampling. The blue patches

show the sampling regions in the whole brain. (C) Illustration for group-wise DICCCOL-based dictionary learning and sparse Coding.

described as follows. First, a simple strategy is adopted to generate
a regular grid initialization of 2056 cortical landmarks for each
subject, establishing rough correspondences across subjects by
linear registration. The initialization aimed to place a dense
map of candidate ROIs distributed over brain cortex. Then the
optimization of ROI locations was formulated as an energy
minimization problem, which minimized the group-wise non-
consistency of DTI-derived fiber shape patterns penetrating
candidate ROIs by the following equation,

E (S1, S2, . . . , Sm) =
∑

E (Sk, Sl) =

∑ ∑n
i=1 (Tki − Tli)

2

n
,

k 6= l and k, l = 1, 2, . . . ,m.

For any two subjects Sk and Sl, they are transformed
to the corresponding vector format, Tk and Tl, of trace-
maps. Tki and Tli are the ith attributes of Tk and Tl

respectively. The trace map is a model that describes the
shape pattern of the extracted fiber bundle, which reflects
the accumulation of the strength of the fiber bundle in
different directions and is represented by T. By searching the

whole-space of candidate locations, an optimal combination of
new landmarks can be found, and exhibited the least group
variance of the fiber bundle shape pattern in the training
samples. These DICCCOL landmarks were then used as model
landmarks to predict new landmarks for a new subject, and
the similar optimization step was employed to localize the
landmarks so that the dissimilarity of the fiber bundle shape
patterns between the candidate and each model landmarks was
minimized.

Therefore these DICCCOL landmarks can be considered
as the key structural locations of the brain, which were
used to sample the whole brain’s signals in our work.
Specifically, we extended the DICCCOL landmarks to its 2-
ring neighborhood on cortical surface (empirically determined)
as illustrated in Figure 2B, and then extracted the task
fMRI signal of each vertex within the 2-ring regions as the
sampled data.

Moreover, we designed the group-wise dictionary learning
and sparse coding scheme as follows, shown in Figure 2C. First,
we sampled the whole brain’s fMRI signals using the specific
sampling schemes, such as the DICCCOL-based sampling.
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Second, we aggregated the sampled signals from a group of
subjects into a big data matrix S′, and then adopted the online
dictionary learning (section Dictionary Learning and Sparse
Coding) to learn a group-wise common dictionary D’ shared by
all subjects. That is, S′ = D′ × A′. Now instead of identifying
the dictionary using a single subject’s single task fMRI data, we
store all multiple subjects’ data together. Consider a model S′ =
D′A′ + E where D′ is t by m matrix, A′ is a m by n coefficients
matrix. Then we may fit the model using the penalized least
squares with L-1 penalty,

Â′ = argmin
A

∣

∣

∣

∣S′ − D′A′
∣

∣

∣

∣

2
+ λ|A′|.

It is well-known that Â′ can be efficiently calculated using LARS,
as shown in Efron et al. (2004).

Finally, to obtain the sparse representation of whole brain
fMRI signals for each subject, we employed the sparse coding
step on each subject’s whole brain signals matrix Sg based on
D′, that is, Sg = D′ ×Ag (as shown in Figure 2C), g is the
sequence number of subject. It is noted that since learning D
and A are two separated processes in the online dictionary
learning and sparse coding algorithm, we need not to learn A’
in the second step, which are useless in our work. Therefore, we
performed one-time dictionary learning (obtaining D’) and one-
time sparse coding (obtaining Ag), which did not add any more
steps and computation burden in the algorithmic pipeline. Here,
from a brain science perspective, each dictionary atom represents
a functional brain network (Cunningham and Byron, 2014).
Afterwards, each row of learned Ag represented by each atom
was mapped back to the brain volume for network spatial pattern
visualization and characterization. These functional networks are
then identified and compared with the task-evoked networks
identified from the widely adopted general linear model (GLM)
(Friston et al., 1994) method as references.

For no sampling, random sampling and uniform sampling
schemes, we performed the above similar procedure to learn the
task-evoked networks. The only difference was the aggregated
input matrix, which was derived from different sampling
schemes. For a fair comparison, we sampled the same number
of sampling points in DICCCOL-based sampling for random and
uniform samplings, which were respectively corresponding to the
numbers of signals of 0-ring, 2-ring, 4-ring and 6-ring DICCCOL
sampling, and selected the same set of parameters for all of these
three sampling methods.

Measurements for Evaluation and
Visualization
Since we adopted the learned dictionary and corresponding
coefficients to represent the whole brain’s fMRI signals, there
should be reconstruction/representation errors, which can be
computed by the following expression (Mairal et al., 2010):

R =
1

n

n
∑

i=1

1

2
||Si−DAi||

2
2

In order to evaluate the four sampling methods, we compared the
activationmaps (task-evoked networks) of the samplingmethods

with that obtained by the GLM method via the Spatial Matching
Ratio (SMR), defined as follows:

SMR (X,T) =
|X ∩ T|

|T|

where X is the spatial activation map from our method, and T
is the spatial activation map detected by GLM method. |X ∩ T|

and |T| are the numbers of voxels in both X and T and in T,
respectively.

Different from the previous traditional threshold settings
that are constant for visualizing all task-evoked brain networks,
here, we designed an adaptive threshold method to visualize
each task-evoked brain network. Generally, there are a high
threshold and a low threshold to be set for visualizing the
activated voxels. We computed the mean value and standard
deviation of the activated coefficients matrix, and then used the
mean value as the low threshold and sum of them as the high
threshold.

RESULTS

By applying the above four sampling methods on the randomly
selected 20 HCP subjects separately, we aggregated the 20
sampled data into one data matrix. Then we performed
the dictionary learning and sparse coding according to
the procedure in Figure 1. Finally a common dictionary
and separated spatial maps were obtained, which will
be compared with the task stimulus and GLM derived
spatial maps in the following sections. Also, the time
cost of four sampling methods will also be evaluated and
compared.

Comparison of Temporal Dictionary Atoms
With Task Stimulus Curves
To evaluate and validate the effectiveness of the derived
common group-wise dictionaries, we compared them with
the task stimulus curves. First, we convolved each of the six
task stimulus curve with hemodynamic response function
(HRF) using the FSL toolbox in order to compensate the
difference between the original input stimulus and output
hemodynamic response. Then we selected the six most
matched dictionary atoms with each task stimulus by
computing the Pearson’s Correlation Coefficient. Those
identified dictionary atoms can be considered as the bases
for representing those fMRI signals which follow the six task
stimulus curves.

Figure 3 shows an example of these identified most matched
bases using the four sampling methods. It is evident that
the blue curve (from the 2-ring neighborhood DICCCOL
sampling) and the green one (from no sampling) are more
consistent with the red curve (task stimulus), while the black
curve (from the uniform sampling) performs slightly worse,
especially when we examined Figures 3B–D, that is, the tan
curve (the random sampling) is more like a random curve
that could not find any relation with the task stimulus by
visual inspection. Quantitatively, we calculated their Pearson’s
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FIGURE 3 | The 6 task stimuli curves and corresponding dictionary atoms (A–F) by the four sampling methods. In each sub-figure of (A–F), the red curve denotes a

specific task stimulus which serves as a benchmark for comparison. The green, blue, black, and tan curves denote the most matched dictionary atoms derived from

no sampling, DICCCOL-based sampling, uniform sampling, and random sampling, respectively.

TABLE 1 | (A) Quantitative comparison of the four different sampling methods.

W R0 U0 D0 R2 U2 D2 R4 U4 D4 R6 U6 D6

(A)

PCC 0.81 0.49 0.71 0.72 0.58 0.73 0.74 0.61 0.79 0.78 0.66 0.75 0.82

SMR 0.46 0.11 0.38 0.41 0.22 0.39 0.46 0.31 0.45 0.49 0.31 0.50 0.52

Time 1,953 3.7 4.7 4.6 22.5 28.2 54.3 69.7 77.4 76.1 131.2 140.9 138.1

Error 1,8.9 27.6 19.0 19.1 19.3 18.9 19.0 19.2 18.9 19.0 19.1 18.9 18.9

Num 2.4 × 105 358 4,825 14,600 26,871

W vs. D0 W vs. D2 W vs. D4 W vs. D6 W vs. U0 W vs. U2 W vs. U4 W vs. U6

(B)

PCC 0.62 2.97 7.36 90.46 0.03 0.57 3.94 4.10

Error 0.02 5.48 19.89 23.93 0.00 2.49 48.37 10.03

The second row to the fifth row show the Pearson‘s correlation coefficient between the dictionary atoms of each sampling method and the task stimulus curve, the spatial matching ratio

of task-evoked network with that of GLM, the computing time cost, and the representation error of each sampling method, respectively. The sixth row provides the number of sampling

points in each circumstance. “W” denotes the whole-brain signals with no sampling, “Dn” represents n-ring DICCCOL-based sampling, “Rn” and “Un” represent random and uniform

sampling, respectively, using the same number of points as the n-ring DICCCOL-based sampling. (B) The p-values (×10−2) of t-test on PCC and Error. T-test comparisons between no

sampling and the DICCCOL/uniform sampling are shown here. The color values denote the p-values < 0.05. Bold values indicate they are the highest values per row.

correlation coefficients (PCC) with the task stimulus curve
(the second row in Table 1A). We can see that the 2-ring
DICCCOL sampling and corresponding uniform sampling have

better performances than random sampling (the PCCs of
0.74, 0.73, vs. 0.58). Moreover, if we sampled more points,
the DICCCOL sampling and uniform sampling resulted in
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FIGURE 4 | The comparison of spatial task-evoked networks derived from GLM method, no sampling, DICCCOL sampling, random and uniform sampling. “W”

denotes the whole-brain signals with no sampling, “Dn” represents n-ring DICCCOL sampling, “Rn” and “Un” represents randomly and uniform sampling, respectively,

with the same number of points as the n-ring DICCCOL sampling. “M1” to “M6” represents group-wised saptial map from the six motor tasks, they are visual cue

network, left finger network, left toe network, right finger network, right toe network, and tongue Network, repectively. The color scale of spatial maps from GLM

ranges from 1 to 6 of Z-score value, and the other color scales range from 0.2 to 5. (A) Averaged spatial maps from the group. (B) Individual results from one random

selected subjects.
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TABLE 2 | (A) The Spatial Matching Ratio between each task-evoked network by different sampling methods and that by GLM.

W R0 U0 D0 R2 U2 D2 R4 U4 D4 R6 U6 D6

(A)

M1 0.58 0.55 0.59 0.67 0.47 0.65 0.62 0.67 0.63 0.52 0.67 0.64 0.58

M2 0.20 0.08 0.14 0.16 0.06 0.13 0.20 0.09 0.19 0.24 0.17 0.15 0.24

M3 0.83 0 0.56 0.21 0.62 0.61 0.72 0.73 0.81 0.84 0.61 0.84 0.83

M4 0.40 0.00 0.00 0.40 0 0.00 0.30 0 0.33 0.41 0.00 0.44 0.46

M5 0.40 0.02 0.45 0.49 0.00 0.50 0.46 0.04 0.33 0.50 0.09 0.51 0.50

M6 0.34 0.02 0.57 0.55 0.19 0.44 0.45 0.32 0.43 0.44 0.33 0.46 0.48

Mean 0.46 0.11 0.38 0.41 0.22 0.39 0.46 0.31 0.45 0.49 0.31 0.50 0.52

W vs. D0 W vs. D2 W vs. D4 W vs. D6 W vs. U0 W vs. U2 W vs. U4 W vs. U6

(B)

M1 5.63 21.74 9.73 11.80 0.45 7.41 63.64 5.31

M2 3.95 9.25 47.78 19.36 1.35 0.098 41.2 6.64

M3 1.83 0.42 6.4 32.73 0.001 0.023 13.40 67.00

M4 8.37 58.04 13.49 21.81 0.000 0.000 1.01 12.43

M5 10.64 73.84 23.20 11.50 3.84 6.90 9.73 11.80

M6 0.04 21.74 32.73 6.80 2.90 9.74 13.73 9.50

“W”, “Dn”, “Rn”,“Un,” and “Mn” have the same meanings as those in Figure 4. (B) The p-values(×10−2) t-test on SMR. T-test comparisons between no sampling and the

DICCCOL/uniform sampling are shown here. The color values denote the p-values < 0.05.

higher PCC. They have almost the same high PCC as
no sampling when the number of sampling points reached
14,600 and 26,871. Notably, the 6-ring DICCCOL sampling
with 26,871 sampling points even has a higher PCC than
no sampling (0.82 vs. 0.81). In order to check when the
DICCCOL sampling or other sampling methods have the same
performance with no sampling, we made a t-test on PCC
and representation error values between no sampling and
each other sampling method. As shown in Table 1B, we can
see that when we performed the 4-ring DICCCOL sampling
with 14,600 sampling points, the 4-ring DICCCOL sampling
has no statistical significant difference on PCC value with
no sampling. However, all levels of the uniform or random
sampling methods have the statistical differences with no
sampling. Here, due to limited space, we just show the p-values
between the DICCCOL/uniform sampling and no sampling.
For representation error, we found that the 2-ring or higher
level of DICCCOL sampling had no statistical difference with
no sampling, and the uniform sampling can achieve this by
U4 or higher level of sampling. So, in general, these results
indicated that DICCCOL-based sampling is more effective
than other sampling methods and the 4-ring DICCCOL-based
sampling is a statistical reasonable choice with the least sampling
points.

Comparison of Spatial Task-Evoked
Networks With GLM Derived Activations
After identifying the most correlated dictionary atom with each
task stimulus in the above section, we obtained its corresponding
row in A, which represents the spatial volumetric distribution
of each task-evoked network. Then we compared the spatial
patterns of the identified task-evoked networks by the four

sampling methods with those derived by GLM. Figure 4 shows
the comparison of the derived spatial maps by four sampling
methods and GLM method. We can see that the random
sampling has the poorest performance, e.g., it is difficult for
the R0 sampling (random sampling with 358 sampling points
as the 0-ring DICCCOL sampling) to identify the motor task
3, 4, 5, and 6 (M3, M4, M5, M6). In addition, R2, R4, R6
sampling also cannot obtain the correct spatial maps for M4
and M5. The uniform sampling can identify the appropriate
networks when it came to R4 with 14,600 sampling points, but U0
and U2 sampling with the fewer sampling points cannot obtain
the correct spatial maps for M4. In contrast, the DICCCOL-
based sampling can identify all the motor task networks even
if the D0 sampling has only 358 sampling points, and it almost
has the same performance as no sampling by our visual check.
Figure 4 provided the one slice for an overall visual comparison.
Quantitatively, we calculated the spatial matching ratio between
the spatial volumetric distributions by the four samplingmethods
and that by the GLMmethod, as shown in Table 2B. It shows the
similar results as Figure 4, that is, DICCCOL-based sampling has
the highest spatial matching ratio and random sampling has the
lowest SMR values. DICCCOL-based sampling provided more
superiority at the level 0 and 2 of sampling, and they (D0 and
D2) have higher SMR values (0.41, 0.46) than uniform (0.38,
0.39) sampling and random (0.11, 0.22) sampling, which also can
be seen from Figure 4. When the number of sampling points
increased to 26,871, the same level of uniform sampling (U6) and
DICCCOL-based sampling (D6) had nomuch difference (0.50 vs.
0.52).We can find that those samplings with the SMR values close
to zero in Table 2 have no correct spatial maps in Figure 4 either,
e.g., the uniform sampling U0 identifying the M4 (M4, U0) and
(M4, U2). We can also see that the DICCCOL-based sampling
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FIGURE 5 | Other common networks identified from the group-wise dictionary learning and sparse representation method and the DICCCOL-based sampling. Here

the 3 common networks were identified from 20 subjects, and these 3 common networks are different from the previous 6 task-evoked networks. “0-R” to “6-R”

represents 0 to 6-ring DICCCOL-based sampling. The color scale of spatial maps ranges from 0.3 to 3. (A) Averaged spatial maps from the group. (B) Individual

results from one randomly selected subject.

has the most consistent and balanced performance for M1 to
M6. For instance, although the uniform sampling U0 and the
DICCCOL-based sampling D0 have the close mean SMR values
(0.38 vs. 0.41), if we check into every SMR value forM1 toM6, the
DICCCOL-based sampling D0 has the balanced ability to identify
all of the motor task-evoked networks but the uniform sampling
U0 and random sampling cannot. Meanwhile, we compared their
statistical significant differences for detecting each motor task
network (M1 to M5), as shown in Table 2B. We can find that, for
the M1, M4 andM5 spatial maps, the 0-ring DICCCOL sampling
can achieve the same performance with no sampling; for the
M2 and M6 spatial maps, the 2-ring DICCCOL sampling can

do that, and for the M3, the 4-ring DICCCOL sampling has no
significant difference with no sampling. Regarding the uniform
sampling, the minimal sampling level is the U2 for detecting
the M1, M5 and M6 spatial maps if we require no significant
difference with no sampling. And for M4, it must be U6 to
meet this requirement. So generally speaking, we need at least
the 4-ring DICCCOL sampling to detect all motor task related
spatial maps, and if we use the uniform sampling, the level for
this is the U6 which has the same sampling points with the 6-
ring DICCCOL sampling. Due to the limited space, the statistical
comparisons for the random sampling are not shown here. These
results further demonstrated the DICCCOL-based sampling can
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FIGURE 6 | The functional networks identified from the two different groups. Here only the functional networks from the 2-ring DICCCOL-based sampling were shown

due to the limite space. “2-R(1)” represents the first run on the previous dataset, “2-R(2)” represents the second run on the new dataset. The color scale of spatial

maps ranges from 0.2 to 5.

TABLE 3 | (A) The Spatial Matching ratio between the task-evoked networks derived from different datasets via the 2-ring DICCCOL-based sampling.

M1 M2 M3 M4 M5 M6 Mean

(A) THE SMR VALUES AND p-VALUES FROM THE 2-RING dicccol-BASED SAMPLING

1st run 0.62 0.20 0.72 0.30 0.46 0.45 0.46

2nd run 0.66 0.60 0.43 0.35 0.57 0.52 0.52

1st run vs. 2nd run 45.84 0.27 0.04 12.30 5.46 8.45 N/A

(B) THE SMR VALUES AND p-VALUES FROM THE 4-RING DICCCOL-BASED SAMPLING

1st run 0.52 0.24 0.84 0.41 0.50 0.44 0.49

2nd run 0.61 0.32 0.69 0.36 0.54 0.52 0.51

1st run vs. 2nd run 69.24 9.22 5.85 8.64 17.43 10.83 N/A

The second row represents the SMR values of the first run which can also be found in Table 2, the third row represents the SMR of the second run with GLM derived templates, and

the last one gives the p-values (×10−2) of t-test on SMR values between two runs. (B) The Spatial Matching ratio between the task-evoked networks derived from different datasets

via the 4-ring DICCCOL-based sampling. Similarly, the last row shows the corresponding p-values (×10−2) of t-test on SMR values between two runs. The color values denote the

p-values < 0.05.

locate the key brain locations from another perspective. At last,
we put the averaged SMR values into Table 1A, which is an
overall comparison between the four sampling methods.

Other Common Concurrent Networks
One of the advantages of applying the group-wise dictionary
learning and sparse representation to reconstruct brain networks
from task fMRI data lies in that it can simultaneously identify
the common concurrent/interacting resting state functional
networks, which cannot be obtained by the GLM method
(Krekelberg et al., 2006; Logothetis, 2008). In order to reveal
and interpret these common networks across all the subjects,
first, we computed the mean values of all corresponding spatial
maps among all the subjects as thresholds in the next step.
Here, each spatial map is each row of coefficient matrix A,
which is in correspondence among all the subjects given that
the dictionary D is common for all. Then we computed the

spatial matching ratio between the corresponding spatial maps
of any two subjects according to the thresholds above, and then
we obtained the averaged SMR value for each corresponding
spatial map as the measure of consistency. Finally, we selected
the three most consistent spatial maps, as shown in Figure 5.
The three common networks from 0- to 6-ring DICCCOL-based
sampling are all displayed here, where each common functional
network has four representative slices shown. These common
networks are also concurrent with those identified networks in
section Comparison of Spatial Task-EvokedNetworksWith GLM
Derived Activations. We can see that the common network 1 and
the common network 2 are located in two different visual regions
as the visual cue network (M1) in the section Comparison of
Spatial Task-Evoked Networks With GLM Derived Activations.
These two networks can be found in 10 well-defined resting state
networks (RSN) templates provided in the literature (Smith et al.,
2009).
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Replicability
To investigate the replicability (Patil et al., in review) of
the DICCCOL-based sampling and the group-wise dictionary
learning and sparse representation method, we applied the same
procedure to another separate group of 20 subjects in the
HCP task fMRI dataset (Barch et al., 2013). The results are
shown in Figure 6. Here, we showed the functional networks via
the 2-ring DICCCOL-based sampling. We can see that all the
motor task networks can be obtained in the second run, 2-R(2).
Moreover, they have very similar spatial maps with the previous
networks identified in section Comparison of Spatial Task-
Evoked Networks With GLM Derived Activations, which are
also presented in the row 2-R(2) for the purpose of comparison.
Quantitatively, we computed the SMR between networks of the
second run and GLM derived templates, as shown in Table 3A.
The second row represents the SMR values of the first run which
can be also found in Table 2A, the third row represents the SMR
of the second run with GLM templates, the last one gives p-
values (10−2) of t-test comparison between two runs. We can

FIGURE 7 | The time cost of differnt sampling methods. “0–6“ represents the

sampling level which has the same number of sampling points with 0 to 6 ring

DICCCOL-based sampling.

see that we cannot have its performance in the level of the 2-
ring DICCCOL sampling although it can detect all the spatial
maps. So we compared the statistical difference between two runs
via the 4-ring DICCCOL sampling, the SMR values and p-values
are shown in Table 3B. We can see that the two runs have no
significant difference via the 4-ring DICCCOL sampling, and
these results also demonstrated that the proposed method in this
paper is replicable. So, with the previous comparison of the PCC
and SMR values in section Comparison of Temporal Dictionary
Atoms With Task Stimulus Curves and Comparison of Spatial
Task-Evoked Networks With GLM Derived Activations, we can
conclude that the 4-ring DICCCOL sampling is a safe choice
for identifying the task-evoked networks and representing fMRI
signals.

Comparison of Time Costs
We compared the time costs for the four samplingmethods. Since
the dictionary learning step is a major part and it costs more time
than the sparse coding step (which is fixed) (Mairal et al., 2010),
the difference of time cost heavily depends on the number of task
fMRI signals given that the dictionary size is fixed (here the size
is 400). We therefore only compared the time cost of dictionary
learning step, as shown in Figure 7. We can see that the time cost
increased with the increase of the number of sampling points, and
it was almost not affected by sampling methods. As an example,
a 4-ring DICCCOL-based sampling with robust performance
has the averaged 14,600 signals (each subject contains around
2.4 × 105 whole-brain fMRI signals). The time costs of no
sampling, DICCCOL-based sampling, uniform sampling, and
random sampling methods for 20 subjects are 1,953, 69.7,
77.4, and 76.1s, respectively. It is obvious that DICCCOL-based
sampling with the 6% sampled points is approximately 28 times
faster than no sampling, without sacrificing much accuracy for
sparsely representing the whole brain’s task fMRI signals. If we
have stricter need for time than accuracy, we can adopt the 0 or
2-ringDICCCOL-based sampling. Otherwise, we can use the 4/6-
ring DICCCOL-based sampling. Notably, here we aggregated the
20 brains’ fMRI data into one data matrix to test and validate.
In fact, one can aggregate more brains’ fMRI data into the input

FIGURE 8 | The three change curves with varying λ. These curves are the averaged representation errors, the computing time costs, and the averaged Pearson’s

correlations between the 6 task stimuli and the corresponding most matched dictionary atoms, respectively.
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data matrix, which depends on the memory space availability.
Then less time cost and higher accuracy can be expected, which
is very useful in an fMRI big data context. In conclusion, the
proposed DICCCOL-based sampling, combined with the group-
wise dictionary learning across individual subjects, achieved 15–
400 times speed-up, allowing for appropriate accuracy to identify
the functional brain networks.

Setting of Parameters in Dictionary
Learning and Sparse Coding
To conduct a fair comparison, we chose the same parameters
for all of the four sampling methods, that is, the number of
dictionary atom is 400, the sparsity regularization parameter λ

= 1.5, and we set the number of iterations for whole brain’s
signals as 4. The justification for the selection of the number of
dictionary atoms can be referred to Lv et al. (2014b). Basically,
we have a wide range of choices from 300 to 500, and the
number within this range can reliably uncover the dominant
basis components that can well represent the fMRI signals. The
online dictionary learning and sparse coding algorithm learns
the dictionary batch by batch, but not by whole brain data.
We set the number of iterations for each batch as 100, which
plays an important role in determining the representation error.
We set the batch size as the number of signals times 4 divided
by the number of iterations so that the whole signal matrix
was employed 4 times, thus providing a foundation for fair
comparison. In order to determine the sparsity regularization
parameter λ, we plotted the change of time cost, representation
error and Pearson’s correlation curves with the λ, as shown in
Figure 8. The time cost (in seconds) was the time to compute
the common dictionary of the 20 subjects using one computing
core, and the representation error (in dB) was the averaged
values among 20 subjects. The Pearson Correlation Coefficients
(PCC) between the six task stimuli and their corresponding
most matched dictionary atoms were also the averaged values
of the six PCCs among 20 subjects, with the range of PCC
from 0 to 1. We found that the averaged PCCs increased as
the λ rose to 1.5, and then tended to be stable nearby 0.8,
which means an adequate high Pearson correlation between two
signals (this fact can be seen from the Figure 3). Meanwhile,
the representation error and time cost always increased and
decreased with the rise of the λ, respectively. Therefore, the
λ value was a trade-off result in consideration of the three
performances of dictionary learning and sparse representation.
We adopted the same set of parameters for all four sampling
methods.

DISCUSSION

In this work, we presented a novel structurally guided fMRI signal
sampling scheme for effective group-wise dictionary learning
and sparse representation of whole brain task fMRI signals.
The comparative experiments demonstrated that DICCCOL-
based sampling combined with group-wise dictionary learning
achieved 15–400 times speed-up for signal representation, and we
think that the 4-ring DICCCOL sampling is a safe choice without

significant loss for identifying the task-evoked networks and
representing fMRI signals. Furthermore, the group-wise strategy
of dictionary learning and sparse representation can efficiently
and easily identify other concurrent resting state functional
networks from task fMRI data which cannot be detected by
the traditional GLM method. The DICCCOL-based sampling
method is different from the previous reduction techniques
which use the mathematical theory, as it leveraged the structural
information of brain and was demonstrated more effective.
This proposed method is significant for dealing with large scale
fMRI data, especially when functional networks analysis becomes
an important step for discovering the underlying organization
structures and meaningful dynamic patterns from the vast
amount of fMRI snals (Li et al., 2016). We could apply this
method to a distributed and parallel computing environment
(Kiar et al., 2017), as the DICCCOL-based sampling of each
brain can be in parallel. The dictionary learning algorithm is also
parallelized in its code, and the pre-processing of DTI including
DICCCOL and fMRI can be parallelized, so the processing of DTI
and DICCCOL is not a time-cost problem in a distributed and
parallel computing environment. In the future, we plan to further
evaluate and validate this method using other task fMRI datasets,
and compare the DICCCOL-based sampling method with other
more advanced signal sampling methods.
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