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Abstract
Exploration of brain dynamics patterns has attracted increasing attention due to its fundamental significance in understand-
ing the working mechanism of the brain. However, due to the lack of effective modeling methods, how the simultaneously 
recorded LFP can inform us about the brain dynamics remains a general challenge. In this paper, we propose a novel sparse 
coding based method to investigate brain dynamics of freely-behaving mice from the perspective of functional connectivity, 
using super-long local field potential (LFP) recordings from 13 distinct regions of the mouse brain. Compared with sur-
rogate datasets, six and four reproducible common functional connectivities were discovered to represent the space of brain 
dynamics in the frequency bands of alpha and theta respectively. Modeled by a finite state machine, temporal transition 
framework of functional connectivities was inferred for each frequency band, and evident preference was discovered. Our 
results offer a novel perspective for analyzing neural recording data at such high temporal resolution and recording length, 
as common functional connectivities and their transition framework discovered in this work reveal the nature of the brain 
dynamics in freely behaving mice.
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Introduction

Studying functional connectivity of the brain has recently 
received increasing interest due to its significant importance 
in basic and clinical neuroscience (Koenig et al. 2002; Fris-
ton et al. 2003; Biswal et al. 2010; Williams 2010; Mueller 
et al. 2013). In early studies, functional connectivity has 
been widely assumed to be temporally stationary (Wang 
et al. 2006; Lynall et al. 2010; Liu 2011; Ou et al. 2015a, b), 
where the data during the whole scan were used for estimat-
ing functional connectivity. However, there are accumulat-
ing evidences (Fox and Raichle 2007; Gilbert and Sigman 
2007; Smith et al. 2012) indicating that brain activities are 
under dramatic temporal changes at various time scales. For 
instance, it has been found that each cortical brain area runs 
different ‘‘programs’’ according to the cognitive context and 
to the current perceptual requirements, where intrinsic corti-
cal circuits mediate the moment-by-moment functional state 
changes in the brain (Gilbert and Sigman 2007). Inspired 
by the important observations on the brain dynamics from 
prior studies, there have been many studies aiming to quan-
titatively characterize the temporal dynamics and transition 
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patterns of functional brain connectivity (Khan et al. 2013; 
Li et al. 2013; Ou et al. 2014; Tomescu et al. 2014; Lopour 
et al. 2016; Allen et al. 2017).

Functional neuroimaging has been a major tool for neuro-
science research and clinical applications, whose capability 
far determines our knowledge. Recently, functional neuroim-
aging techniques such as fMRI (Koshino et al. 2005; Di et al. 
2008; Ryali et al. 2012), EEG (Koenig et al. 1999; Stam 
et al. 2007; Van Mierlo et al. 2014), and LFP (Adrian and 
Moruzzi 1939; Hubel and Wiesel 1962; Hamill et al. 1981; 
Pinault 1996) have been widely used for such functional 
connectivity data acquisition and modeling. However, there 
are key methodological and technical limitations in fMRI/
EEG-based brain connectivity dynamics studies. Specifi-
cally, fMRI-based brain connectivity dynamics is limited by 
its temporal resolution and the lack of time series data with 
sufficient length (Fox and Raichle 2007). The EEG-based 
studies have much better temporal resolution and much 
longer scan length. However, as EEG only measures the 
scalp electric potential field, it lacks the spatial accuracy for 
more precise neuroscience studies (Lee et al. 2009; Da Silva 
2013). Recently, the local field potential (LFP), as recorded 
with high-impedance (small contact size) microelectrodes, 
is thought to reflect synaptic activity in the vicinity of the 
microelectrode (Katzner et al. 2009; Khawaja et al. 2009). 
Highlighted in high temporal resolution, precise spatial 
accuracy and sufficiently-long recording length on cellular-
level neural activities, the direct measurement of local field 
potentials (LFPs) at all depths throughout the brain in a 
freely behaving animal provides us a new way to explore the 
dynamic interactions between individual neurons and local 
networks (Lin et al. 2005; Klausberger and Somogyi 2008; 
Uhlhaas et al. 2010; Donner and Siegel 2011). Recently, 
many studies used LFP recordings from animals, such as 
mice (Nauhaus et al. 2009), monkeys (Ray and Maunsell 
2011; Hu and Liang 2013), ferrets (Stitt et al. 2017), cats 
(Katzner et al. 2009) etc., to investigate functional brain 
connectivity and its dynamics. In terms of functional segre-
gation and coordination, LFP recordings with high spatio-
temporal resolution would greatly benefit better understand-
ing the mechanisms of perception, attention, learning, etc.

In order to investigate the functional brain connectiv-
ity and its dynamics via simultaneously recorded LFP, we 
selected 13 distinct regions from the mouse brain, which 
have close relationship with the processing of stimulus 
recognition and fear-conditioning memory. Specifically, 
the hippocampal CA1 (CA1) (Gigg et al. 2000; Chen et al. 
2009; Zhang et al. 2013), dentate gyrus (DG) (Xavier and 
Costa 2009; Nakashiba et al. 2012), subiculum (S) (O’Mara 
2005; O’Mara 2015; Fröhlich 2016; Eichenbaum 2017), 
retrosplenial cortices (RSG & RSA) (Pothuizen et al. 2009; 
Czajkowski et al. 2014), are crucial for associative fear 
memories, and subregions of the anterior cingulate cortices 

(Cg1 and Cg2) (Pardo et al. 1990; Bush et al. 2000), prelim-
bic cortex (PrL) (Vidalgonzalez et al. 2006; Ye et al. 2017) 
encode emotionally fearful experiences. Besides, somatosen-
sory cortices (S2Tr & S1HL), secondary auditory cortex 
(AuV) encode inputs of stimulus. Lateral entorhinal cortex 
(LEnt) (Gigg et al. 2000; Wilson et al. 2013; Kuruvilla and 
Ainge 2017) plays a role in encoding space, particularly the 
current and previous locations of objects within the local 
environment. The perirhinal cortex (PRh) (Murray et al. 
2007; Kinnavane et al. 2016) is involved in both visual 
perception and memory, and it facilitates the recognition 
and identification of environmental stimulus These regions 
constitute the main network of fearful memory processing, 
which benefit us to investigate the brain activities in freely 
behaving condition.

To explore brain dynamics of freely-behaving mice, such 
as what constitutes the transition space of brain dynamics, 
and how functional connectivities temporally transit across 
such a space, in this paper, we propose a novel sparse cod-
ing based method. We used a state-of-the-art 512-channel 
tetrode recording system (Xie et al. 2016) to record super-
long LFP data (about 2 million time points) for each freely 
behaving mouse. To circumvent the problem of volume con-
duction artefact (Buchthal et al. 1957; van den Broek et al. 
1998; Kajikawa and Schroeder 2011), the imaginary part of 
coherency (iCoh) (i.e., excluding the zero-phase lag part) 
was applied to robustly measure brain functional connectiv-
ity (Nolte et al. 2004; Garcia et al. 2013; Sanchez Bornot 
et al. 2018). As functional connectivity changed systemati-
cally across brain states with largest changes occurring in 
the phase synchronization of theta and alpha oscillations (He 
et al. 2011; Stitt et al. 2017), in this paper, we focused on 
the dynamics of functional connectivity in frequency bands 
of alpha and theta. Inspired by the superior performances of 
sparse coding in numerous signal processing and neuroimag-
ing analysis (Olshausen and Field 1996, 2004; Donoho and 
Elad 2003; Smith and Lewicki 2006; Wright et al. 2009), 
we employed an efficient sparse coding method of stochas-
tic coordinate coding (SCC) (Lin et al. 2014) to discover 
underlying functional connectivities, which sparsely encode 
the brain dynamics. By hierarchically clustering, we discov-
ered six common functional connectivities (CFCs) for alpha 
band and four for theta. Further investigation with finite state 
machine (FSM) revealed a dominant CFC and evident pref-
erence in the temporal transitions among CFCs. In general, 
the proposed method and the results can add new insights 
into the neuroscience researches for better understanding the 
brain dynamics through a data-driven approach supported 
by advanced recording techniques.



257Brain Topography (2019) 32:255–270 

1 3

Materials and Methods

Overview

In order to explore the dynamics of functional brain con-
nectivity hidden in LFP, we simultaneously recorded LFP 
signals of 13 distinct brain regions from three mice via 
512-channel tetrode system, with sampling rate 1000 Hz and 
recording lengths of 2,045,004, 1,863,283 and 2,268,864 
time points for each mouse respectively. Then, functional 
brain connectivity based on thirteen brain regions was rep-
resented via the imaginary part of coherency (iCoh) meas-
urement. By efficient sparse coding of stochastic coordinate 
coding (SCC) algorithm, an over-complete dictionary was 
obtained, from which CFCs were derived by Bayesian Infor-
mation Criterion (BIC). Furthermore, a transition frame-
work modeled by finite state machine (FSM) was estab-
lished to estimate the transition of CFCs. The pipeline of 
the method is shown in Fig. 1, and details will be described 
in the following sections.

Data Acquisition and Processing

Animal Subjects

Three adult male mice were used for experiments, and 
detailed information of each mouse on surgery day is shown 
in Table 1. All mice were maintained by the trained Animal 
Facility staff and an experienced veterinarian who conducted 
routine daily health surveillance. All animal handling and 
tissue preparation were performed in accordance with NIH 
guideline and the protocols approved by IAUCC committee 
at Augusta University.

512-Channel Tetrode System

The names, abbreviations, region index, stereotaxic coor-
dinates, and tetrode numbers of 13 carefully selected brain 

regions are shown in Table 2. The electrode positions are 
pre-calibrated according to these brain-region coordinates 
provided by the Mouse Brain Atlas (Franklin and Paxinos 
2001).

The recording tetrodes were made up of four wires, which 
were twisted together using a manual turning device and 
soldered with a low-intensity heat source. The impedances 
of tetrodes were typically between 0.7 and 1 MΩ. Impor-
tantly, the recording ends of the tetrodes were cut differen-
tially so that multiple recording sites, located at different 
depths, could be reached. In order to minimize tissue dam-
age, only tetrodes, but not the surrounding polyimide tubes, 
were inserted into the brain tissue. Thirteen modular bun-
dles of tetrodes targeting these thirteen brain regions were 
used to record the neuronal electrical activity simultaneously 
as shown in Fig. 2. More details about configurations of 
512-channel tetrode system are described in Supplementary 
Materials.

The surgery could be completed in about 5 h for each 
mouse, and for chronic recordings, the mice were allowed 
to recover for 3–5 days before the experiment began. Helium 
balloons were applied to balance the system’s weight, so 
that the mouse with the implanted part and cables could 
move around freely enough. LFPs were recorded once the 
512-channel cables were connected to the 512-channel 
Plexon multiplex-recording system (Lin et al. 2006; Kuang 
et al. 2010). Since the recordings were almost the same 
among the 4 channels in a single tetrode, we selected the 
highest amplitude channel without cut-offs from each tet-
rode for the recording. The stability of the ensemble record-
ings was verified by comparing waveforms at the beginning, 
during, and after the experiments, and the analysis showed 

Fig. 1  Pipeline of the proposed method

Table 1  Information of mice subjects

Mouse #1 Mouse #2 Mouse #3

Age (days) 81 83 86
Weight (g) 28.6 29.5 33.3
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that the units recorded could maintain good separation and 
stability over days or even week(s).

Functional Brain Connectivity Representation

LFP signals of 128 tetrodes from 13 brain regions are 
obtained by 512-channel tetrode system. To eliminate the 
ill effects of few tetrodes of signals, as well as to avoid the 
potential collinearity problem, we further select only one 
tetrode LFP signal for each brain region by correlation 
strength, which is described in supplementary material in 
detail.

Compared with other commonly used functional con-
nectivity measures, such as Pearson correlation coefficient, 
mutual information, and magnitude squared coherence, the 
imaginary part of coherency is the most robust to VC artifact 
theoretically and practically (Khadem and Hossein-Zadeh 
2013). Coherency is a measure of the linear relationship at 
a specific frequency between two signals. Given two time 
series xi(t) and xj(t) of signal i and j, their complex Fourier 
transforms are xi(f ) and xj(f ) respectively. Coherency is now 
defined as below:

(1)Cij(f ) ≡
Sij(f )

√
Sii(f )Sjj(f )

Table 2  Configurations of 13 brain regions. All positions were measured with respect to the bregma point. “AP” and “ML” are short for anter-
oposterior and mediolateral

Name Abbreviations Region index Stereotaxic coordinates Tetrodes (channels)

Hippocampal CA1 CA1 1 − 3.8 mm AP, ± 3.0 mm ML 16 (64)
Dentate gyrus DG 2 − 3.75 mm AP, ± 2.0 mm ML 16 (64)
S1 Trunk region of the somatosensory cortex S1Tr 3 − 1.6 mm AP, ± 1.75 mm ML 8 (32)
S1 Hind limb of the somatosensory cortex S1HL 4 − 1.1 mm AP, ± 1.5 mm ML 8 (32)
Granular cortex of the retrosplenial cortex RSG 5 − 2.3 mm AP, ± 0.3 mm ML 8 (32)
Agranular cortex of the retrosplenial cortex RSA 6 − 2.3 mm AP, ± 0.6 mm ML 8 (32)
Subiculum S 7 − 3.08 mm AP, ± 1.5 mm ML 8 (32)
Perirhinal cortex PRh 8 − 3.80 mm AP 8 (32)
Lateral entorhinal cortex LEnt 9 − 3.80 mm AP 16 (64)
Secondary auditory cortex ventral portion AuV 10 − 1.94 mm AP, ± 4.75 mm ML 8 (32)
Cg1 of anterior cingulate cortices Cg1 11 + 0.50 mm AP, ± 0.3 mm ML 8 (32)
Cg2 of anterior cingulate cortices Cg2 12 + 0.50 mm AP, ± 0.6 mm ML 8 (32)
Prelimbic cortex PrL 13 + 1.70 mm AP, ± 0.5 mm ML 8 (32)

Fig. 2  The design of the 512-channel tetrode system for recording in a total of 13 different brain regions in mice. Bundles in same color are 
grouped in a single module. The scale is marked by black bar
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where Sij(f ) is the cross-spectrum, * means complex con-
jugation, and 〈 〉 means expectation value. The expectation 
value can be estimated as an average over a sufficiently large 
number of epochs in practice.

In the case of brain dynamics, we are interested in the 
alteration of brain states along time. Therefore, in order to 
acquire the dependence of coherency as a function of the 
time, we applied a sliding window with length T of 500 
msec (typically between 250 ms and 1 s) (Nolte et al. 2004; 
Sander et al. 2010; Garcia et al. 2013; Sanchez Bornot et al. 
2018), which is small enough for the desired time-resolution, 
given by T (500 ms) itself, and large enough for the desired 
frequency resolution, given by 1/T (2 Hz). According to 
recent studies (Van De Ville et al. 2010; He et al. 2011; Keil-
holz 2014), which suggested that continuous resting states 
could be classified into a limited number of micro states for 
a time on the order of 100 ms, the window skipping step was 
determined as 100 ms. Coherency then becomes a function 
of both frequency and time:

where t indicates the time of the center of the window. Then, 
the summation of coherency was calculated according to 
the frequency range (alpha: 8–12 Hz, theta: 4–8 Hz) as the 
coherency of a certain frequency band.

where B indicates the frequency band.
We represent brain connectivity by the imaginary part of 

coherency (iCoh), which captures true source interactions 
at a given time-lag. The imaginary part of coherency can-
not be generated by artefact of volume conduction (Nolte 
et al. 2004), which cannot cause a time-lag. Therefore, the 
functional brain connectivity composed by 13 brain regions 
can be represented as below:

As FC is a skew-symmetric matrix, to reduce dimen-
sion, the upper triangular elements of FC are picked up 
and reshaped to a vector with 78 (13 × 12/2) features, and 
indicates the functional connectivity vector (FCV) at time 
point t.

Common Functional Connectivity Estimation

Functional brain connectivity represented by the imaginary 
part of the coherency is a linear combination of a few inde-
pendent atomic common functional connectivities (deri-
vation process is presented in Supplementary Material in 

(2)Sij(f ) ≡
⟨
xi(f )xj

∗(f )
⟩

(3)Cij(f ) → Cij(f , t)

(4)
∑

f∈B

Cij(f , t) → CB
ij
(t)

(5)FCB(t) =
{
Img

(
CB
ij
(t)

)
|i, j ∈ (1,⋯ , 13)

}

detail). Therefore, investigating brain functional connectivity 
represented by iCoh can be transformed into solving a sparse 
coding problem. Considering the big data of super-long LFP 
recordings, a highly effective sparse coding method, sto-
chastic coordinate coding (SCC), was applied in this paper.

Given the FCV time series X =
(
x1,⋯ , xn

)
 , each FCV is 

a p dimensional vector, xi ∈ ℝ
p ( i = 1,⋯ , n ). Here is a set D 

containing m items dj ∈ ℝ
p , ( j = 1,⋯ ,m ). Then, each FCV 

can then be represented as xi =
∑m

j=1
zi,jdj . Therefore, each 

p dimensional image patch xi is represented by a m-dimen-
sional vector zi =

(
zi,1,⋯ , zi,m

)T . The learned feature vector 
zi is a sparse vector. Given a FCV xi , one can formularize the 
above idea as the following optimization problem:

where λ is the regularization parameter, ‖∙‖ is the standard 
Euclidean norm and zi1 =

∑m

j=1

�
�
�
zi,j

�
�
�
 . Each zi is often called 

the sparse code, in which only a few entries are non-zero, 
and we call these non-zero entries as supports. Here 
D =

(
d1,⋯ , dm

)
∈ ℝ

m×p is called the dictionary. To prevent 
an arbitrary scaling of the sparse code, each column of D is 
restricted to be in a unit ball, i.e.,dj ≤ 1.

It is a non-convex problem with respect to joint parame-
ters in the dictionary D and the sparse codes Z =

(
z1,⋯ , zn

)
 . 

Therefore, it is often difficult to find a global optimum. How-
ever, it is a convex problem when either D or Z is fixed. 
One often uses an alternating optimization approach to solve 
sparse coding problems. When the sparse codes are fixed, 
it is a simple quadratic problem, when the dictionary D is 
fixed, solving each sparse code zi is the well-known lasso 
problem. Since FCV time series are tremendous datasets and 
dictionaries are also very large, thus, solving a lasso problem 
is very time consuming.

To deal with large-data sparse coding problem, sto-
chastic coordinate coding (SCC) algorithm is applied, 
which aims to dramatically reduce the computational cost 
of the sparse coding while keeping comparable perfor-
mance. It is known that updating the sparse code is the 
most time consuming part, and coordinate descent is one 
of state-of-the-art methods for solving this lasso problem. 
Coordinate descent initializes z0

i
= 0 and then updates the 

sparse code many times via matrix–vector multiplication 
and thresholding. Empirically, the iteration may take 
thousands steps to converge. However, it is observed that 
the support locations of zi are very accurate after only less 
than ten steps. Note that the support of the sparse code is 
usually more important than the exact value of the sparse 
code. Moreover, since the original sparse coding is a non-
convex problem and it involves an alternating updating, 
it is unnecessary to run the coordinate descent to final 
convergence. Therefore, the sparse code zi is updated by 

(6)minfi
(
D, zi

)
=

1

2

‖
‖
‖
Dzi − xi

2‖‖
‖
+ �‖‖zi

‖
‖1
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running a few steps of coordinate descent, and stable sup-
ports are obtained. When updating the dictionary, only 
the supports of the dictionary but not all dictionary items 
need to be focused on. The algorithmic pipeline of SCC 
is shown as Fig. 3.

After sparse coding process, the super long FCV time 
series is represented by an over-complete dictionary D , 
where the number of items m is usually much smaller than 
the length of time series n but larger than the dimension 
of the item p. According to some previous studies (Li 
et al. 2014; Ou et al. 2014, 2015), functional connectivi-
ties can be divided into a few clusters based on the com-
bination of activated nodes and connections. Therefore, 
in this paper, we applied clustering method to derive a 
few common functional connectivities (CFCs) from the 
over-complete dictionary items. The optimal number of 
CFCs is identified by Bayesian Information Criterion 
(BIC) (Schwarz 1978), which is defined as:

where σ̂2
e
 is the estimation for error variance, which is 

defined as the summed variance of each dictionary item 
within its corresponding class in this paper. m is the total 
number of dictionary items, and k is the number of classes. 
The trade-off between class number and error variance is 
balanced by the BIC value, and the optimized number of 
cluster is determined by finding k to minimize BIC value. 
After clustering items into a few classes, common functional 
connectivity (CFC) is defined as the weighted average of 
items in a cluster.

(7)BIC = mIn
(
�̂�
2

e

)
+ kIn(m)

Temporal Transition Modeling

Sparse code vector zi indicates how the dictionary items rep-
resent i-th FCV xi . After CFC estimation, a CFC-based sparse 
code series ZCFC can be obtained. Since each sparse code zCFC

i
 

may contain more than one non-zero entries, there may be a 
few CFCs activated in brain simultaneously. We assume that 
the brain state is determined by the dominant CFC whose 
occurrence is the highest. Therefore, brain state at each time 
point can be labelled with a CFC, and the transition of CFCs 
can be reflected by the transition of brain states. Because the 
length of skipping step has a great influence on the accuracy 
of CFC duration, we only focus on the transitions between two 
different CFCs, rather than self-transitions.

In order to establish a finite state machine (FSM), all transi-
tions between CFCs should be counted, and transition prob-
ability for each CFC can be calculated. As CFC with higher 
occurrence is certain to own higher transition probability, thus, 
the value of transition probability is not convincible enough 
to character CFC transitions. Therefore, transition preference, 
which can eliminate the effect of CFC occurrence, is defined 
as below:

(8)Pref
j

i
=

P
j

i

O
j

i

(9)Pk
i
=

Nk
i∑

m≠i N
m
i

Fig. 3  Pipeline of stochastic 
coordinate coding algorithm. In 
k-th iteration, given one FCV 
xi , ① a few steps of coordinate 
descent (CD) are performed to 
find the support of the sparse 
code. ② A few more steps of 
coordinate descent (CD) are 
implemented on the supports to 
obtain a new sparse code zk

i
 . ③ 

The supports of the dictionary 
are updated by second order sto-
chastic gradient descent (SGD)
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where Nk is the overall occurrence of k-th CFC during whole 
duration, Nk

i
 denotes the occurrence of transition from CFCi 

to CFCk . Thus, Ok
i
 is the overall occurrence probability of 

CFCk excluding CFCi , and Pk
i
 represents the probability to 

transit from CFCi to CFCk . Here, Ni =
∑

m≠i N
m
i

 , because 
self-transition is not in consideration. Therefore, Pref j

i
 is 

the ratio of transition probability over overall occurrence 
probability. When Pref j

i
> 1 evidently, it means there is a 

preference that CFCi are more likely to transit to CFCk than 
any other CFCs. As such, the preference of mutual transi-
tions among CFCs can be discovered and a FSM can be 
established.

Results

CFCs Inferred from Mouse Brain LFP Data

In our work, based on the optimal dictionary size and sparse-
ness determined beforehand, we implemented a total of 160 
trials of SCC sparse coding for each mouse. According to 
BIC, the optimal clustering number of functional connectiv-
ity was explored, and the statistics results for each mouse 
are shown in Fig. 4. In Fig. 4a, it is easy to appreciate that 
six clusters are the most clustered for alpha band, and it is 
consistent in all three mice. The same exploration was also 
applied to theta band, and four clusters occur the most, as 
shown in Fig. 4b. Therefore, the CFC numbers of frequency 
band alpha and theta are determined as six and four. Six 
CFCs of alpha band are shown in Fig. 5.

For the purpose of reproducibility validation, each mouse 
dataset was divided into two parts. Then, six CFCs were 
obtained from each subdataset. Comparing six groups of 
CFCs obtained from three mice, it is easy to identify and 

(10)Ok
i
=

Nk∑
m≠i Nm

match each CFC. This result demonstrates that six CFCs 
are stable along time and general among subjects. To make 
intuitive visualization, common features are extracted for 
each CFC and shown in the right column of Fig. 5. Since 
iCoh indicates phase differences of two signals, therefore, 
in each CFC, positive value (red block) means that signal 
of column region leads that of row region, whereas nega-
tive value (blue block) means lagging behind. The bigger 
the magnitude is, the bigger phase difference to lead or lag.

In addition, it is easy to observe that each CFC pattern 
shows obvious block format, which indicates that some 
brain regions have similar interactions. We identify these 
regions and separate those from the others. Therefore, thir-
teen brain regions can be separated into seven groups: CA1 
& DG, S1Tr & S1HL, RSG & RSA, S, PRh & LEnt, AuV, 
and Cg1& Cg2 & PrL. It is interesting to observe that these 
seven brain region groups from CFCs by data-driven method 
are closely related with their spatial locations in brain. As 
expected, from the perspective of brain structure, the inter-
actions between regions within the same brain structure 
are quite stable, such as Cg1 & Cg2 (Anterior Cingulate 
Cortices), S1HL & S1Tr (Somatosensory Cortex), and RSA 
& RSG (Retrosplenial Cortex). Also, the regions adjacent 
to each other (with direct connections) tends to cooperate 
coherently, such as CA1 & DG, PRh & LEnt and PrL & 
Cg1 & Cg2.

For the four CFCs obtained from frequency band theta 
(as shown in Fig. 6), similar block characteristics also can 
be easily observed. Besides, it is interesting to observe that 
three CFCs in alpha band also can be found in theta band. 
Specifically, CFC#1, CFC#3 and CFC#6 in alpha band 
match CFC#1, CFC#2 and CFC#3 in theta band, which 
indicates that CFCs are stable among frequency bands. In 
general, despite sharing the same structural basis, different 
bands have their own rhythm of fluctuation, and run respec-
tive “program”. This finding demonstrates that some brain 
activities may lead fluctuation in a broad range of frequency, 

Fig. 4  Optimal clustering number for each mouse dataset
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which may cover a few frequency bands. Three pairs of iden-
tical CFCs in alpha and theta bands maybe correspond to 
three distinct brain activities.

Because CFCs are extracted from LFP signals of freely 
behaving mice, observing and exploratory behaviors might 
occur during recording. Therefore, it is difficult to identify 
the function of a certain CFC without other references, 
such as synchronous videos or manually annotations. Even 
though, CFCs discovered in this paper still can provide us 
a new method to understand brain functional connectivity.

Occurrences and Transitions of CFCs

Through sparse coding with SCC and CFC estimation, a 
CFC-based sparse code series ZCFC is obtained for each 
subdataset, by which we can investigate the occurrence of 
each CFC. As each mouse LFP recordings are divided into 
two parts, CFCs’ occurrences in six subdatasets are shown 
in Fig. 7.

In Fig. 7a, six CFCs of alpha band are quite different in 
occurrence. CFC#1 has the most occurrence of over 40%, 
then followed by CFC#2, whose occurrence is about 30%, 
on average. In contrast, CFC#3–CFC#6 have small occur-
rences of less than 10%, respectively. For each CFC, the 

Fig. 5  Six CFCs inferred from alpha frequency band
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occurrence varies among different subdatasets, which can 
be observed within a single subject or between subjects. 
For instance, in mouse #3, CFC#2 occurs about 10% less 
in second half than in the first. Besides, the occurrence dif-
ferences of CFC#1 between mouse#1 and mouse #2 can be 
over 10%. However, these differences of CFC’s occurrence 
are thought to be reasonable, due to individual specificity 

and free behaviors. In Fig. 7b, four CFCs of theta band also 
have different occurrences. CFC#1 has a dominant occur-
rence of 60%, on average, whereas the other three CFCs 
have only about 10% occurrences, respectively. These results 
reveal that three pairs of identical CFCs in alpha and theta 
bands also show high similarities in occurrence. From the 
perspective of occurrence, as well as connectivity pattern, 

Fig. 6  Six CFCs inferred from theta frequency band

Fig. 7  Occurrences of CFCs of alpha and theta frequency band. “M1-1st” denotes the first half of mouse #1 dataset
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it can be inferred that a CFC maybe reflect a distinct brain 
activity, which may cause rhythmic fluctuation across dif-
ferent frequency bands.

Based on the assumption that brain state can be labelled 
with a certain CFC and the transition of CFCs can be 
reflected by the transition of brain states, we built a FSM 
with CFC series (brain state series where each state is 
labelled by only one CFC). Among all directional transi-
tions, we discovered that six transitions in alpha band and 

three transitions in theta have evident preference by sig-
nificance test (t-test), and these transitions are shown in 
Tables 3 and 4. It is easy to appreciate that all these transi-
tions are related to CFC#1. In frequency band of alpha, five 
of six transitions with evident preference are the transitions 
towards CFC#1, and the rest one is from CFC#1 to CFC#2, 
which may interpret to some extents why CFC#2 has the 
second highest occurrence. In theta band, all three special 
transitions are all towards CFC#1. The transition patterns 
of frequency bands of alpha and theta with preference are 
shown in Fig. 8. This special preference of transition dem-
onstrates that CFC#1, in both alpha and theta bands, corre-
sponds to a sort of default brain activity or brain state, and 
plays a role as an “intermediate center”.

Validation of Effectiveness

Because of small body size and thin skull, the vast majority 
of electrodes used in freely behaving mice is still largely 
limited to 32 or fewer channels, and to only one or two brain 
structures. Therefore, it is difficult to make a straight com-
parison between our work and recent studies, especially 
based on 13 distinct brain regions. In order to validate the 
effectiveness of the proposed method, we tested our method 
on surrogate datasets, which were generated by randomiz-
ing the LFP recordings of each mouse in time. Therefore, 
in surrogate datasets, temporal dependency was destroyed, 
and phase-lags caused by real brain activity were removed. 
Specially, we generated surrogate datasets for each mouse, 
and repeated our method 80 times for each dataset. Based 
on BIC, the optimal clustering number for each mouse was 

Table 3  CFC transitions with 
evident preference in alpha 
frequency band

Transition C#2 → C#1 C#3 → C#1 C#4 → C#1 C#5 → C#1 C#6 → C#1 C#1 → C#2

Preference 1.3195 1.2655 1.2793 1.2056 1.1885 1.1511
Confidence P < 0.0001 P < 0.005 P < 0.05 P < 0.05 P < 0.05 P < 0.0001

Table 4  CFC transitions with evident preference in theta frequency 
band

Transition C#2 → C#1 C#3 → C#1 C#4 → C#1

Preference 1.2714 1.2761 1.2038
Confidence P < 0.0001 P < 0.0001 P < 0.0001

Fig. 8  CFCs’ transitions in alpha and theta frequency bands. Magenta 
arrows represent transitions with evident preference. Green arrows 
represent common transitions

Fig. 9  Optimal clustering number for each mouse surrogate dataset
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investigated, and it was interesting to find that four clusters 
were the best for both alpha and theta bands. The statistics 
results of mouse #1 are shown in Fig. 9.

For intuitive comparison, the CFCs inferred from sur-
rogate datasets are shown in Fig. 10. In Fig. 10, it is easy to 
observe that there are great differences among CFCs, and 
no CFC group could totally match with others. Compared 
with the results shown in Figs. 5 and 6, it is quite difficult to 
observe any similarities or consistencies of CFCs, neither in 
alpha band nor in theta band. As the LFP recordings were 
shuffled in time, there were no stable temporal dependences 
hidden within a single surrogate dataset, or among surro-
gate datasets. These results demonstrate that our proposed 
method have good sensitivity to temporal dependency and 
can reveal functionally relevant CFCs caused by real brain 
activities.

Effects of Free Parameters in SCC

As introduced in “Common Functional Connectivity Estima-
tion” section, SCC is a highly effective method to deal with 
sparse coding problems of big data. Before running a task, 
hyper parameters, especially dictionary size and sparseness, 
which have great influences on the performance of sparse 
coding, should be carefully explored and determined.

The size of dictionary reflects the representing capability 
of sparse coding. Generally, larger dictionary size leads bet-
ter diversity and more accurate representation. However, an 
over large dictionary may also cause unnecessary segmenta-
tion and redundancy, which decreases coding efficiency. To 
determine the size of dictionary, we tried it in a range from 
50 to 400, with an interval of 50, on the whole FCV time 
series of Mouse #1, and the results are shown in Fig. 11. 
In Fig. 11a, it is easy to appreciate that all curves gather 
closely. They have similar changing trend in residual with 
the change of sparseness. To make a clear comparison, we 
select an area and zoom in as shown in Fig. 11b. It is easy 

Fig. 10  Surrogate dataset CFCs of two frequency bands from three mice
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to observe that larger dictionary size corresponds to lower 
residual, and residual difference decreases as the increase of 
dictionary size, for instance, the residual difference between 
size 150 and 400 is almost the same as that between 50 and 
150. Similar curves and traits are also obtained in theta fre-
quency band, as shown in Fig. 11c, d. As residual difference 
becomes small enough after 150, which means that a dic-
tionary with 150 items has sufficient capability to represent 

FCV time series, therefore, we determine the size of diction-
ary as 150 finally.

Sparseness is a measurement indicating how many dic-
tionary items are used to represent a single FCV. Generally, 
higher sparseness contributes to more accurate representa-
tion. In this paper, we only focus on the functional connetivi-
ties which are relatively common and stable in brain activity, 
however, over high sparseness may bring trivial or insig-
nificant components, such as impulse and noise. Therefore, 

Fig. 11  Residual curves of dictionary size exploration. b is the zoom in view of red box area in a, as well as d and c 

Fig. 12  Residual difference curves of sparseness. Optimal sparseness locations are marked with blue box
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finding an optimal sparseness is of vital importance to our 
work. Based on the residual curve of dictionary size 150 
(as shown in Fig. 11), we calculated the residual difference 
based on different sparseness, and the results are shown in 
Fig. 12.

In Fig.  12, it is easy to observe that along with the 
decrease of sparseness, the residual difference increases 
very slowly at the beginning, then bursts rapidly. The criti-
cal changing point is thought to be the optimal sparseness, 
where the FCV series can be represented at the most optimal 
cost. Meanwhile, the part represented by the dictionary items 
at optimal sparseness is considered as the core component 
of FCV. Similar curve is also obtained from frequency band 
theta, as shown in Fig. 12b. In SCC, the sparseness is con-
trolled by sparse parameter � . Because the residual differ-
ence curve is relatively smooth, it is difficult to identify an 
abrupt changing point. Therefore, we selected a small range 
of sparseness (labeled with blue box) for main experiments.

Discussion

Functional connectivity has been recently shown to be pow-
erful in studying the network topology of the brain, reveal-
ing important information on the interactions between 
brain regions, no matter in humans and experimental ani-
mal models. Recent studies indicate that dynamic analy-
sis of functional connectivity can better capture the brain 
region interactions, providing additional insights into the 
macroscale organization and dynamics of neural activity 
(Calhoun et al. 2014; Keilholz 2014). In the majority of the 
studies published to date, the functional connectivity and 
its dynamics in mice are investigated via fMRI recording 
data (Mechling et al. 2014; Liska et al. 2015; Grandjean 
et al. 2017; Belloy et al. 2018). Compared to electrophysi-
ological measurements, these studies of dynamic functional 
connectivity with fMRI are inherently limited to the coarse 
time-scale due to the low-pass filtering effect of the hemo-
dynamic response. Furthermore, a few LFP-based studies 
of functional connectivity recorded only a few (no more 
than 32) channels of signals from only one or two brain 
structures, even in rat (Wei et al. 2015; Qi et al. 2017) and 
pigeon (Chen et al. 2018), whose brain sizes are much big-
ger than that of mouse. In contrast, our work is based on 
super-long LFP signals recorded from 13 distinct brain 
regions, with outstanding temporal resolution over fMRI-
based studies and finer spatial scale compared with other 
LFP-based studies. Until recently, Grandjean et al. applied 
sliding-window approach and dictionary learning method 
to identify several reproducible dynamic functional states 
in mice based on fMRI (Grandjean et al. 2017). In spite that 
their work used a few similar steps as ours, we applied iCoh 
and SCC methods to deal with volume conduction artefacts 

and exploding computations, which are quite common only 
in electrophysiological brain studies. Therefore, our work 
investigated dynamic properties of functional brain con-
nectivity in freely behaving mice via such higher temporal 
resolution and super-long length LFP recordings for the first 
time, as far as we know.

Though our proposed method has achieved remarkable 
performances in mouse brain dynamics investigation via 
LFP recordings, it still can be improved in a few aspects. 
First, CFCs were derived from the whole dictionary items, 
and their numbers were determined by Bayesian information 
criterion in this paper. Although sparse coding has extracted 
more critical components of functional connectivity, we still 
cannot guarantee that all dictionary items are significant. 
Therefore, better clustering methods or criterions should be 
explored to achieve more accurate establishment of CFCs, 
and some dictionary items could be excluded if necessary. 
Second, CFC is not an accurate enough measure. Because 
of magnitude normalization during sparse coding, the CFC 
only illustrates the general information, such as leading or 
lagging phase trait and how distinct regions coordinate with 
each other, rather precise quantitative information, like how 
much time a region leads or lags another region. If some 
additional benchmarks or criterions could be developed to 
indicate the phase-lags, the results would be more accurate 
and meaningful. Third, in our work, only LFP recordings 
were applied to derive CFCs, and the CFCs are sort of data-
driven results. In the future, if other references, such as syn-
chronous videos or manually annotations could be available, 
it would be of great help to identify the function of a cer-
tain CFC. In addition, in spite that the imaginary part of 
coherency is the most robust to VC artifact theoretically and 
practically (Khadem and Hossein-Zadeh 2013), compared 
with Pearson Correlation Coefficient, Mutual Information, 
and magnitude squared Coherence, it lacks the detection of 
zero-lag connectivity which are thought to be preserved in 
the real part (Sanchez Bornot et al. 2018). Therefore, if more 
advanced brain connectivity method could be developed and 
applied, the results of CFCs would be more comprehensive.

In summary, as large-scale, multi-site in vivo recording 
techniques have offered a new avenue to gain the critical 
insights into functional connectivity and brain dynamics in 
the freely behaving animals, we proposed a novel sparse 
coding based method, by which we uncovered a set of char-
acteristic functional brain connectivities that are associated 
with the brain dynamics in freely behaving mice. We believe 
that our method can be potentially applied to reveal intrin-
sic functional brain connectivity in both unconditioned and 
conditioned tasks (i.e., contextual, cued, or trace fear condi-
tioning) (Chen et al. 2009; Zhang et al. 2013), in addition to 
the task-free condition as in this work, and reach beyond the 
current brain regions and animal model. Further, we envi-
sion that the scheme proposed in this work utilizing super 
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long recording and data-driven approach can contribute to 
transforming the research in brain science into data science, 
which entails advanced and more effective analytics strate-
gies, providing a new perspective for the neuroscience field.
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