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Abstract. It has been of great interest in the neuroimaging community to model
spatiotemporal brain function and disorders based on resting state functional mag-
netic resonance imaging (rfMRI). A variety of spatiotemporal methods have been
proposed for rfMRI so far, including deep learning models such as convolution
networks (CNN) and recurrent networks (RNN). However, the dominant models
fail to capture the long-distance dependency (LDD) due to their sequential nature,
which becomes critical at longer sequence lengths due to memory limit. Inspired
by human brain’s extraordinary ability of long-term memory and attention, the
attention mechanism is designed for machine translation to draw global depen-
dencies and achieved state-of-the-art. In this paper, we propose a spatiotemporal
attention autoencoder (STAAE) to discover global features that address LDDs
in rfMRI. STAAE encodes the information throughout the rfMRI sequence and
reveals resting state networks (RSNs) that characterize spatial and temporal prop-
erties of the data. Considering that the rfMRI is measured without external tasks,
an unsupervised classification framework is developed based on the connectome
generated with STAAE. This framework has been evaluated on 281 children with
ADHD and 266 normal control children from 4 sites of ADHD200 datasets. The
proposed STAAE reveals the global functional interaction in the brain and achieves
a state-of-the-art classification accuracy from 59.5% to 77.2% on multiple sites.
It is evident that the proposed attention-based model provides a novel approach
towards better understanding of human brain.
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1 Introduction

The resting state networks (RSNs) from resting state functional MRI (rfMRI) provides a
powerful tool to model brain functions and disorders even in the absence of an external
task [1-5]. Various machine learning methods have been successful applied on rfMRI to
exploit RSN, such as independent component analysis (ICA) [6-9] and sparse dictionary
learning (SDL) [ 10—14]. Due to the superior representation power, deep learning models
have also been increasingly employed for fMRI analysis, such as Convolution Neural
Network (CNN) [15-17] and Recurrent Neural Network (RNN) [18-21]. However,
evidences show that the cognitive actions of multiple regions of brains is related to their
earlier actions, with a potential long distance in time [22]. While modeling, the so-called
long-distance dependency (LDD), is a challenging issue for CNN and RNN to address
[23].

Recently, the attention mechanism has gained popularity in sequence modeling and
various tasks [23]. Compared to regular CNN and RNN, the attention mechanism models
every unit in the input sequence simultaneously and draws global dependencies without
regard to their distance [24]. It has also been proven that pure attention mechanism has
comparable representation powers than CNNs or RNNs [23]. To utilize the superior
ability of attention mechanism to mining LDD, we explore the possibility to model
rfMRI with attention mechanism. Considering the unsupervised nature of rfMRI data, a
spatiotemporal attention autoencoder (STAAE) is proposed to model the rfMRI sequence
data. With the proposed model, the relation of two volumes/frames in the sequence is
captured with an attention score measuring the distance of their embeddings. We aim to
improve the classification by addressing the LDD issue. To our best knowledge, this is
the first study that exploits attention mechanism for fMRI modeling.

Attention Deficit Hyperactivity Disorder (ADHD) is a mental health disorder
involves multiple attention related problems, but neither a comprehensive pathophysiol-
ogy model nor a biomarker for clinical practice is established yet [25-30]. The proposed
model has been applied on ADHD200 datasets for evaluation. First, we examined the
learned representation of the input data, which encodes the global information through-
out the sequence of rfMRI. Our model reveals meaningful RSNs that characterize spatial
and temporal properties of the data. Secondly, based on the learned RSN, the connec-
tomes are generated for each subject and are used for ADHD classification with cross-
validation. The experimental results indicated that the proposed framework is capable
of modeling and classifying on ADHD. It’s worth noting that the proposed integrated
pipeline can be easily generalized for other mental disorder classification.

2 Methods

The proposed computational framework is shown in Fig. 1. In Sect. 2.1, the preprocessed
rfMRI data of all subjects are registered to a standard space for group-wise learning and
masked to a 2D spatiotemporal matrix. In Sect. 2.2, a STAAE model consists of a pair of
encoder and decoder which takes rfMRI volumes as input. In Sect. 2.3, the intermediate
representations of rfMRI data are interpreted to RSNs. The functional connectomes are
built for further classification.
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Fig. 1. Illustration of STAAE based pipeline for modeling and classifying of ADHD-200. (a)
Modeling process: the outline of STAAE model, in which the input and output are raw fMRI
signals and reconstructed signals respectively, and the high-level features extracted by the encoder
are used to construct RSNs. (b) Classifying process: by extracting from the RSNs generated by
the STAAE model, a functional connectome for each subject is calculated. A feedforward neural
network is trained as classifier based on the functional connectomes and used for classification.

2.1 Dataset and Preprocessing

In this work, we used the subjects from four sites in ADHD-200 dataset: Kennedy Krieger
Institute (KKI), Peking University (PU), New York University Medical Center (NYU),
and Neurolmage (NI). For all our experiments, we use preprocessed data publicly avail-
able from Preprocessed Connectomes Project [27]. The Athena preprocessing pipeline
was adopted, which is based on tools from the AFNI and FSL software packages, includ-
ing skull striping, slice timing correction, motion correction, detrending, band filtering
(0.01-0.01 Hz), normalization and masking. To perform group-wise STAAE training,
all subjects’” data are nonlinearly registered to the MNI152 4 x 4 x 4 mm? standard
template space [31] (Table 1).

Table 1. Summary of fMRI dataset.

Imaging site | Total subjects | Control subjects | ADHD subjects

KKI 83 67 22
PU 194 78 116
NYU 216 98 118

NI 48 23 25
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2.2 Attention Mechanism and STAAE

In respect of sequence modeling, especially high-dimension spatiotemporal sequence
data like fMRI, both convolutional network and recurrent network have been used in
the field. To utilize the CNN’s hierarchical feature abstraction ability, a 1D temporal
convolution architecture was applied on the fMRI time series [15, 16]. This approach
was able to extract features from low-level to high level, however, it did not make
use of the rich spatial information from fMRI. To incorporate the spatial and temporal
information at the same time, recurrent network was applied on the fMRI volumes and
preserving temporal features with long short-term memory (LSTM), which is a typical
recurrent module [18, 20, 21, 32]. This approach established a unified spatiotemporal
frame; however, it comes with three drawbacks. First, the inherently sequential nature
of RNN/LSTM precludes parallelization, which causes notable time cost especially for
high-dimension data like fMRI. Second, the sequential nature also leads to the notorious
long-distance dependency (LDD) problem, which becomes critical at longer sequence
lengths due to memory limit [24]. Third, the encoder LSTM is used to process the entire
input sentence and encode it into a context vector, where the intermediate states of the
encoder are ignored.

In this paper, we propose to solve the above-mentioned drawbacks by substituting
the convolution and recurrent networks with the attention mechanism [22], which draws
global dependencies and achieved state of the art in multiple sequence modeling tasks.
The attention mechanism consists of three matrices: queries Q € R"*% keys K € R"*%
and values V € R % _In the context of rfMRI, a key vector and a query vector are
learned for each frame of volume, and the pairs of query-key are matched across all
frame simultaneously. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of the query
with the corresponding key. If a pair of query-key matches, it generates a high value as
output. As shown in Fig. 2, we compute the matrix of outputs as:

Attention(Q, K, V) = softmax(QKT ) \% (D
T Vi

Most sequence models follow an encoder-decoder paradigm, and it also applies to
our proposed STAAE. Considering the intrinsic unsupervised nature of rfMRI, i.e. no
external stimulus or task is performed, an autoencoder structure is adopted, where the
decoder aims to reconstruct the exact input. For STAAE, the encoder maps an input
sequence of symbol representations X = (xq, ..., x;) to a sequence of intermediate
representations Z = (z1, ..., 2;). More specifically, each xi represents a volume of rfMRI
and is embedded with a fully feedforward network. Given Z, the decoder tries to generate
a reconstructed sequence of X' = (x{/, ..., x/).

Hyperbolic tangent function was chosen as the activation for the rfMRI data. To start
with training, the weights and biases are initialized from a Gaussian with zero-mean
and a standard deviation of 0.01. To improve the convergence, batch normalization
technique was applied to each hidden layer, which explicitly forced the activations to be
unit Gaussian distributed. With a learning rate of 0.0001 and batch size of 1, the models
were trained for 200 epochs for convergence. All experiments were repeated 5 times to
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Fig. 2. Structure of STAAE and illustration of attention mechanism.

test the stability of consistency of results. The implementation of STAAE can be found
at https://github.com/QinglinDong/stAAE.

2.3 Feature Interpretation and Classification

To explore the intermediate representation learned with STAAE, we apply Lasso regres-
sion to estimate the coefficient matrix which is used to build spatial maps. As shown in
Fig. 1, the group-wise fMRI data X is fed into the trained encoder, yielding the interme-
diate representation Z from the output of encoder. Next, the RSNs W are derived from
the intermediate representation and group-wise input via Lasso regression as follow:

W = min|Z — XW |2 + AW, 2)

After the Lasso regression, W is regularized and transposed to a coefficient matrix,
then each row of coefficient matrix is mapped back to the original 3D brain image
space, which is the inverse operation of masking in data preprocessing. Thus, the RSNs
are generated and interpreted in a neuroanatomically meaningful context. As shown in
Fig. 3, after transformation into “Z-scores” across spatial volumes, all the RSNs were
thresholded at Z > 2.3.

To exploit the spatiotemporal features including the RSNs and the intermediate
representations for further classification, we follow three steps. First, as shown in Fig. 1,
with the established RSNs, a union set of regions of interests (ROIs) from all the RSNs
are combined to establish a comprehensive brain atlas. Second, we extract the time series
from the original training data masked by the atlas. Third, the functional connectome,
which reflects the level of co-activation of brain regions, is calculated based on the
Pearson correlation of the extracted time series. The upper triangle matrix values were
removed for less redundancy.
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For classification, the functional connectome is flattened to a one-dimensional feature
vector. A deep feedforward neural network classifier is used as classifier, where cross
entropy loss is used for binary classification. There are 2 hidden layers in DNN, and the
numbers of nodes are 1000 and 500, respectively. A 10-fold cross validation was run 10
times to measure the prediction accuracy of whole pipeline. The results of classification
accuracy on all sites through the proposed STAAE based pipeline are shown in Sect. 3.2.

3 Results

3.1 RSNs from STAAE

The RSNs derived from the STAAE is shown in Fig. 3. It is observed that the RSN’ are
intrinsic active even when no extra tasks the subjects are doing, which provides evidence
supporting the conclusion in [2—4, 33]. By visual inspection, these RSNs can be well
interpreted, and they agree with domain knowledge of functional network atlases in the
literature. To quantitatively evaluate the performance of STAAE in modeling RfMRI
data, a comparison study between STAEE derived RSN and templates [1] is provided in
this section.

Fig. 3. Overview of the RSNs derived from STAAE.

To compare the RSNs derived by these three methods, the spatial overlap rate is
defined to measure the similarity of two spatial maps. The spatial similarity is defined
by the intersection over union rate (IoU) between two RSNs N WandN® as follows,
where n is the volume size:

n
i=1

N<(1)ﬂNﬂ2)‘

= 1 1
M, v®

i1 |N; T UN;

=

IoU(ND N@) = 3)

With the similarity measure defined above, the similarities loU (Ngesag, Nica) and
IoU (NaE, Nica) are quantitatively measured, where ICA is considered as ground truth
for the intrinsic RSNs. Comparisons of pairs by these two methods are shown in
Fig. 4, and the quantitative comparison are shown on the sides. This result demon-
strated that STAAE can identify intrinsic RSNs very well, suggesting the effectiveness
and meaningfulness of our proposed model.
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Fig. 4. Comparison of STAAE RSN with templates based on ICA [1].

3.2 Prediction Accuracy on ADHD-200

As illustrated in Sect. 2.3, we use STAAE derived RSNs to build functional connectome
for each subject, which are further used for classification. We compared the prediction
accuracies achieved by our STAAE based pipeline with SDL [34] based pipeline and
RAE based pipeline. As shown in Fig. 5, by using the same classification framework and
configurations, the STAAE based pipeline performed better than the other two method.
The average prediction accuracies of STAAE based pipeline on NYU, PU, KKI and NI
datasets are 59.5%, 65.2%, 77.2% and 61.0%, respectively (marked by green triangles).
Besides, the variances of the STAAE based pipeline are smaller than other two methods
that indicate the robust performance of our method.
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Fig. 5. Comparison of results achieved by SDL, RAE, STAAE based pipeline.

The results are also compared with other models in previous literature, including
Support vector machine (SVM) and ICA. Table 2 shows the average prediction accuracies
of SVM [29], ICA [30], SDL [34], RAE [18], and STAAE classification pipelines on
ADHD200 dataset. It shows RAE [18] outperforms traditional shallow machine learning
models such as SVM [29], ICA [30] and SDL [34] and our proposed STAAE outperforms
RAE [18]. Overall, based on the RSNs derived by the STAAE model, our classification
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pipeline performed excellent and competitive compared to other models and methods
for ADHD classification. These results also imply the effectiveness of STAAE on RSN
modeling.

Table 2. The STAAE achieves better average classification accuracy than previous state-of-the-art
models on the ADHD200 dataset

Name | SVM | ICA [30] | SDL [34] |RAE[18] | STAAE
[29]

NYU |- 56% 52.0% 53.5% 59.5%
PU 58.82% | 58% 62.4% 58.7% 65.2%
KKI |54.55% | 81% 71.6% 72.8% 77.2%
NI 48.00% | - 56.5% 57.8% 61.0%

4 Discussions

This paper is among the earliest studies that explore modeling fMRI with attention mech-
anism, to our best knowledge. In this paper, we proposed to adopt the encoder-decoder
structure to exploit the attention mechanism for the unsupervised rfMRI sequence. With
a group-wise experiment on massive rfMRI data, the proposed model shows its capa-
bility to learn RSNs. A comparison study with SDL and RAE showed that the RSNs
learned by STAAE are meaningful and can be well interpreted. One limitation of our
current approach is that the effects of hyperparameters is not fully explored, including
the model depth, number of attention head and size of attention head. By tuning the
parameters, the proposed framework can even achieve higher performance in the future.

For language modeling, it is crucial to solve the issue of ambiguity, where one
word can have different meanings in different context. By learning contextualized word
embedding based on attention mechanism, Bidirectional Encoder Representations from
Transformers (BERT) has already achieved great success and dominated the natural
language processing. [35] For brain modeling, ambiguity and context issue, not only
because of the incomplete supervision nature of fMRI and lack of ground truth, but also
multiple RSNs are activated simultaneously and each RSN may serve more than one
function. [13, 36] It is interesting and feasible to model the multiple-demand system in
brain and explore RSNs in different context with extended attention network in future
work.
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