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Abstract: Gene coexpression patterns carry a rich amount of valuable information regarding 

enormously complex brain structures and functions. Characterization of these patterns in an 

unbiased, integrated and anatomically comprehensive manner will illuminate the higher order 

transcriptome organization and offer genetic foundations of functional circuitry. Here we 

demonstrate a data-driven method to extract coexpression networks from transcriptome profiles 

in the Allen Mouse Brain Atlas dataset. For each of the obtained networks, both the genetic 

compositions and the spatial distributions in brain volume are learned. A simultaneous 

knowledge of spatial distributions of a specific gene, the networks in which the gene plays and 

the weights it carries, can bring insights into the molecular mechanism of brain formation and 

functions. Gene ontologies and the comparisons with published gene lists reveal biologically 

identified coexpression networks, some of which correspond to major cell types, biological 

pathways and/or anatomical regions. 
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1 INTRODUCTION 

Gene coexpression patterns carry rich amount of valuable information about enormously 

complex cellular processes (Peng et al., 2007). Previous studies have shown that genes 

displaying similar expression profiles are very likely to be involved in the same transcriptional 

regulatory program (Allocco et al., 2004; Mody et al., 2001), encode interacting proteins (Ge et 

al., 2001) or participate in the same biological processes (Tavazoie et al., 1999).  A Gene 

Coexpression Network (GCN), represents the interactions among genes and is often used to 

study biological and genetic mechanisms across species and during evolution. For example, one 

pioneering work by Stuart et al (Stuart, 2003) is a comparative study on the microarray data of 

humans, flies, worms, and yeast. The results showed that multiple groups of conserved genes are 
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associated with core biological functions. Knowledge of these key groups is an essential step to 

understand the overall design of genetic pathway. Efforts also went toward deriving common 

GCNs in the human brain (Hawrylycz et al., 2015; Oldham et al., 2008). Despite significant 

variations between individuals, preserved clusters of genes corresponding to discrete neuronal 

subtypes emerged from the comparisons of GCNs in different subjects. These consensus groups 

of genes consistently found in different subjects across brain regions provide strong evidence of 

a link between conserved gene expression and functionally relevant circuitry. In addition to 

revealing the intrinsic transcriptome organizations, GCNs have also demonstrated superior 

performance when they are used to generate novel hypotheses for molecular mechanisms of 

diseases because many disease phenotypes are not caused by one gene - or even a few genes or 

proteins, but as a result of dysfunction of a complex network of molecular interactions (Bando et 

al., 2013; Carter et al., 2013; Gaiteri et al., 2014).  

Various proposals have been made to identify the GCNs. The most common and useful class of 

approach is clustering. Many clustering variants including hierarchical clustering and k-means 

clustering, have demonstrated good capability in identifying genes that share common roles in 

cellular processes (Bohland et al., 2010; Eisen et al., 1999; Tamayo et al., 1999). The alternative 

group of methods is to apply network concepts and models, which offers more descriptive power 

to the complicated molecular system, to describe gene-gene interactions (Oldham et al., 2012). 

Given the high dimension of genetic data and the urgent need in making comparisons to unveil 

the changes or the consensus between subjects or species, one common theme of all of these 

methods is dimension reduction. Instead of analyzing the interactions between over tens of 

thousands of genes, the groupings of genes by their co-expression patterns can considerably 

reduce the complexity of comparisons from tens of thousands of genes to dozens of networks or 

clusters, while preserving the original interactions. 

Along the line of data-reduction, we proposed dictionary learning and sparse coding (DLSC) 

algorithm for GCN construction. DLSC is an unbiased data-driven method that learns a set of 

new bases (denoted as dictionaries) from the signal matrix so that the original signals can be 

represented in a sparse and linear manner. Because of the sparsity constraint, the dimension of 

genetic data can be significantly reduced. The grouping by co-expression patterns is encoded in 

the sparse coefficient matrix with the assumption that if two genes use the same dictionary to 

represent their original signals, then their gene expressions must share similar patterns, thereby 

considering them as “co-expressed”. The proposed method overcomes the potential issues of 

overlooking multiple roles of regulatory domains in different networks that are seen in many 

clustering methods (Gaiteri et al., 2014) because DLSC does not impose the bases be orthogonal 

and that one gene can be claimed by multiple networks. More importantly, for each of the 

obtained networks, both genetic compositions and spatial distributions in brain volume are 

learned. A simultaneous knowledge of the distributions of a specific gene, the networks in which 

the gene functions and the weights it carries can bring insights into the genetic mechanism of 

brain formation and functions. 

Most of the GCNs were constructed from the microarray data and in situ hybridization (ISH) 

data. One major advantage of ISH over microarray data is that ISH preserves the precise spatial 



distribution of genes. One of the most valuable ISH resources is the openly available Allen 

Mouse Brain Atlas (AMBA) initiated by the Allen Institute for Brain Sciences (Lein et al. 2007), 

which surveyed over 20,000 genes expression patterns in 56-day-old C57BL/6J mouse brain 

using ISH. This valuable dataset, featured by the whole-genome scale, cellular resolution and 

anatomically comprehensive coverage, allows systematic and holistic investigation of the 

molecular underpinnings and related functional circuitry.  Using AMBA, the GCNs identified by 

DLSC showed significant enrichment for major cell types, biological functions, anatomical 

regions, and/or brain disorders. The identified GCNs holds promises to serve as foundations to 

explore different cell types and functional processes in diseased and healthy brains. 

2 METHODS 

The computational pipeline of proposed framework is illustrated in Figure 1. The pipeline 

consists of two parts: the slice-based GCN construction and validation (Figure 1a-d) and global 

GCN construction and analysis (Figure 1e).  

 

Figure 1. Computational pipeline for constructing slice-wide GCNs (a)-(d) and brain-wide GCNs (e). (a) 

Raw ISH data preprocessing step that removes unreliable genes and voxels and estimates the remaining 

missing data. (b) Dictionary learning and sparse coding of ISH matrix with sparse and non-negative 

constraints on coefficient α matrix. D is the dictionary matrix and α is the coefficient matrix. ε is the 

reconstruction error. (c) Visualization of spatial distributions of slice-based GCNs and brain delineation 

by spectral clustering using dictionaries as feature vector. (d) Characterization of gene composition of 

GCN and validation by comparing with WGCNA. (e) Integrating slice-based GCNs into global GCNs 

and global GCN gene ontology. 



2.1 EXPERIMENT MATERIAL 

AMBA is a genome-wide cellular-resolution map of gene expressions using ISH that offers 

brain-wide anatomical coverage of mouse brain. The inbred mouse strain is used to reduce the 

animal-to-animal variation in brains. For each tested gene, the mouse brain was sectioned into 

series of tissues in coronal or sagittal planes and then imaged. To enable three-dimensional 

volumetric representations from the acquired coronal or sagittal series images, a common 

coordinate space of the three-dimensional (3D) reference atlas was first created so that the ISH 

images of each gene can be consistently registered to the same space and aligned.  Later each 

image was uniformly divided into 200×200 um grids and gene-expression statistics were 

computed from the detected signals for each voxel. The resulted voxelized expression grids 

encoding the important spatial information of over 4,345 genes in coronal sections and 21,718 

genes in sagittal sections make up the key components of the AMBA. 

We downloaded the 4,345 3D volumes of expression energy of coronal sections as well as the 

corresponding reference atlas from the website of ABA (http://mouse.brain-map.org/) to perform 

our analysis. Coronal sections are chosen because they registered more accurately to the 

reference model than the counterparts of sagittal sections. The dimension of all 3D volumes 

applied in this study is 67×41×58. 

2.2 SLICE-WIDE GCN CONSTRUCTION AND VALIDATION 

The major obstacle to a global analysis of ISH data on all coronal slices is the number of missing 

data observed on each slice (Supplementary Figure S1). Since each slice has its own missing 

genes, in order to obtain a common set of genes on all slices will require roughly 33% of the 

genes removed from analysis, resulting in a significant amount of information loss. Additionally, 

as the ISH data is acquired by each coronal slice before they were stitched and aligned into a 

complete 3D volume, despite extensive preprocessing steps (Ng et al., 2007) such as a global 

adaptive thresholding method and morphological filtering employed to remove noise and 

connect broken segments, quite significant changes in average expression levels of the same 

gene between slices are observed (Supplementary Figure S1). Considering these problems, 

studying the coexpression networks slice by slice enables leveraging off the information loss and 

alleviation of the artifacts due to slice handling and preprocessing. Yet additional efforts are 

needed to integrate gene-gene interactions on each slice.  

2.2.1 Data preprocessing 

For slice-wide analysis, the input of the pipeline are the expression grids of one of 67 coronal 

slices. A preprocessing module (Figure 1a) is first applied to handle the foreground voxels with 

missing data (-1 in expression energy). The lack of data is assumed mostly due to problems 

during ISH and image processing steps such as missing slices, broken tissue, and slice alignment. 

Specifically, this module includes an extraction step, a filtering step and an estimation step.  First, 

the foreground voxels of the slice based on the annotation map from ARA were extracted. Then 

the genes of low variance (standard deviation <0.5) or genes with missing values in over 20% of 

foreground voxels were excluded from further analysis because they provide little information to 

network construction. A similar filtering step is also applied to remove voxels in which over 20% 

http://mouse.brain-map.org/


genes do not have data. Most missing values were resolved in the two filtering steps. The 

remaining missing values were recursively estimated as the mean of foreground voxels in its 8 

neighborhood until all missing values were filled. The maximum number of iterations is 4 with 

most values using 2 or 3 iterations. The low number of iterations suggest that the estimated data 

is reasonable. After preprocessing, the cleaned expression energies were organized into a matrix 

and sent to DLSC (Figure 1b). In DLSC (section 2.2.2), the gene expression matrix is factorized 

into a dictionary matrix D and a coefficient matrix α. These two matrices encode the distribution 

and composition of GCN (Figure 1c-d) and will be further analyzed and validated against the 

raw data and existing method. 

2.2.2 Dictionary Learning and Sparse Coding 

DLSC is a popular method to achieve a compressed and succinct representation for ideally all 

signal vectors. Given a set of M-dimensional input signals X=[x1,…,xN] in ℝ𝑀×𝑁, learning a 

fixed number of dictionaries for sparse representation of X can be accomplished by solving the 

following optimization problem: 

< 𝐃, 𝛂 >= argmin
1

2
‖𝑿 − 𝑫 × 𝜶‖2

2  𝑠. 𝑡 ‖𝜶‖1 ≤  𝜆 (1) 

 

where 𝑫 ∈ ℝ𝑁×𝐾 is the dictionary matrix, 𝜶 ∈ ℝ𝐾×𝑀  is the corresponding loading coefficient 

matrix, λ is a sparsity constraint factor and indicates each signal has fewer than λ items in its 

decomposition, ‖∗‖2  is the summation of ℓ2 norm of each column and ‖∗‖1  is the summation 

of ℓ1 norm of each column. ‖𝑿 − 𝑫 × 𝜶‖2
2 denotes the reconstruction error. 

In efficient sparse coding algorithm, the optimization problem is solved by an alternating 

minimization procedure through lasso and least-square steps that iteratively updates to improve 

the estimate of the sparse codes while keeping the dictionaries fixed and then updating 

dictionaries that fit the sparse codes best. At all times, the energy function in equation (1) should 

be minimized.  

As will be discussed later that each entry of α indicates the degree of conformity of a particular 

gene to a coexpression network, a non-negative constraint was added to the ℓ1-regularization. 

This additional prior, included in equation (2), can be handled by homotopy method presented in 

Efron et al (Efron et al., 2004). 

 

< 𝐃, 𝛂 >= argmin ∑
1

2

𝑁

𝑖=1

‖𝑥𝑖 − 𝑫 × 𝛼𝑖‖2
2  𝑠. 𝑡 ‖𝜶‖1 ≤  𝜆 , ∀ i, 𝛼𝑖 ≥ 0 (2) 

 

In practice, the gene expression grids are arranged into a single matrix 𝑿 ∈ ℝ𝑀×𝑁, such that M 

rows correspond to M foreground voxels for analysis and N columns correspond to N genes 

(Figure 1(b)). Then, each column of the matrix (gene signal in a voxel) was normalized by its 

Frobenius norm. After normalization, the publicly available online DLSC package was applied to 

solve the matrix factorization problem proposed in equation (2) (Mairal et al., 2010). Eventually, 

the gene expression energy matrix 𝑿  was represented as sparse combinations of learned 



dictionary atoms 𝑫. Each column in D is one dictionary consisted of a set of voxels. Each row in 

α corresponds to one dictionary and details the coefficient of each gene in a particular dictionary.  

The key assumptions of enforcing the sparseness is that each gene is involved in a very limited 

number of gene networks. The non-negativity constraint on α matrix imposes that no genes with 

the opposite expression patterns will be placed in the same network. 

One mathematical interpretation of the DLSC is that a set of dictionaries are learned and used as 

new bases so that the original matrix can be described by a sparse matrix α. In the context of 

deriving GCNs, we consider that if two genes use the same dictionary to represent the original 

signals, then the two genes are coexpressed in this dictionary. There are several benefits of this 

set-up. First, both the dictionaries and coefficients are learnt from the data and therefore should 

reflect the intrinsic organization of transcriptome. Second, the level of co-expressions is 

quantifiable, and the level is not only comparable within one dictionary, but the entire α matrix.  

Further, if we consider each dictionary as one network, the corresponding row of α matrix 

contains all the genes that use this dictionary for sparse representation, or that are ‘coexpressed’. 

Additionally, each entry of α measures the extent to which this gene conforms to the 

coexpression pattern described by the dictionary atom. Therefore, this network, denoted as the 

coexpression network, is formed. Since the dictionary atom is composed of multiple voxels, by 

mapping each atom in D back to the ARA space, we can visualize the spatial patterns of the 

coexpressed networks. Combining information from both D and α matrices, we would obtain a 

set of intrinsically learned GCNs with the knowledge of both their anatomical patterns and gene 

compositions. As the dictionary is the equivalent of network, these two terms will be used 

interchangeably. 

2.2.3 Parameter Selection 

The choice of number of dictionaries and the regularization parameter λ are crucial for effective 

sparse representation. As there exists no golden standard for parameter selection, we first 

proposed three criteria to evaluate the performance of DLSC and then carried out a grid search 

on the optimized parameters using one example slice.  

The first criteria is the reconstruction error. It is defined as the least square difference between 

the original signal matrix and the reconstruction from sparse representation [equation (3)].  A 

high reconstruction error indicates a less accurate representation.  

   𝑒𝑟𝑟𝑜𝑟𝑦 =  
1

2
‖𝑿 − 𝑫𝜶‖𝐹

2  (3) 

The second evaluation metric is the average uncertainty coefficient (AUC) between the obtained 

dictionaries and the reference atlas. The uncertainty coefficient, defined in [equation (5)] is a 

normalized variant of mutual information (MI). Many studies have shown that different 

combinations of gene expression profiles mirror the gross anatomical partitioning (Dobrin et al., 

2009; Oldham et al., 2008). We thus assume the set of the parameters that result in the highest 

correspondence between the transcriptome patterns and canonical anatomical structures are the 

optimal parameters. MI, as a powerful criterion to measure the dependencies between variables, 

can be used to characterize how well the transcriptome patterns match with the canonical 



neuroanatomical divisions, thereby a good estimate on how meaningful the components are. The 

advantage of using the normalized MI, is that it varies between 0 and 1 with values close to zero 

indicating the two spatial distributions are independent whereas values close to one suggesting 

knowledge of one spatial pattern can reduce uncertainty of the other and thereby being used to 

predict the other one.  

In specific, MI is first calculated between the spatial distribution of each gene network and the 

reference atlas. Given a continuous variable X that contains the spatial distribution of one gene 

network, discretization is performed via histogram with an empirically selected 32 equally 

divided bins. Let categorical variable Y represent the labels in the reference atlas. The MI can be 

calculated as: 

𝐼(𝑋, 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (4) 

where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the 

marginal probability distribution functions of X and Y respectively. 

Then the uncertainty is obtained from: 

𝑈(𝑋, 𝑌) =
2 ∗  𝐼(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 (5) 

where H(X) and H(Y) are the marginal entropies. For a particular λ and number of dictionaries, 

the average AUC of all GCNs is used to compare. 

Another important measurement to examine the DLSC performance is the degree of density 

measured by the percentage of none-zero-valued elements in the coefficient matrix. As we are 

trying to find a set of dictionaries that are rich in representation power so that a compact code 

can be achieved, a relatively low value is expected.  As discussed in DLSC section, the density is 

regulated by λ. In most cases, increasing λ will give rise to more zero entries in the coefficient 

matrix. It should be noted that there is no exact monotonic relation between λ and the density of 

the solution (Mairal et al., 2010). Therefore it would be helpful to monitor λ during the 

parameter selection process.  

Having set up the three criteria, a grid search was performed on slice 27. This slice is chosen due 

to its good anatomical coverage of various brain regions. As different number of genes are 

expressed in different slices, the number of dictionaries for each slice should change accordingly. 

Instead of a fixed set number of dictionaries, a gene-dictionary ratio is used to determine the 

optimal ratio between the number of genes expressed and the number of dictionaries required to 

achieve a good representation. 55 combinations of λ and gene-dictionary ratios are considered 

with 5 choices of λ and 11 different gene-dictionary ratios (Supplementary table S1-3). The 

results using 55 different combinations of parameters are available at 

http://mbm.cs.uga.edu/mouse/gcn/para_select/slice.html. As the final goal of parameter selection 

is to choose a set of parameters that result in a sparse and accurate representation of the original 

signal, which is translated to a low reconstruction error, a high AUC and a low density, λ=0.5 

http://mbm.cs.uga.edu/mouse/gcn/para_select/slice.html


and gene-dictionary ratio of 100 is the best option among 55 parameter combinations and chosen 

as the optimal parameters.  

2.2.4 Brain parcellation using DLSC 

The decomposition of gene expression matrix on each slice results in a dictionary matrix D and a 

coefficient matrix α. Each row of D describes which dictionary and how much weight one voxel 

participates in that dictionary. It is assumed that if two voxels have similar dictionary features, i.e. 

two voxels are involved in the same dictionary (network) and carry similar weights, then these 

voxels are considered highly similar. With the dictionaries as the feature vector of a voxel, 

Pearson correlation is employed to calculate the similarity between voxels. Then the voxels on 

the slice are clustered into groups by spectral clustering (Chen et al., 2013; Luxburg, 2007). The 

number of clusters is adapted to the data and determined by normalized cut with a threshold of 

0.7. (Chen et al., 2013; Luxburg, 2007)   

2.2.5 Comparative analysis with Weighted Gene Correlation Network Analysis (WGCNA) 

WGCNA is applied on the same dataset to validate findings generated by DLSC. WGCNA 

(Langfelder and Horvath, 2008) is an unbiased, unsupervised framework to identify coexpressed 

gene modules.  In the framework, genes are viewed as nodes in a weighted network. To achieve 

a robust and sensitive measure of the interaction between genes, the proximity measure between 

genes, - namely Topological Overlap Measure (TOM), considers not only the direct connection 

strength between two genes, but also the connection strengths these two genes share with other 

"third party" genes. Then based on TOM, genes are clustered into multiple modules using 

average linkage hierarchical clustering. The module eigengene, defined as the first principal 

component of the standardized expression profiles of the module is used as a succinct 

representation of the gene expression profiles of the module. In this study, signed network is 

used to avoid the “anti-reinforcing” connection strength that might occur in unsigned network. 

Default parameters were used (β=12, height cut to merge=0.15). As the size of the smallest 

dictionary is 45 in DLSC, we set the minimum cluster size to 40 in WGCNA.  

For clarity, the groups identified by WGCNA and DLSC are denoted as modules and GCNs 

respectively. To quantitatively compare the found networks, both methods were applied on the 

gene expressions of the same slice – slice 27. Then the number of shared genes were counted 

between groups identified by both methods and then normalized by DLSC dictionary length 

(Figure 2a) or by WGCNA module length (Figure 2b). The resulted overlap percentage is 

between 0 and 1 with 1 indicating the group is exactly included by the groups identified by the 

other method and 0 indicating no shared gene found. Besides quantification, another intuitive 

way to compare the two methods is by comparing the obtained spatial maps. Similar gene groups 

are very likely to display similar spatial maps. In DLSC, the dictionary atom encodes the 

network spatial patterns. In WGCNA, the spatial distributions are represented by the spatial 

pattern of the eigengene of that module. 



2.3 BRAIN-WIDE GCNS CONSTRUCTION AND ANALYSIS 

2.3.1 Brain-wide GCNs construction 

To construct brain-wide coexpression networks, we need to consider the gene interactions on all 

coronal slices. First, gene similarity on each slice, denoted as the local similarity, is calculated 

from the coefficient matrix α with the coefficients as the feature of each gene. Let v1, v2 be the 

coefficient vectors of gene1 and gene 2. The gene similarity measure is defined as the overlap 

rate OR, as shown below: 

𝑂𝑅(𝑣1, 𝑣2) = 2
|min (𝑣1, 𝑣2)|

|𝑣1| + |𝑣2|
 (6) 

where |*| is the ℓ1  norm of feature vector.  

As mentioned above that each slice has missing data for different genes, the interactions of these 

missing genes on the particular slice should not be considered in the global similarity matrix 

construction. Therefore, the global gene similarity, i.e., the similarity measure that considers 

interactions on all slices, is measured by the median of the local similarities of genes with 

sufficient data. The rationale of adopting a global similarity matrix instead of simply aggregating 

the coefficients matrices on each slice is to mitigate the influence of missing data as well as the 

artifacts generated during data acquisition.  

In the constructed global similarity matrix, 91 genes show zero similarity to any other genes. The 

very low similarity is caused by the lack of data, evidenced by that these 91 genes are present in 

at most 5 out of 67 slices. The separation of these genes that suffer from heavy data loss 

demonstrates the effectiveness of similarity matrix over the original α matrix, and also reflects 

the OR as an appropriate measure for gene similarity in this situation. 

4254 out of 4345 genes were used to derive the brain-wide GCNs. The global similarity matrix is 

the input to the subsequent DLSC. The goal of performing DLSC on the similarity matrix is to 

assign network membership to genes by their associations to all the other genes. We assume that 

if two genes display similar relationship to all the other genes, these genes should belong to the 

same group. The network memberships are encoded in the resulted sparse coefficient matrix α.  

2.3.2 Parameter selection 

The parameter selection of decomposing the global similarity matrix is guided by the knowledge 

from the slice-based study that each network is consisted of on average 185 genes and each gene 

participates in 1.85 networks. Using these criteria, we performed a grid search of λ and 

dictionary numbers (Supplementary table S4-5) and selected λ as 0.3 and dictionary number 50, 

which resulted in an average of 189 genes per network and a slightly larger 2.21 networks for 

one gene.    

2.3.3 Fuse 3D spatial pattern of GCNs 

As described in section 2.2.2, the dictionaries trained in each slice encode rich information of the 

spatial distribution of GCNs. Intuitively, we can fuse the dictionaries of each slice to study the 

3D spatial pattern of brain-wide GCNs. First, the similarities between brain-wide GCNs and 

slice-wide GCNs were calculated. Then, we scaled slice-wide dictionaries based on similarity 



and accumulated them to generate a 3D volume. Specifically, the similarity was calculated based 

on the OR of coefficient matrix defined in section 2.3.1. Slightly different from previous 

definition, here the similarity was calculated between GCNs instead of genes. Also, before 

comparison, each feature vector were normalized so that the maximum value equals to 1. 

2.3.4 Gene ontology analysis of brain-wide GCNs 

Brain-wide GCN characterization were made based on common GO gene ontology categories 

(Molecular Function, Biological Process, Cellular Component), Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways using Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Dennis et al., 2003). Enrichment analysis was performed by cross-

referencing with published lists of genes (Miller et al., 2011) related to cell type markers, known 

and predicted lists of disease genes, specific biological functions etc. Significance was assessed 

using one-sided Fisher’s exact test with a threshold of 0.01. 

3 RESULTS 

The organization of the result section is as follows. In section 3.1, we constructed GCNs on each 

slice. With slice 27 as an example, the slice-based GCNs were validated first by a visual 

inspection against raw ISH data where the GCNs are derived and then by a comparative study 

with one of the most widely used methods - WGCNA. On the side as one application, we 

demonstrated that the learnt dictionaries, 100 fold shorter in length than the gene expressions, 

can be a relevant and compact feature for brain parcellation. Having established the slice-wide 

GCNs, section 3.2 will focus on the construction of global GCNs by integrating the gene-gene 

interactions on all slices. Along with the spatial distribution of the GCNs, we will show that the 

obtained GCNs are biologically meaningful by comparing with the known gene ontologies and 

published gene lists.  

3.1 SLICE-WIDE GCN ANALYSIS 

To show as an example, slice 27 is analyzed due to its good anatomical coverage of various brain 

regions. Results of all other slices are available at http://mbm.cs.uga.edu/mouse/gcn/ 

allslices/all_slice_anatomy_overview.html. The detailed information including the genes and 

spatial distributions of modules identified by WGCNA can also be found at 

http://mbm.cs.uga.edu/mouse/gcn/wgcna_s27_signed_40/overview.html. 

3.1.1 Comparative analysis with WGCNA 

Both DLSC and WGCNA were applied on gene expressions data of slice 27. WGCNA organized 

genes into 11 modules while 29 networks were found by DLSC. In Figure 2a, all WGCNA 

modules were projected to the DLSC GCN space. As WGCNA found fewer numbers of groups, 

for each WGCNA module, there exists one or more overlapping GCNs. For example, as 

indicated by the first row of Figure 2a, WGCNA module 1, consisting over 1000 genes, 

corresponds to several GCNs such as 13, 15, 25 and 27. An inspection of the spatial distributions 

of these networks confirms the correspondence (Supplementary Figure S2). Also, WGCNA 

module 2 corresponds to GCN 3 and 26. On the other hand, by projecting the DLSC networks to 



the WGCNA module space (Figure 2b), some GCNs are found covering the entire or most of 

elements in WGCNA modules. For instance, the genes in GCN 24 includes almost all genes 

found in module 11. Similarly, GCN 9 finds about 90% of genes found in module 9 in addition 

to other genes. The similarity in the networks identified by two methods is not only evident in 

the gene constituents, but also reflected in the spatial maps illustrated in Figure 3.  

To further understand the similarities and differences of the networks identified by the two 

methods, we performed a more detailed analysis on WGCNA module 2, 4 and 11 and the 

corresponding GCN 3, 26, 19, 22, and 24 (Figure 3). To first demonstrate that within a GCN the 

expression patterns are consistent, along with the spatial map, three ISH raw data of the 

representative genes in the network where the spatial pattern is derived are also displayed. As 

seen in Figure 3, the ISH raw data match well with the respective spatial map. In GCN 3, the 

expression peaks at caudaputamen. All three genes showed strong signals in the caudaputamen in 

the raw data. Similarly, the expression patterns of GCN 24, as well as the three genes showed 

significantly enhanced signals in the septal region compared with the others. Relatedly, the 

weight in the parentheses indicates the extent to which a gene conforms to the coexpression 

pattern. A higher weight indicates a stronger resemblance of the raw data to the spatial map. One 

example is a comparison among Dlx1, Col6a3 and A930038C07Rik (Figure 3e). The GCN 24 

coexpression pattern covers the rostral and caudal part of lateral septal nucleus and septofimbrial 

nucleus. In A930038C07Rik and Dlx1, weaker signals were found in caudal part of lateral septal 

nucleus and septofimbrial nucleus (Figure 3e blue arrows). In Dlx1, enhanced signals that are 

inconsistent with the coexpression pattern were also seen in the bed nuclei of stria terminalis 

(Figure 3e red arrow). The decreased similarity agrees well with the declining weights. 

 



 

Figure 2. Comparisons between GCNs and modules identified by DLSC and WGCNAs. The number of 

shared genes were counted between two networks obtained by WGCNA and DLSC and then normalized 

by the number of genes in the corresponding network obtained by (a) DLSC or (b) WGCNA. The arrows 

highlighted the networks shown in Figure 3 of corresponding colors. 

 



 

Figure 3. Comparisons between networks found by DLSC and WGCNA on slice 27. The first column are 

the spatial maps of networks found by DLSC and last column are the spatial maps of WGCNA module 

eigen-genes. The three columns in the middle are the ISH raw data of representative genes of the 

networks. Gene acronyms and the weights are listed at the bottom. A higher weight indicates a higher 

similarity to the coexpression patterns of this network. Genes circled by the same colored box are in the 

same network/module. In spatial maps, red and blue indicates high and low gene expression levels 

respectively.  

Next we investigated some of the selected modules and networks obtained by the two methods. 

The WGCNA module 2 is broken down into GCN 3 and 26. As illustrated in Figure 3a-b, these 

two GCNs display very similar spatial patterns to each other and to the counterpart of module 2, 

which confirms the correspondence between the two methods. However, irrespective of the 

major covering regions, the differences between the spatial distributions of two GCNs are still 

evident. GCN 3 shows a higher expression at the lateral caudoputamen while the expression 

patterns in GCN 26 peak at the dorsal and medial part of caudoputamen. Another distinct feature 

is the simultaneous coverage of olfactory tubercle in GCN 26 that is evident in Necab and Rarb 

ISH image. This feature, pointed out by Cyld and Gpr155 (Figure 3a), is absent in GCN 3. It is 

worth mentioning that as in our method genes can have multiple assignment, 19 genes, including 

Rasd2 (Figure 3a) and Gng7 (Figure 3b) are involved in both networks. Given the similarity of 

the two spatial maps, it should not be a surprise that these genes function in both networks.  



Similarly, module 4 corresponds to two GCNs 19 and 22. Like the above example, both GCNs 

show similar spatial patterns in general with innegligible differences. The difference lies in that 

GCN 19 centers at bed nuclei of the stria terminalis and preoptic area while GCN 22 extends 

much further to substantia innominate and part of striatum. It is known that substantia 

innominate has wide projections to the neocortex via nucleus basalis. The coexpression of the 

two regions might be associated with the distribution of specific cells or communications via 

synapses corroborated by that many genes in this GCN are functionally related to synapses and 

protein transportation. 

Another interesting observation is the strong overlap between module 11 and GCN 24. Notably, 

all 46 genes in this module are included in GCN 24. This overlap explains the almost identical 

network spatial map (Figure 3e-f). In addition to the shared 46 genes, DLSC also finds 27 other 

genes. Yet all of them have relatively low weights (<0.224), indicating a lower level involvement 

in the GCN. In other words, these genes will not be considered as the contributing genes if a 

higher threshold is chosen during the determination of the participating genes. On the other hand, 

24 of these 27 genes were not assigned to any module by WGCNA and 3 were assigned to 

module 1.  

Overall, we have demonstrated that genes within a GCN show common coexpression patterns 

and the level of similarity of a particular gene to the coexpression patterns is correctly measured 

by the weights. Then with a detailed analysis of slice 27 we showed a good agreement between 

the DLSC and WGCNA by both the number of overlapping genes and spatial distributions, 

which verifies the GCNs generated by DLSC. 

3.1.2 Gene Coexpression Network and Brain Parcellation 

Existing literatures have shown that transcriptional profiles reflect the gross brain anatomical 

structures (Lein et al., 2004). Since DLSC is also a dimension reduction step that reduces the 

transcriptional profile consisting of ~3500 features into a feature vector composed of ~35 

dictionaries for a single voxel, we hypothesized that the learned dictionaries can preserve the 

(dis)similarities between two regions defined by their transcriptional profiles, thus serving as a 

very relevant and compact feature for brain delineation. As seen in Figure 4, voxels resulted 

from spectral clustering form a set of spatially contiguous clusters partitioning the slice. The 

formation of these single tight clusters agrees with the previously identified brain’s 

organizational principle that transcriptome similarities are strongest between anatomical 

neighbors. The delineations are in general symmetric and match major canonical brain regions 

including hippocampus (blue arrows), hypothalamus (red arrows), thalamus (magenta arrows) 

etc. The most striking and principal features are the laminar and areal patterning that are seen in 

almost all slices (highlighted by yellow and orange arrows in Figure 4(a)-(e)). The patterning -

defined by the abrupt changes in gene expression, has been discovered in mammalian brains 

such as mouse (Hawrylycz et al., 2010) and human (Miller, 2014) and is known crucial to the 

formation of specialized brain anatomical and functional areas (O’Leary et al., 2013). Within a 

dominant layered organization, layer specific areal patterning is also apparent. For instance, 

isocortex layers are further divided into motor areas (green arrows), somatosensory area (orange 

arrows), piriform area (pink arrows), retrosplenial area (dark green arrows), auditory area (purple 



arrows), and visual area (black arrows). It is worth mentioning the level of coherence in the 

partitioning across slices. Some subregions with potentially stable gene expression patterns are 

consistently found in adjacent slices despite of the slice-to-slice variations in anatomical 

structures and that DLSC and spectral clustering are performed separately on each slice. One 

example is slice 39 and slice 40. Some major canonical regions such as ventricles (white arrows), 

hippocampus (blue arrows), thalamus (magenta arrows), retrosplenial area (dark green arrows) 

are consistently identified in both slices. The consistent and legitimate segmentations not only 

demonstrate the validity of DLSC in succinctly representing the transcriptome profile, but also 

provides strong evidence that the observed networks are reproducible and that there exist unique 

and robust genetic signatures for different brain structures. 

 

Figure 4. Representative anatomical divisions based on the GCN features. Eight panels correspond to 

eight selected slices. In each panel, top row: brain parcellation obtained from spectral clustering with 

dictionaries as feature vector; second row: visualization of Nissl stain image (left) and brain ontology 

(right) of the corresponding slice downloaded from ABA. Bottom: Slice number and the number of 

division. Color code of each region is shown on the right. 

3.2 BRAIN-WIDE GCN ONTOLOGY AND SPATIAL PATTERN 

Comparisons with the published lists of genes related to cell type markers, specific biological 

functions and known and predicted lists of disease genes reveal exciting biological insights for 

the constructed GCNs. A complete summary of each brain-wide GCN is available at 

http://mbm.cs.uga.edu/mouse/gcn/globalGCN/Global_GCNs_overview.html. Multiple brain-

wide GCNs are consistently identified to be enriched in certain functional category by several 

distinct studies using different types of data and different methods for analysis. For example, a 

http://mbm.cs.uga.edu/mouse/gcn/globalGCN/Global_GCNs_overview.html


comparison with the gene lists generated using purified cellular population indicates that GCN 5, 

16, 23, 30, 43, 45 are enriched with markers of astrocyte. Among them, GCN30 and GCN43 are 

consistently confirmed as astrocyte-enriched by the lists generated using WGCNA on microarray 

data and gene lists generated using Anatomic Gene Expression Atlas (AGEA) (Ng et al., 2009) 

on ISH data. Similarly, the significant enrichment of markers of oligodendrocyte is reproducibly 

identified in GCN 24 and GCN 12, 18, 20, and 22 are significantly enriched with markers of 

neuron. The consistency of the biological interpretations of the obtained GCNs corroborated by 

studies using different data types and different analysis methodologies indicate that the GCNs 

reflect the intrinsic transcriptome organization instead of data-specific or method-specific 

patterns. Among the major cell types, several GCNs are identified to be enriched in neuron 

subtypes including pyramidal neurons, GABAergic neurons and Glutamatergic neurons (Sugino 

et al., 2006). The gene lists for these neuron subtypes are derived from separated populations 

using retrograde tracing and fluorescent labelling at different regions of adult mouse forebrain 

(Sugino et al., 2006). Other networks such as GCN 11, 15, 20 and GCN 12, 41 described 

mitochondrial, ribosomal functions. Literatures suggested that the upregulated or downregulated 

expressions in these networks can be associated with aging and brain diseases (Blalock et al., 

2004; Lu et al., 2004).  

The biological meaning of the GCNs have been not only confirmed by existing literatures but 

also corroborated by the GO terms using DAVID. For example, two significant GO terms in 

GCN24 are myelination (p=7.7×10-7) and axon ensheathment (p=2.5×10-8), which are featured 

functions for oligodendrocyte, with established markers including Plp1 (proteiolipid protein), 

Mbp (myelin basic protein), Pmp22 (peripheral myelin protein 22), and Ugt8a (UDP 

galactosyltransferase 8A). DAVID also suggests that GCN41 are significantly enriched in the 

KEGG ribosome pathway (p=2.5×10-6), agreeing with the other studies on human and mouse 

(Table 1). Also consistent with the enrichment of mitochondrial function, DAVID suggests that 

GCN 11 is highly enriched in the KEGG oxidative phosphorylation pathway (p=4.9×10-7) and 

significant BPs include generation of precursor metabolites and energy (1.2 ×10 -6) and ATP 

metabolic process (5.1×10-6). 

A visualization of the spatial map also offers a useful complementary information source (Figure 

5). For example, the fact that GCN 5 (Figure 5ii) locates at ventricle, where the subventricular 

zone is rich with astrocytes (Quinones-Hinojosa and Chaichana, 2007), confirms its enrichment 

in astrocyte markers. GCN 7 (Figure 5v) is mainly distributed in the deeper layers of neocortex, 

which is reminiscent of the distribution glutamatergic projection neuron in layer V (Molyneaux 

et al., 2007). GCN 23, located mainly at cerebellar region (Figure 5vi) and the indicated 

enrichment in GABAergic pointed to a potential enrichment of GABAergic subtype neuron - the 

Purkinje cells. Comparing with the gene that only labelled Purkinje cells (Wright et al., 2007), 

quite a number of genes were found in GCN 23, including Id2, Creg1, Cpne2, Pcsk6, 

0610007P14Rik, Grid2, Itpr1, Baiap2 etc. The presence of a considerable number of genes with 

restricted expressions in Purkinje cell layer provided strong evidence for the enrichment of 

Purkinje cells markers in this GCN. Additionally, genes that are enriched in interneurons and 

Bergmann Glia cells within Purkinje Cell Layer are also found (Wright et al., 2007). 



In addition to cell-type specific GCNs, we also found some GCNs remarkably selective for 

particular brain regions, such as GCN 27 (Figure 5x) in field CA1, GCN 4 (Figure 5xi) in field 

CA3, GCN 38 (Figure 5xii) in Dentate gyrus, GCN 45 (Figure 5xiii) in cerebellum, GCN 21 

(Figure 5xiv) in medulla, GCN 1 (Figure 5xv) in thalamus, and GCN 28 (Figure 5xvi)  in 

caudaputaman.  The region-specific GCNs presumably reflect unique and coherent expression 

responsible for the functions of specific neuronal types in these regions. The unique expression 

signatures are the foundation of inferring brain genoarchitecture. Since the 3D GCN patterns are 

derive from multiple 2D slice-wide GCNs, the smooth and continuous 3D patterns in turn 

validates the reliability of slice-wide GCNs. 

Table 1. Brain-wide GCN enrichment analysis based on cross-referencing with published lists of genes 

related to cell type markers, known and predicted lists of disease genes, specific biological functions etc. 

GCNs that are reproducibly identified enriched in certain category across references are bolded. 

Categories of cell type markers and biological functions GCNs (p-value<0.01) 

Astrocyte (Lein et al., 2007) 13,24,30,35,43 

Astrocyte (Cahoy et al., 2004) 5,16,23,30,43,45 

Astrocyte (Oldham et al., 2008) 30,43 

Astrocyte (Miller et al., 2010) 5,30,43 

Oligodendrocyte (Lein et al., 2004) 24 

Oligodendrocyte (Cahoy et al., 2004) 24 

Oligodendrocyte (Oldham et al., 2008) 24 

Oligodendrocyte (Miller et al., 2010) 24 

Neuron (Lein et al., 2007) 3,12,17,18,20,22,26,29,35,41 

Neuron (Oldham et al., 2008) 12,18,20,22,37 

Neuron (Miller et al., 2010) 3,10,11,12,13,17,18,20,22,26,29, 

36,37,40,41,50 

Pvalb Interneurons (Oldham et al., 2008) 1,10,33 

Pyramidal Neurons (Winden et al., 2009) 3,20,22,29,37 

GABAergic Neurons (Sugino et al., 2006) 23,33,41 

Glutamatergic Neurons (Sugino et al., 2006) 2,7,44 

Mitochondria Human (Miller et al., 2010) 3,11,13,18,20,22,29,41,50 

Mitochondria Mouse (Miller et al., 2010) 11,20,29,37,40,41,50 

Mitochondria down in AD patients (Blalock et al., 2004) 3,11,12,18,20,22,29,37,40,41,50 

Mitochondria down in aging human brains (Lu et al., 2004) 2,11,17,18,20,26,44,50 

Ribosome Human (Miller et al., 2010) 12,41 

Ribosome Mouse (Miller et al., 2010) 12,41,50 

Ribosome (Oldham et al., 2008) 41 

 

 

 



 

Figure 5. Visualization of spatial distribution of brain-wide GCNs significantly enriched for major cell 

types, particular brain regions and biological functions. In each sub-figure, top row: sub-figure index and 

brain-wide GCN ID. Second row: 3D spatial maps of axial (left) and two selected coronal slices (right) of 

GCN. The location of each slice are high-lighted in 3D spatial map and the slice index is listed in the top 

right corner. Third row: sub-category. Fourth row: highly weighted genes in the sub-category following 

the DLSC weight. The functional enriched genes previously reported in literature are highlighted in red. 



It should be mentioned that there is no one-to-one mapping between the GCNs and the cell types 

or biological functions. In fact, many GCNs are enriched in multiple categories and that explains 

why the top weighted gene is sometimes not the known markers of the listed function (Figure 5). 

One example is GCN 20. As seen in Table 1, besides pyramidal neuron markers, this network is 

also enriched for neuron markers and mitochondrial-related genes. The top weighted gene 

Ptp4a1 (protein tyrosine phosphatase 4a1) is a neuron marker. In other cases where the top 

weighted genes were not involved in any of the characterized functions, these genes might 

suggest potential direct or indirect link with the known functions. For instance, Tgfbr2 

(transforming growth factor, beta receptor II) is not an astrocyte marker. Research has shown 

that TGFβ pathways is relevant to the optic nerve head astrocyte migration (Miao et al., 2010). 

4 DISCUSSIONS 

We have presented a data-driven framework that can derive biologically meaningful GCNs from 

the gene expression data. Using the rich and spatially-resolved ISH AMBA data, we have shown 

that a set of networks significantly enriched for major cell type markers, specific brain regions 

and biological functions. The major contribution of the work are threefold. First, the DLSC 

method is capable of visualizing the spatial distributions of the GCNs while knowing the gene 

constituents and the weights they carry in the network. The precise gene distribution carry 

complementary information that helps identify, visualize and in the future manipulate different 

types of neuron cells. Second, in comparison to most clustering approaches where a single gene 

can only be assigned to one network, DLSC allows multiple assignments for one gene. This 

design can accommodate the scenarios that genes such as transcription factors play multiple roles 

in different networks. Third, we find that the learnt dictionaries can serve as a very relevant and 

compact feature representing transcriptome profile for each voxel. The brain parcellations based 

on the learnt dictionaries match well with the canonical neuroanatomy.  

In contrast to many approaches that requires inputs of gene-gene similarity matrix, DLSC can 

take both the gene expression profiles and gene-gene similarity matrix as inputs. In this paper, 

we have demonstrated the applicability of DLSC on both inputs. We first constructed slice-based 

GCNs using the gene expression profiles. Then during the brain-wide GCN construction, the 

global similarity matrix was first calculated by integrating the local similarity matrices on all 

slices and then input to DLSC. The extra step of slice-based GCNs is to resolve the potential loss 

of information in genes with missing values and the artefacts associated with data acquisition. 

Ideally, if gene information are complete and the data acquisition is perfect, this method can be 

directly applied on the gene expression profiles consisted of all slices to form the brain-wide 

GCN. The capability of taking two common types of inputs affords more flexibility and 

robustness to handle noisy data and to incorporate/be integrated in promising methods since 

many GCN constructions methods are based on gene-gene associations. 

The GCNs outputted by DLSC are not traditional networks with nodes and edges. In the slice-

wide GCNs, nodes are the tested genes and the edges are not explicitly indicated. In DLSC, a set 

of coexpression patterns are learnt from the data. At the same time, we also obtain a coefficient 

matrix detailing how similar the expression patterns of each gene to each of these coexpression 



patterns although no information is provided on the association between any of the two genes in 

the network. However, the pairwise gene-gene similarity can still be readily estimated from the 

coefficients using various metrics. One example is the successful construction of global 

similarity matrix from the slice-wide GCNs. 

In addition to the presented GCNs that reflect neuronal diversity and region specificity, many 

GCNs are much more difficult to interpret. Comparisons with the published lists show that 

numerous GCNs are enriched in multiple neuronal cells. Other GCNs are significantly associated 

with several functions. One explanation to the challenges of GCN interpretation is that the 

coexpression relationship can come from multiple biological sources such as mechanisms that 

synchronously regulate transcriptions of multiple genes and mRNA degradation as well as non-

biological sources such as batch processing effects (Gaiteri et al., 2014). The changes brought by 

these sources are not mathematically distinguishable. Additionally, it is widely known that gene 

coexpression can be dynamically regulated by neural development, ageing, environment, and 

diseases (Dong et al., 2007; Jiang et al., 2001; Rampon et al., 2000). Since the gene expression 

profiles used is limited to one set of conditions, we should be cautious when interpreting the 

GCNs biologically.  

The DLSC method described here may contribute to numerous applications including 

understanding brain evolution across species and brain development and formation. When the 

GCNs are correlated with neuroimaging measurements as brain phenotypes, we are able to 

overlay the neuroimage and GCN distribution patterns and narrow the search of genes that might 

cause the structural and functional differences with a final goal of advancing our understanding 

of how genetic functions regulate and support brains structures and functions, as well as finding 

new genetic variants that might account for the variations in brain structures and functions. 
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Supplemental Materials 

1. Image artefacts during acquisition 

 

Figure S1 Examples of image artefacts during acquisitions including missing slices (a) and discontinuous 

changes in the average expression energies between adjacent slices (b). The arrows in (a) highlighted the 

missing slices. The plots in (b) shows the average expression energy as a function of slice number. The 

arrows in (b) indicate the correspondence between the 3D visualization and the average expression energy 

in the plot. 

Due to the image artefacts during acquisition such as missing slices (Figure S1(a)) and the discontinuous 

changes in the average expression energies between adjacent slices (Figure S1(b)), we proposed to study 

the GCNs slice by slice and then fuse them instead of using 3D data directly as input. 

2. Parameter selection for slice-wide GCN construction 

As seen in Table S1, the reconstruction errors gradually increase as λ and gene-dictionary ratio grow. This 

trend is expected because both an enforced sparser coefficient matrix and a fewer number of dictionaries 

can decrease the description power of the representation and result a further deviation from the original 

matrix. According to equation 3, the maximum reconstruction error is 0.5. When λ reaches 0.7 and above, 

the reconstruction errors are over 50%. The big deviation from the original signal matrix narrows the 

considerations of λ of 0.5 and below. With respect to the AUC, interestingly, the higher values occur when 

λ is set to 0.5 and 0.7. The increase in the gene-dictionary ratio is coincided with a gradual growth in the 

AUC in general. The highest AUC occurs at λ of 0.5 and gene-dictionary ratio of 100, which makes this 

combination the best candidate. Lastly, we checked the density of this parameter combination. The density 

is 6.4% and acceptable. As the final goal of parameter selection is to choose a set of parameters that result 

in a sparse and accurate representation of the original signal, which is translated to low reconstruction error, 

high AUC and low density, λ=0.5 and gene-dictionary ratio of 100 is the best option among 55 parameter 

combinations and chosen as the optimal parameters. 

Table S1 Reconstruction errors of DLSC on slice 27 using different λ and gene-dictionary ratios. The 

number in parentheses in the first column is the corresponding number of dictionaries 

gene-   λ 

dictionary          

ratio 

0.1 0.3 0.5 0.7 0.9 

Manuscript Click here to download Manuscript supportingDoc_1.2-tl.docx 

Click here to view linked References

http://www.editorialmanager.com/bsaf/download.aspx?id=96341&guid=254875e6-b4b8-4324-833f-fab2ab3291c1&scheme=1
http://www.editorialmanager.com/bsaf/download.aspx?id=96341&guid=254875e6-b4b8-4324-833f-fab2ab3291c1&scheme=1
http://www.editorialmanager.com/bsaf/viewRCResults.aspx?pdf=1&docID=3781&rev=0&fileID=96341&msid={61F47F7E-BFE3-4F77-AC52-84772601E1CF}


 

Table S2 AUCs between the obtained dictionaries and the annotation map on slice 27 using different λ and 

gene-dictionary ratios. 

 

Table S3 The percentage of none-zero entries in the coefficient matrix obtained from DLSC on slice 27 

using different λ and gene-dictionary ratios. 

10(284) 0.031 0.086 0.174 0.299 0.453 

20(142) 0.038 0.096 0.185 0.310 0.459 

30(95) 0.043 0.101 0.19 0.314 0.461 

40(71) 0.047 0.105 0.194 0.318 0.463 

50(57) 0.050 0.107 0.196 0.321 0.464 

60(48) 0.052 0.110 0.198 0.323 0.465 

70(41) 0.054 0.112 0.200 0.324 0.466 

80(36) 0.056 0.113 0.202 0.326 0.466 

90(32) 0.058 0.115 0.204 0.327 0.467 

100(29) 0.059 0.116 0.205 0.329 0.467 

110(26) 0.061 0.118 0.206 0.329 0.368 

gene-   λ 

dictionary          

ratio 

0.1 0.3 0.5 0.7 0.9 

10(284) 0.303 0.332 0.351 0.365 0.366 

20(142) 0.309 0.354 0.372 0.384 0.382 

30(95) 0.328 0.375 0.392 0.400 0.394 

40(71) 0.339 0.384 0.395 0.406 0.398 

50(57) 0.353 0.395 0.404 0.402 0.399 

60(48) 0.359 0.399 0.413 0.400 0.395 

70(41) 0.358 0.399 0.421 0.412 0.401 

80(36) 0.364 0.396 0.417 0.418 0.411 

90(32) 0.372 0.398 0.426 0.414 0.411 

100(29) 0.379 0.400 0.434 0.433 0.424 

110(26) 0.377 0.408 0.419 0.423 0.427 

gene-   λ 

dictionary          

ratio 

0.1 0.3 0.5 0.7 0.9 

10(284) 0.026 0.011 0.007 0.004 0.003 

20(142) 0.050 0.023 0.014 0.009 0.005 

30(95) 0.070 0.033 0.021 0.014 0.007 

40(71) 0.089 0.043 0.028 0.018 0.009 

50(57) 0.106 0.053 0.034 0.023 0.011 

60(48) 0.121 0.062 0.040 0.027 0.013 

70(41) 0.136 0.071 0.047 0.032 0.015 

80(36) 0.150 0.078 0.052 0.036 0.017 

90(32) 0.164 0.086 0.058 0.040 0.019 

100(29) 0.176 0.094 0.064 0.044 0.020 



 

2. Parameter selection for brain-wide GCN construction 

The parameter selection of decomposing the global similarity matrix is guided by the knowledge from the 

slice-based study that each network consists of on average 185 genes, and each gene participates in 1.85 

networks. 

Table S4 The average number of networks one gene participates in after applying DLSC on the global 

similarity matrix using different combinations of λ and dictionary numbers. 

Number               

λ 

of dictionaries 

0.1 0.3 0.5 0.7 

40 3.95 2.58 1.96 1.61 

50 4.63 2.90 2.21 1.80 

60 5.03 3.12 2.38 1.94 

70 5.49 3.32 2.55 2.07 

80 5.85 3.52 2.65 2.17 

90 6.14 3.68 2.79 2.26 

 

Table S5 The average number of genes per network after applying DLSC on the global similarity matrix 

using different combinations of λ and dictionary numbers. 

Number               

λ 

of dictionaries 

0.1 0.3 0.5 0.7 

40 420.225 274.375 208.05 171.55 

50 393.82 246.68 188.24 153.30 

60 356.82 221.07 169.08 137.58 

70 333.47 201.80 155.10 125.64 

80 311.28 187.20 141.05 115.21 

90 290.39 174.14 131.71 106.83 

 

3. Comparisons of spatial distribution of WGCNA module 1 and the corresponding GCNs 

 

Figure S2 Spatial distributions of WGCNA module 1 and the corresponding GCNs on slice 27.  

110(26) 0.190 0.104 0.071 0.049 0.023 



As seen above, the spatial distribution of each GCN show overlaps with that of WGCNA module 1. The 

DLSC framework enables finer breakdowns of the isocortex into layers and subregions.  


