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There have been several recent studies that used sparse representation for fMRI signal analysis and acti-
vation detection based on the assumption that each voxel’s fMRI signal is linearly composed of sparse
components. Previous studies have employed sparse coding to model functional networks in various
modalities and scales. These prior contributions inspired the exploration of whether/how sparse repre-
sentation can be used to identify functional networks in a voxel-wise way and on the whole brain scale.
This paper presents a novel, alternative methodology of identifying multiple functional networks via
sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals
within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into
an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary
learning algorithm. Our extensive experimental results have shown that this novel methodology can
uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal
and frequency domains based on current brain science knowledge. Importantly, these well-characterized
functional network components are quite reproducible in different brains. In general, our methods offer a
novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection,
de-activation detection, and functional network identification.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Task-based fMRI has been widely used to identify brain regions
that are functionally involved in specific task performance, and has
significantly advanced our understanding of functional localiza-
tions within the brain (Logothetis, 2008; Friston, 2009). In the
human brain mapping community, a variety of fMRI time series
analysis methods have been developed for activation modeling
and detection, such as correlation analysis (Bandettini et al.,
1993), general linear model (GLM) (Friston et al., 1994; Worsley,
1997), principal component analysis (PCA) (Andersen et al.,
1999), Markov random field (MRF) models (Descombes et al.,
1998), mixture models (Hartvig and Jensen, 2000), independent
component analysis (ICA) (McKeown et al., 1998), wavelet algo-
rithms (Bullmore et al., 2003; Shimizu et al., 2004), autoregressive
spatial models (Woolrich et al., 2001), Bayesian approaches
(DuBois Bowman et al., 2008), and empirical mean curve decompo-
sition (Deng et al., 2013). Among all of these computational meth-
ods, the GLM (Friston et al., 1994; Worsley, 1997) is one of the
most widely used methods due to its effectiveness, simplicity,
robustness and wide availability.

Recently, inspired by the successes of using sparse representa-
tion for signal and pattern analysis in the machine learning and
pattern recognition fields (Wright et al., 2010), there have been
several studies that used sparse representation for fMRI signal
analysis and activation detection (e.g., Li et al., 2009, 2012; Lee
et al., 2011, 2013; Oikonomou et al., 2012; Abolghasemi et al.,
2013; Lv et al., 2013) based on the assumption that the compo-
nents of each voxel’s fMRI signal are sparse and the neural integra-
tion of those components is linear. Actually, the human brain
function intrinsically involves multiple complex processes with
population codes of neuronal activities (Olshausen, 1996;
Olshausen and Field, 2004; Quiroga et al., 2008). In the brain sci-
ence field, a variety of research studies have supported that when
determining neuronal activity, sparse population coding of a set of
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neurons seems more effective than independent exploration
(Daubechies et al., 2009). That is, a sparse set of neurons encode
specific concepts rather than responding to the input indepen-
dently (Daubechies et al., 2009). Therefore, it is natural and well-
justified to explore sparse representations to describe fMRI signals
of the brain. In parallel, significant amount of research efforts from
the machine learning and pattern recognition fields has been
recently devoted to sparse representations of signals and patterns
(Donoho, 2006; Huang and Aviyente, 2006; Wright et al., 2008,
2010; Mairal et al., 2010; Yang et al., 2011), and remarkable
achievements have been made for both compact high-fidelity rep-
resentation of the signals and effective extraction of meaningful
patterns (Wright et al., 2010). However, despite recent successes
of using sparse representation for fMRI signal analysis and activa-
tion detection in the human brain mapping field (e.g., Li et al.,
2009, 2012; Lee et al., 2011, 2013; Oikonomou et al., 2012;
Abolghasemi et al., 2013; Lv et al., 2013), it has been rarely
explored whether/how sparse representation of fMRI signals can
be utilized to infer functional networks within the whole brain at
the voxel scale.

To bridge the abovementioned gap, in this paper, we present a
novel, alternative methodology which employs sparse representa-
tion of whole-brain fMRI signals for functional networks identifica-
tion in task-based fMRI data. The basic idea here is that we
aggregate all of the dozens of thousands of task-based fMRI signals
within the whole brain from one subject into a big data matrix, and
factorize it by an over-complete dictionary basis matrix and a ref-
erence weight matrix via an effective online dictionary learning
algorithm (Mairal et al., 2010). Our rationale is that during task
performance, there could be multiple, e.g., dozens or even hun-
dreds of, functionally active networks that contribute to the fMRI
blood oxygen level dependent (BOLD) signals of the whole brain.
The main objectives of this work are to explore the following three
questions: (1) what could these atomic functional networks be; (2)
what spatial, temporal and frequency characteristics could those
functional network components exhibit; and (3) how do they con-
tribute to the compositions of dozens of thousands of fMRI signals
within the whole brain. Given the proven remarkable capability of
sparse representation in uncovering meaningful patterns from
large amount of data (Wright et al., 2010), we hypothesize that
Fig. 1. Illustration of spatial distributions of three dictionary components of interest (CO
task-based fMRI dataset (Faraco et al., 2011; Zhu et al., 2012). There are task-related co
(DMN) component (red). (a–c) Show different views of representing the spatial distributi
of representing different components and their overlaps. For examples, the regions belo
green color represents the overlapped areas of the task and DMN components. (For inter
web version of this article.)
sparse representation of whole-brain fMRI signals via dictionary
learning can simultaneously address the abovementioned three
questions. In particular, we hypothesize that the identified func-
tional network components can be further characterized and inter-
preted by existing brain science knowledge, as well as by existing
structural and functional brain atlases. To test the above hypothe-
ses, as an example, Fig. 1 illustrates our rationale and the compu-
tational methodology. In Fig. 1, three exemplar identified network
components including the task related one (Faraco et al., 2011)
(yellow), the anti-task related one (or de-activation, Archer et al.,
2003; Tomasi et al., 2006) (blue), and the default mode network
(DMN) (Raichle and Snyder, 2007) (red), as well as their overlapped
areas including task + anti-task (pink), task + DMN (green), anti-
task + DMN (cyan), and task + anti-task + DMN (brown), are shown
on the inflated cortical surface. It is noted that the visualization on
original surface of Fig. 1 is shown in Supplemental Fig. 13(I). It is
shown that these three network components exhibit spatially dis-
tinct but overlapping distribution patterns, illustrating that multi-
ple functionally active networks simultaneously contribute to the
fMRI BOLD signals of the whole brain and that the online dictio-
nary learning method has the great promise to concurrently
address the abovementioned three questions.

In general, the major novelties and contributions of this paper
are summarized in three aspects. First, in comparison with previ-
ous works of sparse representation of fMRI signals (Li et al.,
2009, 2012; Lee et al., 2011, 2013; Oikonomou et al., 2012;
Abolghasemi et al., 2013; Lv et al., 2013), our methodology system-
atically considers the whole-brain task-based fMRI signals with
each subject, and aims to infer a comprehensive collection of func-
tional networks. In other words, we employ a big-data strategy
(Manyika et al., 2011) that include a large number of fMRI signals
to uncover multiple functioning brain networks concurrently.
Importantly, each fMRI signal is sparsely represented by a linear
combination of those functioning network components’ signals,
which offers a novel, alternative window to examine the spatial
compositions of meaningful functional brain networks. Second,
we have developed an effective computational pipeline to quanti-
tatively characterize those uncovered functional networks in spa-
tial, temporal and frequency domains, which can be potentially
used as functional network atlases for specific task performance
I) onto the inflated cortical surface. This illustration is based on a working memory
mponent (yellow), anti-task related component (blue) and default mode network

on patterns of these three network components. (d) Demonstrates the color scheme
nging to both the anti-task and DMN components are represented by cyan, and the
pretation of the references to color in this figure legend, the reader is referred to the
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or functional scenario in the future. This computational pipeline
and its results will not only demonstrate the effectiveness of sparse
representation of whole-brain fMRI signals and its neuroscience
meaning, but also offer a novel approach to identifying and
describing functions of the brain. Third, our methodology provides
a novel, effective and unified framework for multiple tasks in tra-
ditional fMRI data analysis including activation detection, de-acti-
vation detection, and functional network identification. Essentially,
the data-driven discovered functional network components via
online dictionary learning algorithms correspond, to some extent,
to different determining factors that have generated the fMRI BOLD
signals. Although this paper focuses on the characterization and
interpretation of activation, de-activation and default mode net-
work components, quantitative characterization of many other
network components in the dataset used in this paper and in other
additional task-based fMRI datasets will likely contribute to deeper
understanding of the brain’s structure and function in the future.
2. Materials and methods

2.1. Overview

Fig. 2 summarizes the computational pipeline of identifying
functional network components via sparse representation of
whole-brain fMRI signals. First, the whole-brain fMRI signals are
sparsely represented by using online dictionary learning and
sparse coding methods, as illustrated by the 400 learned atomic
dictionary components in Fig. 2a. That is, dozens of thousands of
whole-brain fMRI signals can all be effectively and sparsely
represented by linear combinations of these atomic dictionary
components. Second, we propose a novel framework for tempo-
ral-frequency characteristics analysis of network components to
identify and select network components of interest (COI) within
Fig. 2. Overview of the computational pipeline of identifying functional brain networks v
sparse dictionary of 400 functional components (indexed by the horizontal axis). The vert
BOLD signals in a whole brain. The three dictionary components highlighted by yellow,
related component in which the response well follows the external block-based task para
of external block-based task paradigm, and (d) DMN component. In each component (b–
(white curve) are shown in the top panels. Their spatial distributions are also back-projec
reference weight used in the sparse representation. (For interpretation of the references t
the learned dictionary. For instance, these COIs could be either
correlated or anti-correlated with the task paradigm, and exhibit
similar frequency domain patterns as the time series of task para-
digm. Fig. 2b–d show the temporal time series shapes and spatial
distribution patterns of three selected COIs that correspond to task
(Faraco et al., 2011), anti-task (Archer et al., 2003; Tomasi et al.,
2006) and DMN (Raichle and Snyder, 2007) network components,
respectively, and their dictionary component indices are high-
lighted by the color circles in Fig. 2a. As mentioned in Section 1,
this paper focuses on exploring these atomic COIs (considered as
functional networks here) (Section 2.3), characterizing the spatial,
temporal and frequency characteristics of these COIs (Section 2.4),
and examining how these COIs contribute to the compositions of
all of the fMRI signals within a whole brain (Section 3).
2.2. Dataset and preprocessing

Two different task-based fMRI datasets (block design) and one
event-related fMRI data were used in this paper. The first dataset
was used as the test bed data to develop and evaluate our sparse
representation approaches in Sections 2 and 3. The second dataset
was used in Section 3.5 for an independent reproducibility study.
For extensive evaluation, the third event-related fMRI data was
employed.

Dataset 1: In a working memory task-based fMRI experiment
under IRB approval (Faraco et al., 2011; Zhu et al., 2012), fMRI
images of 15 subjects were scanned on a 3T GE Signa scanner at
the Bioimaging Research Center (BIRC) of The University of Georgia
(UGA). Briefly, acquisition parameters are as follows: 64 � 64
matrix, 4 mm slice thickness, 220 mm FOV, 30 slices, TR = 1.5 s,
TE = 25 ms, ASSET = 2. Each participant performed a modified ver-
sion of the operational span (OSPAN) task (3 block types: OSPAN,
Arithmetic, and Baseline) (Faraco et al., 2011) while fMRI data
ia sparse representation of whole-brain fMRI signals. (a) An example of the learned
ical axis stands for the occurrence frequency of each component in over 40,000 fMRI
blue and red circles correspond to different functional networks. They are: (b) task
digm, (c) anti-task related component in which the response well follows the inverse
d), the corresponding signals (colored curves) accompanied with the task stimulus
ted onto the volumetric images in the lower panel. Each voxel is color-coded by the
o color in this figure legend, the reader is referred to the web version of this article.)
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was acquired. Preprocessing steps for the fMRI data are referred to
Faraco et al. (2011) and Zhu et al. (2012).

Dataset 2: In the semantic decision making task (Zhu et al.,
2013), the fMRI scan included 8 on (task) blocks (30 s) and 8 off
(rest) blocks (15 s). During each on-block, ten participants were
serially presented with ten pictures (each for 3 s), and they made
an animacy decision regarding the image (i.e., living/nonliving).
Button responses and response times were recorded using a mag-
netically shielded four-button box in the participant’s hand. The
task-baseline contrast was used to generate the semantic decision
making activation map. FMRI scans were acquired on the 3T GE
Signa scanner at UGA BIRC using a T2⁄-weighted single shot echo
planar imaging (EPI) sequence aligned to the AC–PC line, with
TE = 25 ms, TR = 1500 ms, 90� RF pulse, 30 interleaved slices,
acquisition matrix = 64 � 64, spacing = 0 mm, slice thick-
ness = 4 mm, FOV = 240 � 240 mm, and ASSET factor = 2. Prepro-
cessing steps of the fMRI data are referred to Zhu et al. (2013).

Dataset 3: Twenty-six right-handed adults (mean age:
28.1 ± 8.5 years) participated in the flanker event-related task fMRI
study in New York University (NYU). During the fMRI scan, partic-
ipants were requested to response to a series of slow-paced Eriksen
flanker trials (inter-trial interval (ITI) varied from 8 s to 14 s, 12 s
on average). In each trial, the direction the central arrow of five
(e.g. <<>>>) was responded by pushing buttons. FMRI images
were acquired on a research-dedicated Siemens Allegra 3.0 T scan-
ner in NYU Center for Brain Imaging. The acquisition parameters
are as follow: TR = 2000 ms; TE = 30 ms; flip angle = 80, 40 slices,
matrix = 64 � 64; FOV = 192 mm; acquisition voxel size = 3
� 3 � 4 mm. Preprocessing includes slice timing correction,
motion correction, and spatial smoothing. More details about task
design, data acquisition and preprocessing of this open fMRI data
are referred to Kelly et al. (2008), Mennes et al. (2010) and
Mennes et al. (2011).
2.3. Sparse representation of whole-brain fMRI signals

Our computational framework of sparse representation of
whole-brain fMRI signals is summarized in Fig. 3. Specifically, first,
for each single subject’s brain, we extract task-based fMRI signals
on all voxels within the whole brain. Then, after normalization to
zero mean and standard deviation of 1, the fMRI signals are
arranged into a big signal data matrix S 2 Rt�n (Fig. 3a), where n
columns are fMRI signals from n voxels and t is the fMRI volume
number (or time points). By using a publicly available effective
online dictionary learning and sparse coding method (Mairal
et al., 2010), each fMRI signal vector in S is modeled as a linear
combination of atoms of a learned basis dictionary D (Fig. 3b and
c), i.e., si = D � ai and S = D � a, where a is the coefficient weight
matrix for sparse representation and each column ai is the corre-
sponding reference weight vector for si. Finally, we identify compo-
nents of interests (COIs), namely functional network components
in this work, by performing temporal and frequency analysis of
atomic signal components (Fig. 3b) in the learned dictionary D.
At the same time, we map each row in the a matrix back to the
brain volumes and examine their spatial distribution patterns,
through which functional network components are characterized
and modeled on brain volumes, as shown by the red2 and yellow
areas in Fig. 3c. At the conceptual level, the sparse representation
framework in Fig. 3 can effectively achieve both compact high-fidel-
ity representation of the whole-brain fMRI signals (Fig. 3b) and effec-
tive extraction of meaningful patterns (Fig. 3c) (Donoho, 2006;
Huang and Aviyente, 2006; Wright et al., 2008, 2010; Mairal et al.,
2 For interpretation of color in Figs. 3 and 8, the reader is referred to the web
version of this article.
2010; Yang et al., 2011). In comparison with previous works of
sparse representation of fMRI signals (e.g., Li et al., 2009, 2012; Lee
et al., 2011, 2013; Oikonomou et al., 2012; Abolghasemi et al.,
2013), the major novelty here is that our framework holistically con-
siders the whole-brain task-based fMRI signals by using a big-data
strategy (Manyika et al., 2011) and aims to infer a comprehensive
collection of functional networks concurrently, based on which their
spatial, temporal and frequency characteristics are further quantita-
tively described and modeled.

In our framework, we aim to learn a meaningful and over-com-
plete dictionary D 2 Rt�n (m > t, m� n) (Mairal et al., 2010) for the
sparse representation of S. For the task-based fMRI signal set
S ¼ ½s1; s2; . . . sn�t�n 2 Rt�n, the empirical cost function is summa-
rized in Eq. (1) by considering the average loss of regression of n
signals.

f nðDÞ ,
1
n

Xn

i¼1

‘ðsi;DÞ ð1Þ

With the aim of sparse representation using D, the loss function
is defined in Eq. (2) with a ‘1 regularization that yields to a sparse
resolution of ai, and here k is a regularization parameter to trade-
off the regression residual and sparsity level.

‘ðsi;DÞ , min
ai2Rm

1
2
ksi � Daik2

2 þ kkaik1 ð2Þ

As we mainly focus on the fluctuation shapes of basis fMRI
BOLD activities and aim to prevent D from arbitrarily large values,
the columns d1,d2, . . .dm are constrained by Eq. (3).

C , fD 2 Rt�m s:t: 8 j ¼ 1; . . . m; dT
j dj 6 1g ð3Þ

min
D2C;a2Rm�n

1
2
kS� Dak2

F þ kkak1;1 ð4Þ

In brief, the whole problem of dictionary learning can be rewritten
as a matrix factorization problem in Eq. (4) (Lee et al., 2007), and we
use the effective online dictionary learning methods in Mairal et al.
(2010) to derive the atomic basis dictionary for sparse representa-
tion of whole-brain fMRI signals. Here, we employ the same
assumption as previous studies (Li et al., 2009, 2012; Lee et al.,
2011, 2013; Oikonomou et al., 2012; Abolghasemi et al., 2013) that
the components of each voxel’s fMRI signal are sparse and the neu-
ral integration of those components is linear.

One common use of sparse representation of signals with lim-
ited quantity of atoms from a learned dictionary is to de-noise.
For our fMRI data analysis application, with the sparse representa-
tion, the most relevant basis components of fMRI activities will be
selected and linearly combined to represent the original fMRI sig-
nals. With the same regularization in Eq. (4), we perform sparse
coding of the signal matrix using the fixed dictionary matrix D in
order to learn an optimized a matrix for spare representation as
shown in Eq. (5).

min
at2Rm

1
2
kst � Datk2

2 þ kkatk1 ð5Þ

Eventually, the fMRI signal matrix from a subject’s whole brain will
be represented by a learned dictionary matrix and a sparse coeffi-
cient matrix (Fig. 3). Here, each column of the a matrix contains
the sparse weights when interpreting each fMRI signal with the
atomic basis signals in the dictionary. Meanwhile, each row of the
a matrix stores the information of the voxel spatial distributions
that have references to certain dictionary atoms. Note that in order
to learn task-related and anti-task networks into separate networks
and avoid anti-task networks from merging into task-related net-
works as negative coefficients, we constrained the a matrix positive
in both dictionary learning and sparse representation. With these



Fig. 3. The computational pipeline of sparse representation of whole-brain fMRI signals using an online dictionary learning approach. (a) The whole-brain fMRI signals are
aggregated into a big data matrix, in which each row represents the whole-brain fMRI BOLD data in one time point and each column stands for the time series of one single
voxel. (b) Illustration of the learned atomic dictionary, each of which represents one functional network component. Three exemplar components of time series are shown in
the bottom panels. (c) The decomposed reference weight matrices, each row of which measures the weight parameter of each component in the whole brain. That is, each row
defines the contribution of one component to the composition of the fMRI signals.

116 J. Lv et al. / Medical Image Analysis 20 (2015) 112–134
decomposed dictionary components and their reference weight
parameters across the whole brain for each subject, our next major
task is to characterize and interpret them within a neuroscience
context. In particular, the sparse representation and dictionary
learning of whole-brain fMRI signals (Fig. 3) are performed for each
individual brain separately and thus the spatial, temporal and fre-
quency correspondences of those characterized dictionary compo-
nents, or components of interests (COIs), across a group of
subjects will be another major issue to investigate, as detailed in
the next section.

In our approach, the parameter k not only regularizes the fea-
ture selection when reconstructing fMRI signals, but also deter-
mines the sparsity and scale of network regions. In other word, if
the k is too small, the network will be too coarse and involve much
noise, while if k is too large, the network will be too sparse. Cur-
rently, there is no golden criterion for selection of k. In our results,
the parameter k was experimentally determined to ensure that the
reconstructed networks exhibit meaningful level of sparsity in
terms of spatial distributions.
2.4. Temporal-frequency analysis of network components

In Section 2.3, we have obtained the network components by
learning a dictionary from the whole-brain fMRI signals for each
subject. As each network component has its own time series signal
that serves as the basis for sparsely representing the whole-brain
fMRI signals, a natural question arises: what are the neuroscience
meanings of those hundreds of network components (Fig. 3b and
c)? That is, we need to characterize the structural and functional
profiles of those atomic component signals to elucidate the neuro-
science meanings of these network components, and potentially
establish their correspondences across a group of subjects’ brains.
It is clear that full understanding and quantitative characterization
of all of such hundreds of dictionary network components are
beyond our current scope and capability, thus in this paper, our
research focus is on the several network components within the
learned dictionary that are either correlated or anti-correlated with
the task paradigm and exhibit similar frequency domain patterns
as the frequency of task performance paradigm. Accordingly, we
designed a temporal-frequency analysis framework to identify
and select such basic components with more easily interpretable
meanings, as shown in the pipeline in Fig. 4a.

In the diagram in Fig. 4a, the ‘‘Network Components Signals’’ D
is the t �m matrix from the last section as the model input, where
m is the number of learned dictionary atoms (network compo-
nents) and t is the length of the fMRI time series signal. Thus, the
signal of the j-th network component is Dj. Another model input
is the ‘‘Task Stimulus Paradigm’’ curve TS, which is a vector of
length t based on the block-based task design (Faraco et al.,
2011; Zhu et al., 2012), as shown in Fig. 4f. For instance, for the
working memory task, it can be calculated from the curve
(Fig. 4f) that the frequency of a cycle between the task and the
baseline is:

1
average length of taskþ average length of rest

� 1
TR

¼ 1
ð20þ 30Þ=2þ 20

� 1
1:5
¼ 0:0148 Hz ð6Þ

which is defined as the stimulus frequency Frstimulus. For other task
paradigm (e.g., that in Section 3.5), the stimulus frequency can be
calculated in a similar fashion, which is 1/(length of the full para-
digm cycle). Then, for the j-th network component signal Dj, we
can obtain its frequency spectrum FDj by using the fast Fourier
transform on its signal, and calculate the energy concentration Ef,j

of the stimulus curve frequency over all frequency ranges:

Ef ;j ¼ FDFrstimulus ;j

X
i

FDi;j

,
ð7Þ

where FDFrstimulus ;j denotes the energy of the stimulus frequency in the
spectrum of the j-th network component, and FDi,j denotes the
energy of the i-th position in the spectrum of the j-th network
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Fig. 4. (a) A computational pipeline of the temporal-frequency analysis of network components, which is composed of seven steps. In this framework, the input is the learned
dictionary components (D in Fig. 3b) and the output is the selected well-characterized components with their group-wise correspondence. More details of the seven steps are
explained as follows. (b) Examples of time series signals of five exemplar network components that are visualized as blue curves, which correspond to the step 1 in the
pipeline in (a). The task stimulus curve (yellow, the same as (f)) is overlaid on the component signal for visualization purpose. The x-axis (horizontal) is the temporal points (in
volumes), and the y-axis (vertical) is the fMRI BOLD signal normalized to (�1, 1) for visualization. (c) The frequency spectrum of the five network components visualized as
green curves, which correspond to the step 2 in (a). The x-axis is the frequency, and the y-axis is the corresponding power normalized to (0, 1). (d) The values of energy
concentration Ef, corresponding to the step 3 in (a); correlation Ecorr corresponds to the step 4 in (a); the component score U corresponds to the step 5 in (a) of each
component. (e) Component selection result, where ‘‘U’’ means the component is selected as COI by our algorithmic pipeline for further analysis in the next step, which
correspond to the step 6 in (a). (f) The stimulus curve of the task paradigm of dataset 1, corresponding to the step 7 in (a). The x-axis is the temporal points (in volumes), and
the y-axis is the alternation between task and base-line blocks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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component. Intuitively, a larger Ef,j suggests that this network
component is more likely to be responsive (either positively or neg-
atively) to the task stimulus and should be considered as the task
related or anti-task related network. Also, we can obtain the Pear-
son correlation between the signal of each network component
(Fig. 4b) with the stimulus curve (Fig. 4f), which is defined as Ecorr,j:

Ecorr;j ¼ corrðDj; TSÞ ð8Þ

Essentially, Ecorr;j measures the temporal similarity between the
component’s time series and the stimulus curve which is convolved
with hemodynamic response function (HRF). A larger value of Ecorr;j

indicates better correspondence between the component and the
stimulus. Notably, the widely used GLM model (Friston et al.,
1994; Worsley, 1997) in the fMRI community uses a similar princi-
ple in detecting activated brain regions during a task. Also, the sign
of Ecorr;j can tell whether the network component is positively or
negatively correlated with the stimulus curve, which will be used
to differentiate task related or anti-task related network compo-
nents later.

As mentioned in Section 2.1, at the current stage, our work
focuses on the network components that are either correlated or
anti-correlated with the task paradigm. Therefore, we designed a
straightforward, yet effective approach to selecting the compo-
nents of interests based on both Ef and Ecorr, and a component scor-
ing function U(�) of the j-th network component is then defined as:
UðDjÞþ ¼ E2
f ;j þ E2

corr;j; if Ecorr;j > 0
UðDjÞ� ¼ E2
f ;j þ E2

corr;j; if Ecorr;j < 0 ð9Þ

Here, both Ef,j and Ecorr,j are within the range of (0, 1) and a larger
value of U(�)+ or U(�)� is desired to select the COIs. It should be
noted that we defined the scoring function separately for correlated
and anti-correlated network components, and thus each component
of the learned dictionary will be either in the set U(�)+ or in the set
U(�)�. As the positively correlated components were found to have
higher scores than anti-correlated components, defining them
separately will enable us to select both types of components in a
more flexible and reliable manner. A sample illustration of the
distributions of components scores in two subjects is shown in
Fig. 5.

In Fig. 5, each icon is a network component, and the compo-
nents residing in the top-right region (with both large Ef and Ecorr)
are what we aim to select, since we are currently interested in
those most responsive components to the stimulus curve. How-
ever, as shown in Fig. 5, the distribution of the scores across differ-
ent types of components and across different subjects is highly
variable. Thus, it is more reasonable to individually and adaptively
select the best components from each type in each individual sub-
ject. Thus, in this work, we designed and applied a greedy iterative
searching algorithm to best partition the whole components space
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Fig. 5. Distribution of Ef,j (on the horizontal x-axis) and absolute value of Ecorr,j (on the vertical y-axis) of the task-related and anti-task components from two randomly
selected subjects (subject #10 and #12). ‘‘Sub10+’’ indicates the components from subject #10 that are positively-correlated with the stimulus curve, while ‘‘Sub10�’’
indicates the components from subject 10 that are negatively-correlated with the stimulus curve. We examined these distributions in all of the 15 subjects and observed
similar patterns.
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into the ‘‘selected’’ and ‘‘unselected’’ groups. For each type (task
related/anti-task related) of the components in each subject, we
define the ‘‘selected’’ group starting from the component with
the highest score U(�), e.g., the top right ones in Fig. 5. We then
iterate through all components which are sorted by their scores,
and at each step k, we add the new components into the ‘‘selected’’
group, thus forming two partitions [1. . .k] and [k + 1. . .m] of the
total network components. During the greedy iterative searching,
as long as the following criterion is decreasing, the iteration will
be continued:
Subject7
#088

Subject7
#182

Subject6
#292

Subject6
#314

Subject5
#075

Subject5
#367

Subject4
#161

Subject4
#297

Subject3
#165

Subject3
#381

Fig. 6. The selected task related network components from five randomly-chosen subject
are: subject index and component index, time series signal of that component with over
value of component scores, respectively. It is evident that the COI component time se
references to color in this figure legend, the reader is referred to the web version of thi
C ½1...k�;½kþ1...m�ð Þ ¼
1
k

Xk

j¼1

Ef ;j � Ef ;½1...k�
� �2 þ 1

m� k

Xm

j¼kþ1

Ef ;j � Ef ;½kþ1...m�
� �2

� Ef ;½1...k� � Ef ;½kþ1...m�
� �2
In other words, we aim to select the most suitable network compo-
nents by minimizing the intra-group distance while maximizing the
inter-group distance, where the groups are defined by partitioning
the sorted components at k-th index.
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Ecorr = 0.571

Ef = 0.452
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Ef = 0.447
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Ef = 0.464
Ecorr = 0.611

Ef = 0.500
Ecorr = 0.688

Ef = 0.414
Ecorr = 0.524

s with a total of 10 components. For each row in the figure, from the left to the right
laid stimulus curve (in yellow), the frequency spectrum of that component, and the
ries signals are well correlated with the stimulus curve. (For interpretation of the
s article.)
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2.5. Spatial pattern analysis of network components

The frequency and temporal characteristics of the task related
and anti-task related network components in the learned dictio-
nary can be quantitatively described by Eqs. (6)–(9). In addition,
the reference weight parameter in each row of the matrix in
Fig. 3c for each network component can be projected back to the
volumetric fMRI image space (e.g., Fig. 3c) for the interpretation
of their spatial distributions. In this way, the spatial distributions
of network components in different brains can be compared within
a template image space to verify their spatial overlaps, as well as to
further determine their spatial correspondences (more details in
Section 3.2).

In addition to the task related and anti-task related network
components that are characterized in the above Section 2.4, it is
interesting that there are also a variety of intrinsic networks
(e.g., Fox and Raichle, 2007; Cohen et al., 2008; van den Heuvel
et al., 2008) that are identifiable in task-based fMRI data. For
instance, there is a network component that clearly corresponds
to the DMN (Raichle and Snyder, 2007), as shown in Fig. 2d. Since
the temporal and frequency characteristics of the DMN have not
been well quantitatively described, we more rely on the spatial dis-
tribution patterns of the peak activities of DMN on a template
brain space (Fox and Raichle, 2007; Cohen et al., 2008; van den
Heuvel et al., 2008), as shown in Supplemental Fig. 1. We then
use a spatial overlap metric to determine the corresponding
DMN components across individual brains.
3. Results

In this section, we designed a series of experiments to evaluate
and validate the novel computational pipeline for identification of
Subject7
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#369

Subject6
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Subject6
#311
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#358
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#269
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#334

Fig. 7. The selected anti-task network components from the same five subjects, with a to
index and component index, time series signal of that component with overlaid stimul
component scores, respectively. It is evident that the COI component time series signals a
to color in this figure legend, the reader is referred to the web version of this article.)
functional networks via sparse representation of whole-brain fMRI
signals. First, the temporal and frequency properties of selected
task related and anti-task related COIs from 15 subjects in the
dataset 1 are presented in Section 3.1. Afterwards, the spatial dis-
tribution patterns of these COIs are detailed and interpreted in Sec-
tion 3.2. Then the framework is extensively evaluated and
validated by comparisons with the ICA method (Section 3.3), by
simulation studies with ground-truth (Section 3.4), and by an inde-
pendent reproducibility studies in a separate dataset 2 (Sec-
tion 3.5). An additional application of our method on event-
related fMRI data is explored in Section 3.6.
3.1. Temporal and frequency properties of COIs from 15 subjects

Based on the methods and criteria in Section 2.4, we have
obtained 29 task related and 25 anti-task related network compo-
nents from the learned dictionaries of all the 15 subjects in dataset
1. On average, two network components of each type (task related
or anti-task related) were selected for each subject, which corre-
spond to the best-matched functional response to the task stimu-
lus in terms of frequency spectrum and temporal correlation
(Eqs. (7)–(10)). The time series component signals, the frequency
spectra and the scores of the selected COIs of five randomly-chosen
subjects are listed in Figs. 6 and 7. The results of other ten subjects
are shown in Supplemental Figs. 2 and 3. Quantitatively, the aver-
age correlation of the signals of task related components with the
stimulus curve (Eq. (8)) over all 15 subjects is 0.585 (with the stan-
dard deviation of 0.115), and their average energy concentration
on the frequency spectra (Eq. (7)) is 40.9% (with standard deviation
of 7%). The relatively high correlations and energy concentrations
suggest that these selected COIs are well responsive to the stimu-
lus curve, which is also evident in the second columns of Fig. 6 and
Ef =0.165
Ecorr =-0.379

Ef =0.196
Ecorr =-0.328

Ef =0.289
Ecorr -0.388

Ef =0.349
Ecorr =-0.157

Ef =0.400
Ecorr =-0.504

Ef =0.192
Ecorr =0.-227

Ef =0.192
Ecorr =-0.299

Ef =0.129
Ecorr =-0.265

tal of 8 components. For each row in the figure, from the left to the right are: subject
us curve (in yellow), the frequency spectrum of that component, and the value of
re well anti-correlated with the stimulus curve. (For interpretation of the references



Fig. 8. (a and b) Two selected task related COIs of subject #1. (c) The corresponding temporal patterns of the two components in (a and b). (d) The corresponding frequency
distribution of the two components in (a and b). (e) The group-wise statistical map of all task related components from 15 subjects of dataset 1 in the MNI space. (f) Group-
wise activation foci detected by FSL FEAT.
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Supplemental Fig. 2. It is thus natural to conjecture that these COIs
correspond to the functional networks that are responsive to the
working memory task and are potentially equivalent to the tradi-
tional activated brain regions detected by the GLM method, which
will be verified in Section 3.2.

Quantitatively, the average correlation of the signal of anti-task
component with the stimulus curve (Eq. (8)) over all 15 subjects is
�0.348 (with standard deviation of 0.014), and their average
energy concentration on the frequency spectra (Eq. (7)) is 23.1%
(with standard deviation of 8%). It can be seen in Fig. 7 and Supple-
mental Fig. 3 that all the 15 subjects have well-matched anti-task
related functional network components, suggesting that our meth-
ods can identify common anti-task networks in the response to
stimulus paradigm from individual subjects. The relatively high
anti-correlations and energy concentrations suggest that these
selected COIs are highly anti-responsive to the stimulus curve,
which is also evident in the second columns of Fig. 7 and Supple-
mental Fig. 3. We therefore conjecture that these COIs potentially
correspond to the traditional de-activated brain regions detected
by the GLM method, which will be evaluated in Section 3.2.

3.2. Spatial distribution patterns of COIs

In this section, the identified COIs in Section 3.1 will be further
analyzed to elucidate their spatial distributions based on the
methods in Section 2.5. Specifically, the 29 task related network
components from the learned dictionaries of all the 15 subjects
in dataset 1 are mapping to the volumetric images. Specifically,
as the learning of coefficient matrix is constrained non-negative
and the network region size and scale are controlled by the param-
eter k, in our experiment, we simply mapped the coefficients which
are ‘‘>0’’ without setting additional threshold. This also applies to
the following overlap analysis. As an example, in Fig. 8a–d, we
show two selected task related COIs of subject #1. The results for
additional six different subjects are shown in Supplemental Figs. 4
and 5. In Fig. 8a and b, the two COIs are color-coded with the ref-
erence weights of whole-brain voxels. We can see that each net-
work component is composed of several Gaussian-shaped
patterns of reference weights. This distribution pattern is consis-
tent with previous observations of fMRI activation foci patterns
(Faraco et al., 2011). From Fig. 8c and d, we can observe that the
signals of the selected networks have high correlation (around
0.6–0.7) with the stimulus curve (Eq. (8)), and its energies in the
frequency spectra are dominantly concentrated on the frequency
of 0.0148 Hz. This result supports our hypothesis in Eq. (6) and
demonstrates the effectiveness and accuracy of the data-driven
online dictionary learning methods (Mairal et al., 2010) in extract-
ing meaningful basis patterns for sparse representation of whole-
brain fMRI signals. Our results also provide additional supporting
evidence to the widely-used GLM methods (Friston et al., 1994;
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Worsley, 1997) that the brain’s functional activities could be very
responsive to the specific task paradigm, e.g., the exactly matched
frequency.

Furthermore, for each subject, since its task related network
components share quite similar temporal and frequency character-
istics (Fig. 6), we merged them (the reference weight matrix of a,
Fig. 3c) into one volumetric map in order to comprehensively elu-
cidate their spatial distribution patterns. After registering and
warping them into the Montreal Neurologic Institute (MNI) tem-
plate space by the FSL FLIRT, we averaged the complete task related
networks from a group of 15 subjects and visualized the averaged
statistical atlas in Fig. 8e. For comparison purpose, the group-wise
activation map obtained by applying the FSL FEAT on the same
working memory task-based fMRI data is also visualized in
Fig. 8f. We can see that the spatial distributions of task related net-
work by our methods and those of the activation foci by FSL FEAT
are quite similar. Quantitatively, the overlap of color regions in
Fig. 8e and f account for 86.8% of the result by our method
(Fig. 8e) and 66.6% of result by FSL FEAT (Fig. 8f). This relatively
high overlap demonstrates that the task related functional network
detected by our method is quite meaningful and consistent with
that by FSL FEAT, suggesting the validity and effectiveness of the
dictionary learning and sparse representation methods described
in Section 2.3 in uncovering meaningful functional activity pat-
terns from whole-brain fMRI data. Furthermore, the reasonably
consistent task-related functional networks in individual brains
Fig. 9. (a and b) Two identified anti-task COIs of subject #6. (c) The corresponding time s
distribution of the two components in (a and b). (e) The group-wise averaged statistica
(f) Group-wise de-activation foci detected by FSL FEAT.
in Fig. 8a and b and Supplemental Figs. 4 and 5, as well as the com-
parable group-wise activity patterns in Fig. 8e and f, suggest that
our COIs selection methods in Section 2.4 could potentially serve
as a novel, alternative approach to detecting task-based fMRI acti-
vations. This important issue will be further explored in
Section 3.5.

Similarly, the reference weight matrices (a, Fig. 3c) of 25 anti-
task related network components from the learned dictionaries
of all the 15 subjects in dataset 1 are mapped and examined on vol-
umetric images. Specifically, in Fig. 9a–d, we show the two selected
anti-task related networks of subject #6. The results of additional
six subjects are shown in Supplemental Figs. 6 and 7. Similar to
those in Fig. 8, their spatial distributions are multiple Gaussian-
shaped foci. The temporal signals of these anti-task components
have relatively strong Pearson correlations (�0.4 to �0.5) with
the block-design stimulus curve, as shown in Fig. 9c. Also, their
energies in the frequency domains are dominantly concentrated
on 0.0148 Hz, as shown in Fig. 9d. Again, this result further sup-
ports our hypothesis in Eq. (6) and demonstrates the validity and
reliability of the data-driven online dictionary learning methods
(Mairal et al., 2010) in extracting not only task related but also
anti-task related basis patterns for sparse representation of
whole-brain fMRI signals.

Additionally, for each subject, given that its anti-task related
components exhibit similar temporal and frequency characteristics
(Fig. 7), we merged their reference weight matrices (a, Fig. 3c) into
eries patterns of the two components in (a and b). (d) The corresponding frequency
l atlas of all anti-task components from 15 subjects of dataset 1 in the MNI space.
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one volumetric map in order to better examine their spatial distri-
butions in a similar way as in Fig. 8e. For comparison purpose, the
group-wise de-activation map obtained by applying FSL FEAT is
visualized in Fig. 9f. It is evident that the spatial distributions of
anti-task related network by our methods and those of the de-acti-
vation foci by FSL FEAT are similar. Quantitatively, the overlap of
color regions in Fig. 9e and f account for 46.6% of the result by
our method (Fig. 9e) and 72.1% of result by FSL FEAT (Fig. 9f). This
relatively high overlap suggests that the anti-task related func-
tional network identified by our method is quite meaningful and
consistent with that by FSL FEAT, further demonstrating the valid-
ity and effectiveness of the dictionary learning and sparse repre-
sentation methods described in Section 2.3 in uncovering
meaningful functional patterns from whole-brain fMRI data.
Fig. 10. (a–c) Identified default mode network components of subject #1, #2, and #10. A
statistical map of all DMN components from 15 subjects of dataset 1 in the MNI space.

Table 1
The overlap percentages of three detected networks from 15 subjects in dataset 1. T: Tas
deviation.

Network overlap T (%) A (%) D (%)

Sub.1 40.76 62.20 36.39
Sub.2 46.16 57.07 27.53
Sub.3 40.43 48.45 27.16
Sub.4 48.75 25.44 33.99
Sub.5 67.45 35.92 35.92
Sub.6 37.12 52.41 22.40
Sub.7 42.52 41.73 25.93
Sub.8 43.92 53.33 17.83
Sub.9 60.71 23.39 24.02
Sub.10 52.85 52.89 33.75
Sub.11 52.61 21.97 37.23
Sub.12 36.61 52.54 26.28
Sub.13 60.55 13.70 33.99
Sub.14 44.83 36.81 29.32
Sub.15 56.25 50.38 36.16
Average 48.77 41.88 29.86
SD 9.33 14.88 5.97
Similarly, the consistent anti-task related functional networks in
individual brains in Fig. 9a and b and Supplemental Figs. 6 and 7
and the consistent group-wise activity patterns in Fig. 9e and f
indicate that our COIs selection methods in Section 2.4 could
potentially serve as a novel, alternative approach to detecting fMRI
de-activations, which will be further investigated in the future.

The temporal-frequency analysis framework in Section 2.4 have
successfully uncovered the task and anti-task related network
components as shown in Figs. 8 and 9 and Supplemental Figs. 2–
7. Then, based on the spatial pattern analysis methods in Sec-
tion 2.5, we measured the spatial overlaps of the dictionary com-
ponents with the DMN template in Supplemental Fig. 1. It is
interesting that we can successfully identify the DMNs in all of
the 15 subjects in dataset 1, as shown in Fig. 10 and Supplemental
dditional examples are shown in Supplemental Fig. 8. (d) The group-wise averaged

k network; A: Anti-task network; D: Default mode network. SD stands for standard

T&A (%) A&D (%) T&D (%) T&A&D (%)

3.05 36.26 2.04 2.00
3.45 27.25 1.53 1.47
6.66 7.51 2.51 0.64
2.50 3.25 2.52 0.09
3.36 35.92 3.36 3.36
3.53 7.12 1.64 0.36
3.57 4.94 1.97 0.30
9.52 3.84 2.16 0.45
2.05 3.71 2.48 0.13
5.78 33.72 2.21 2.21
2.31 4.66 5.19 0.34
5.01 8.55 2.43 0.56
1.31 3.76 3.28 0.11
1.71 5.83 3.60 0.18
6.67 36.10 4.53 4.51
4.03 14.83 2.76 1.11
2.27 14.15 1.04 1.35



Table 2
The mean overlap rate of DMN in all 15 subjects of dataset 1 by sparse representation
and ICA.

Sub #1 #2 #3 #4 #5 #6 #7 #8

Sparse 0.49 0.37 0.36 0.41 0.40 0.34 0.31 0.33
ICA 0.27 0.27 0.29 0.27 0.28 0.25 0.27 0.24

Sub #9 #10 #11 #12 #13 #14 #15 Mean ± Std

Sparse 0.34 0.47 0.30 0.35 0.30 0.31 0.37 0.36 ± 0.058
ICA 0.26 0.27 0.29 0.25 0.28 0.28 0.28 0.27 ± 0.015
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Fig. 8. The group-wise averaged statistical map of the DMN compo-
nents by our methods (Fig. 10d) is also visually and quantitatively
(the overlapped area accounts for 42.7% of our result and 56.1% of
the template) similar with the template in the MNI space (Supple-
mental Fig. 1). This result further demonstrates that our methods
are effective in uncovering meaningful network components from
task-based fMRI data, even though the DMN is a intrinsic network
and its temporal and frequency characteristics are much more
complex and variable than the task and anti-task components, as
shown in Supplemental Fig. 9. Also, an important neuroscience
insight obtained from the results here is that intrinsic networks
such as the DMN (Fox and Raichle, 2007; Cohen et al., 2008; van
den Heuvel et al., 2008) are active in task performance state and
are clearly identifiable. This observation and the methods devel-
oped in this paper might open a new window to examine the func-
tional interactions among intrinsic networks and task/anti-task
related networks in the future.

Based on the identified task, anti-task and DMN components in
Figs. 8–10 in the 15 subjects, we quantitatively measured the per-
centages of their volumes and the overlapped regions among these
three components, as illustrated in the bottom panels of Supple-
mental Fig. 10. The percentages for all 15 subjects in dataset 1
are shown in Table 1, and the visualizations of these percentages
are shown in Supplemental Fig. 10. From Table 1 and Supplemental
Fig. 10, we can clearly see that these three network components
are substantially overlapping with each other in the spatial
domain, suggesting that functional brain networks do not
necessarily work independently, but instead they interact with
each other on the overlapped brain areas. These results also dem-
onstrate that one cortical region could potentially participate in
multiple functional roles, as widely reported in the literature
(e.g., Bisley and Pasternak, 2000; Lalonde and Chaudhuri, 2002;
Fogassi et al., 2005; Zaksas and Pasternak, 2006; Fischera and
Zwaan, 2008). It is interesting that the dictionary learning and
sparse representation methods can not only uncover and charac-
terize those separate network components, but also reveal how
they contribute to the compositions of dozens of thousands of fMRI
signals within the whole brain.

3.3. Comparisons with ICA method

In this section, we performed independent component analysis
(ICA) of whole-brain fMRI signals via the FSL MELODIC toolkit
Fig. 11. The spatial maps of DMN obtained by the sparse representation and ICA method
slice which was superimposed on the mean fMRI image of each subject is shown (left: sp
sorting the true positive rate with the DMN template provided in GIFT toolbox (http
representation and a mean rate of 0.27 for ICA of all 15 subjects. All ICA spatial maps w
(Beckmann et al., 2005). The color scale of spatial maps in sparse representation ranges
reader is referred to the web version of this article.)
(Beckmann et al., 2005) as an independent source to compare
and evaluate the identified functional networks via sparse repre-
sentation in Section 3.2. Specifically, we set the MELODIC-ICA to
automatically estimate the optimal dimensionality of the data to
achieve convergence stability. First, we identified and examined
the DMN via the methods in Section 2.5 and defined the true posi-
tive rate as:

RðX; TÞ ¼ jX \ Tj
jTj ð11Þ

where X is the component’s spatial map and T is the DMN tem-
plate (Supplemental Fig. 1). The true positive rate was applied to
measure the similarity between the ICA-derived spatial map and
the DMN template (Supplemental Fig. 1). For both sparse repre-
sentation and ICA methods, the spatial map with the highest true
positive rate with the DMN template was selected as the DMN,
and the results are shown in Fig. 11. The mean true positive rate
of identifying DMN in our sparse representation of all 15 subjects
is 0.36 (0.30–0.49), while the average true positive rate for ICA
method is 0.27 (0.24–0.29). The detailed results for each subject
are shown in Table 2. Therefore, both qualitative (Fig. 11) and
quantitative (Table 2) results indicate that our sparse representa-
tion methods can more consistently and reliably identify DMN,
compared with the commonly-used ICA approach. Also, the sparse
representation method can identify a more complete map of DMN
than ICA. Our interpretation is as follows. As shown in Table 1,
those additional brain regions in the DMN mapped by our sparse
representation method are also involved in other network compo-
nents such as task related and anti-task related components, all of
which interact with each other and are not necessarily spatially
s for all 15 subjects in dataset 1, respectively. For each subject, the most informative
arse representation; right: ICA). The spatial maps were selected by calculating and
://mialab.mrn.org/software/gift/index.html), with a mean rate of 0.36 for sparse

ere converted to Z-transformed statistic maps using the default threshold value 0.5
from 0 to 10. (For interpretation of the references to color in this figure legend, the

http://mialab.mrn.org/software/gift/index.html


Fig. 12. (a) An example of the comparison between ground-truth and trained components on simulated data in terms of component similarity (left y-axis) and signal distance
(right y-axis). The x-axis indicates component IDs. (b) The same comparison with a series of levels of noise based on the same example in (a). The noise is added with
measures of SNR of 15 DB, 12 DB, 10 DB, 9 DB, 8 DB, and 7 DB.

Table 3
The histogram of numbers of network components among 24,000 candidates in the simulation.

Component similarity 1–0.99 0.99–0.95 0.95–0.9 0.9–0.8 0.8–0.6 0.6–0
Component number 22,255 1421 117 88 33 86

Signal distance 0–0.02 0.02–0.05 0.05–0.1 0.1–0.2 0.2–0.4 0.4–1
Component number 20,791 3037 70 22 23 57

Table 4
The selected task related component items (atom IDs shown here) of one subject using different settings of dictionary sizes in the dictionary learning procedure.

Dictionary size 300 310 320 330 340 350 360 370 380 390 400
Selected component IDs #165 #165 #165 #165 #165 #165 #165 #165 #165 #165 #165

#381 #381

Dictionary size 410 420 430 440 450 460 470 480 490 500
Selected component IDs #165 #165 #165 #165 #165 #165 #165 #165 #165 #165

#381 #381 #381 #381 #381 #381 #381 #381 #381 #381
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independent (Daubechies et al., 2009; Lee et al., 2011). Thus, those
additional overlapped regions in the DMN are difficult to be iden-
tified via the ICA method that assumes spatial independence of
the network components. The results in Fig. 11 and Table 2
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Fig. 13. The temporal and frequency characteristics of the network component #165 with different dictionary sizes (300, 350, 400, 450 and 500). For each row in the figure,
from the left to the right are: dictionary size and component index, time series signal of that component with overlaid stimulus curve (in yellow), the frequency spectrum of
that component, and the value of component scores, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 14. The spatial distribution patterns of network components #165 with different dictionary sizes (300, 350, 400, 450 and 500).
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demonstrated the effectiveness and accuracy of the proposed
sparse representation methods in uncovering intrinsic networks
(DMN in this work) in task-based fMRI data.

3.4. Validation by simulated data

In this section, the proposed sparse representation framework is
applied on simulated data with ground-truth to examine its reliabil-
ity, robustness and reproducibility. In our sparse representation
framework (Fig. 3), the whole-brain fMRI signals are factorized into
multiple network components with corresponding basis time series
signals. Thus, we adopt the previously factorized time series basis of
components as benchmark, and aggregate them together with a cho-
sen A matrix to generate simulated fMRI signals in the brain. Specif-
ically, we choose the A matrix from the factorization of one model
subject as the coefficient map ground truth. The 400 basis signal
components will be randomly selected from a total of 6000 trained
component signals of 15 subjects and then be used to compose the
network components of the simulated subject. Thus, we can gener-
ate the simulated whole-brain fMRI signals by:



Fig. 15. (a–c) Three identified task-related network components of a randomly selected subject in dataset 2. (d) The corresponding temporal time series patterns of the three
components in (a–c). (e) The corresponding frequency distribution of the components in (a–c). (f) The group-wise averaged statistical map of all task components from 10
subjects in the MNI space. (g) Group-wise activation detected by FSL FEAT.
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Data� ¼
X400

k¼1

Dik Ak ð12Þ

where Ak are the reference weight matrices of network components
from the certain A matrix we chose. Dik is a randomly picked signal
such that ik = random({1. . .6000}) and ip – iq for p – q. Such
simulation was performed 60 times with 4 times on the
components of each subject. By using the framework in Fig. 3 and
400 dictionary network components are obtained and then
compared with the 400 ground-truth components that were used
to generate the simulated whole-brain fMRI data. Specifically, the
Jaccard similarity coefficient (Jaccard, 1901) is used to measure
the similarity between the factorized reference weight matrices as
below:

JðA;BÞ ¼ jA \ Bj
jA [ Bj ð13Þ
where A, B are two spatial maps. The Sørensen distance (Cha, 2007)
is employed to measure the similarity between network component
time series signals.

Disðp; qÞ ¼
Pn

i¼1jpi � qijPn
i¼1jpij þ jqij

ð14Þ

where p; q 2 R1�N are two component signal vectors.
Afterwards, each newly obtained network component is com-

pared with the ground-truth components. The pair with the high-
est Jaccard similarity coefficient or the lowest Sørensen distance is
considered as the corresponding components and the similarity/
distance values are recorded for further statistical analysis. The
comparison result of one simulation is shown in Fig. 12a. More
simulation results are provided in Supplemental Fig. 11. It is evi-
dent that most of the pairs between uncovered components and
ground-truth have relatively high similarity (close to 1). Also, the
distance between corresponding signals are relatively low (close
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to 0). Notably, as highlighted by the black arrows in Fig. 12a, com-
ponents #12, #312, and #330 in this example have lower compo-
nent similarities and higher signal distances, meaning that the
online dictionary learning algorithm (Mairal et al., 2010) might
have difficulty in uncovering a very small portion of the network
components. For the 60 simulations, we counted the numbers of
obtained network components with different component similari-
ties/signal distances in Table 3. By taking those network compo-
nents with similarity to ground-truth lower than 0.8 or signal
distance to ground-truth higher than 0.05 as unsuccessful ones,
Table 5
The Ef and Ecorr of selected COIs of 10 subjects in the semantic decision making task fMRI

Selected COIs Sub.1 Sub.1 Sub.2 Sub.2 Su
#157 #264 #184 #386 #2

Ef 0.482 0.491 0.592 0.535 0.
Ecorr 0.473 0.503 0.659 0.547 0.

Sub.6 Sub.6 Sub.7 Sub.7 Su
#31 #194 #223 #384 #1

Ef 0.523 0.396 0.589 0. 580 0.
Ecorr 0.653 0.478 0.580 0.599 0.

Fig. 16. (a and b) Two identified task-related network components of a randomly selected
components in (a and b). (d) The corresponding frequency distributions of the componen
stimulus respectively. (e) The group-wise averaged statistical map of all task components
99.18% network components are successfully uncovered from the
simulated data, which is very high. This result suggests that the
online dictionary learning algorithm and the sparse representation
framework are reliable and robust in decomposing the aggregated
whole-brain fMRI signals into meaningful basis signals and refer-
ence weight matrices.

However, the above simulation is based on the ideal assump-
tion. In real data, noise should be taken into consideration. Hence,
we added Gaussian random noises to the above simulation to
investigate at which level of signal–noise ratio (SNR), the decom-
data.

b.3 Sub.3 Sub.4 Sub.4 Sub.5 Sub.5
35 #305 #164 #243 #253 #380

534 0.555 0.590 0.565 0.539 0.514
586 0.590 0.601 0.704 0.607 0.611

b.8 Sub.8 Sub.9 Sub.9 Sub.10 Sub.10
70 #196 #368 #374 #205 #388

685 0.587 0.527 0.576 0.516 0.670
727 0.474 0.527 0.635 0.721 0.723

subject in dataset 3. (c) The corresponding temporal time series patterns of the two
ts in (a and b). The white curves in (c and d) are temporal and frequency patterns of
from 26 subjects in the MNI space. (f) Group-wise activation detected by FSL FEAT.
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posing is effective and stable. In our experiment, the meaningful
signals are the ones reconstructed with D and A, and noises are
the reconstruction residuals. Bases on the example in Fig. 12a
(without noise), we simulated data with different levels of SNRs
as shown in Fig. 12b. The comparison with ground-truth is also
based on the component similarity and signal distance. As we
can see in Fig. 12b, with SNR > 10 DB, the reconstruction is quite
akin to the one without noise. While SNR < 10 DB, the reconstruc-
tion error becomes gradually dramatic. However, at the noise level
SNR = 8 DB, the component similarity is around 0.8 and signal dis-
tance is around 0.15, which is still acceptable. In our real data of
dataset 1, based on the settings in this paper, the SNR is around
10 on average. Thus this simulation provides evidence that our set-
tings are reliable in reconstructing stable networks.

3.5. Reproducibility study

A key parameter in the sparse representation framework in Sec-
tion 2.3 is the dictionary size (m in Fig. 3). In this section, we first
examine if/how the setting of dictionary size while performing the
online dictionary learning would affect the experimental results.
As an example, we repeated the methods in Sections 2.3 and 2.4
on one randomly selected subject in dataset 1 with different
Fig. 17. (a and b) Two identified anti-task network components of a randomly selected
components in (a and b). (d) The corresponding frequency distributions of the componen
stimulus respectively. (e) The group-wise averaged statistical map of all task component
dictionary sizes ranging from 300 to 500 with the interval of 10,
and the selected dictionary items corresponding to the task related
network components are listed in Table 4. We can see that the
component #165 was consistently selected among all of these
experiments and the component #381 was consistently selected
among all the experiments with dictionary size larger than 380.
For further verification, in Figs. 13 and 14, we visualized the tem-
poral, frequency and spatial characteristics of the selected corre-
sponding component #165, while the dictionary size is 300, 350,
400, 450 and 500, respectively. We can see that the selected com-
ponent #165 is consistent and reproducible across different
parameter settings with quite similar temporal, frequency and spa-
tial patterns. Notably, when the dictionary size is lower than 380,
our method only selected #165 as the COI. But when the size is
higher than 380, our method can consistently detect #381 as
COI. This is because the online dictionary learning method consid-
ers dictionary components accumulatively (Mairal et al., 2010).
Supplemental Fig. 12 visualized the selected anti-task component
#310 while the dictionary size is 350–500. Their temporal, fre-
quency and spatial patterns are also quite consistent.

Selection of the dictionary size is still an open question in the
machine learning field. Based on our experience, firstly, the dictio-
nary size should be larger than the lowest dimension size of the
subject in dataset 3. (c) The corresponding temporal time series patterns of the two
ts in (a and b). The white curves in (c and d) are temporal and frequency patterns of
s from 26 subjects in the MNI space. (f) Group-wise activation detected by FSL FEAT.



Fig. 18. (a–c) Identified default mode network components of three random selected subjects in dataset 3. (d) The group-wise averaged statistical map of all DMN
components from 26 subjects of dataset 3 in the MNI space.
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training data and much smaller than the highest dimension size,
e.g., in our experiment m > t, m� n. This guarantees that the dic-
tionary is over complete to reconstruct the data. Secondly, the dic-
tionary size determines the reconstruction residual, as well as the
SNR. As discussed in Section 3.4, if the SNR is not big enough, the
reconstruction could not be stable. So the dictionary size should
be big enough to satisfy certain level of SNR. But the dictionary
could neither be too big, which will contain redundant informa-
tion. Thus, our solution is to set the dictionary size which satisfy
t < m < 2t. As discussed in the last paragraph, the interested com-
ponents can be stably reconstructed in the certain range.

To further evaluate and validate the proposed methods, we
applied the sparse representation framework in Section 2.3 on
the dataset 2 in Section 2.2, and selected those task related compo-
nents from the learned dictionary based on the criteria in Sec-
tion 2.4. As an example, the spatial distribution patterns of three
selected task related components of one subject are visualized in
Fig. 15a–c. The group-wise averaged map of the selected task
related networks (Fig. 15f) among the 10 subjects is highly consis-
tent (the overlapped area accounts for 67.8% of our result and
73.6% of the results by FSL FEAT) with the group activation detec-
tion results (Fig. 15g) obtained by FSL FEAT that is based on GLM.
This result further demonstrates that the dictionary learning and
sparse representation methods in this paper can reliably uncover
meaningful brain networks and that this framework could poten-
tially serve as a novel, alternative approach to detecting fMRI acti-
vation, as mentioned in Section 3.2.

Also, the corresponding temporal and frequency characteristics
of these selected components in dataset 2 are shown in Fig. 15d
and e. It is apparent that the time series of these network compo-
nents well follow the external task stimulus curve (the white curve
in Fig. 15d). Also, the peak of the energy concentrations of these
components, which is around 0.022 Hz based on the frequency
domain analysis, is exactly the same as the theoretic input
frequency of the external stimulus, as calculated by the equation
below:

1
length of taskþ length of rest

� 1
TR
¼ 1

20þ 10
� 1

1:5
¼ 0:0222 Hz

ð15Þ

This result further demonstrates the effectiveness and accuracy of
the online dictionary learning methods (Mairal et al., 2010) in
extracting meaningful basis patterns for sparse representation of
whole-brain fMRI data. Quantitatively, the temporal and frequency
characteristics of the 20 selected example COIs from 10 subjects are
shown in Table 5. These experimental results further showed that
our sparse representation methods are robust and reproducible
across independent datasets with different paradigm designs.

3.6. Extended application on event-related fMRI data

In the field of neuroscience, event-related fMRI is another pop-
ular methodology, other than block design task fMRI, to analyze
brain activations or networks. There are challenges in analyzing
event-related fMRI data because neither the temporal pattern nor
the frequency distribution of the stimulus is designed in a fixed
fashion. Especially the frequency distribution of the event time ser-
ies could be more complicated. In this section, we extend the appli-
cation of our method to an open event-related fMRI dataset as
detailed in dataset 3 in Section 2.2. In our application, the Ecorr,j still
applies, but considering the complex frequency distribution, we
modified the energy function as:

Ef ;j ¼ corrðFSstimulus; FDjÞ

where FSstimulus is the frequency spectrum distribution curve of the
stimulus which is obtained by applying Fourier transform to the
stimulus time series and FDj is the frequency spectrum distribution
curve of the jth atom in dictionary D. In other words, we use the



Fig. 19. (a–c) Identified thalamus network components of three random selected subjects in dataset 1. (d) The group-wise averaged statistical map of all thalamus
components from 15 subjects of dataset 1 in the MNI space.

ID Temporal patterns Frequency patterns

Sub.1

Sub.2

Sub.3

-1

0

1

0 50 100 150 200 250 0

0.5

1

0.07 0.15 0.22 0.29

-1

0

1

0 50 100 150 200 250
0

0.5

1

0.07 0.15 0.22 0.29

-1

0

1

0 50 100 150 200 250
0

0.5

1

0.07 0.15 0.22 0.29

Fig. 20. The temporal and frequency patterns of the selected thalamus networks in Fig. 19a–c from dataset 1.
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correlation of the frequency spectrum to measure their similarity in
the frequency domain.

With this modified approach, the identified task-related net-
works from the event-related fMRI data are presented in Fig. 16.
Fig. 16a and b show the spatial distributions of two selected net-
works from one single subject. Their temporal patterns are quite
similar with the task event curve as shown in Fig. 16c. Meanwhile
the frequency spectra of the networks are also akin to the fre-
quency distribution of the stimulus (Fig. 16d). The group average
of the networks from 26 subjects is shown in Fig. 16e, which agrees
with the group-wise GLM result (Fig. 16f). In addition, the selected
anti-task networks and DMN networks are shown in Figs. 17 and
18. They are also meaningful and reliable. In particular, the task-
related networks and anti-task networks also agree with the
results reported in Kelly et al. (2008), Mennes et al. (2010) and
Mennes et al. (2011).
4. Discussion and conclusion

4.1. Co-activated networks

Brain regions or networks that are evoked by external stimulus
may react in different patterns even though they are all highly cor-
related with task design. This may be attributed to physical varia-
tions, e.g., different HRFs of different regions, however, it is also
likely that these variations across networks stem from their differ-
ent streams or different levels in the brain information flow, as
well as their interactions or communications. Thus, modeling brain
activations with a uniformed task design in traditional methods is
coarse. In our experiments, based on the temporal and frequency
criteria, multiple task-related networks are selected for most of
the subjects. From the inspection in Fig. 8, Supplemental Figs. 2,
4 and 5, we can find that the temporal and frequency patterns of
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the multiple networks are all in agreement with the stimulus
design, though noticeable difference can also be found among
them. Spatially, they perform distinct patterns with ratios of over-
laps in each single subject, however, they are all sub-regions of the
activations and their aggregation is very similar to the activation
pattern from the GLM method. Here we call them co-activated net-
works. Comparing with the model-driven method which only pro-
duces strength of activation, our data-driven framework provides a
new window to investigate how sub-networks could interact or
cooperate to complete a task in the brain. Although some of them
are not stable due to reasons such as parameter selection, but we
can still find very stable and dominant networks at the visual cor-
tex, superior/middle frontal gyrus, precentral gyrus, and superior
parietal lobe, which are associate with working memory processes.
4.2. Anti-task network and DMN

Previous studies (Fox et al., 2005; Fransson, 2005) have
reported that DMN tends to exhibit anti-task performance in task
fMRI scans. This point is supported in our study. As observed in
Table 1 and Supplemental Fig. 10, anti-task networks and DMNs
exhibit substantially high overlap rates. For some subjects, they
even have overlaid component IDs, e.g., for subject 1 anti-task net-
works include component #330 and #387, and the component
#387 is also identified as DMN. Meanwhile, in our experiments
based on three datasets, the anti-task networks are not limited to
DMN, i.e., there are more regions or sub-networks that exhibit
anti-task performance, especially when comparing group-wise
results in Figs. 9, 10, 17 and 18. From the perspectives of temporal
and frequency domains (Supplemental Fig. 9), our detected compo-
nents of DMNs have negative correlation but the strength is not as
high as the task ones. We can observe that the signal patterns of
DMN may involve multiple frequencies of fluctuation. It is essential
to point out that the selection of anti-task network is based on
temporal frequency analysis, while the identification of DMN is
based on spatial similarity. The final overlap of component IDs sug-
gests the effectiveness of both approaches. Also, this result pro-
vides a clue that a brain network could be profiled or
characterized in multi-domains, suggesting the data-driven
Fig. 21. Other networks detected in the working memory task dataset (for one randoml
dictionary learning and sparse coding methods are effective in
modeling brain networks.
4.3. Networks on thalamus

Based on the analyses of the three datasets, especially when
comparing the group-wise networks and group-wise GLM activa-
tions in Figs. 8, 15 and 16, it is easy to observe a common phenom-
enon that the task-related networks in our method do not include
the thalamus areas. In contrast, across all the three datasets, the
GLM based method determined the thalamus or part of it as activa-
tion. To explore this question, we used the similar method as that
for detecting DMN, that is, the thalamus template was employed to
filter all the components of each subject. Finally the most spatially
similar network was selected for each subject, as shown in
Fig. 19a–c and Supplemental Fig. 14(I–II) (a–c). From the figures,
we can see that in our method the thalamus was learned into a sin-
gle network, and the spatial patterns are quite consistent across
subjects and across datasets (Fig. 19d, Supplemental Fig. 14(I–II)
(d)). We further inspected the temporal and frequency patterns
of these selected thalamus networks. As visualized in Fig. 20 and
Supplemental Fig. 15, the temporal patterns and frequency pat-
terns are complicated and individualized. In particular, the ener-
gies of signals are distributed on multiple frequency bands. This
is in agreement with the thalamus’ complex functions of relaying
sensory and motor signals to the cerebral cortex. It is meaningful
that the GLM could detect task activations in the thalamus, how-
ever, the activation strength is not as strong as other task-evoked
areas. This may also be attributed to the complex functions that
the thalamus plays. In our view, the functions of thalamus could
not be straightforwardly described as strength of activations or
how much its fMRI signals follow the stimulus curve. More
detailed analysis should be carried out based on our data-driven
framework in the future.
4.4. Other detected networks

Brain function is complex, and thus simple models are not
likely sufficient in modeling all the networks that are active or
y selected subject). (a) Auditory network. (b) Motor network. (c) Ventricle network.
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Fig. 22. The corresponding temporal and frequency patterns of the networks in Fig. 21a–c from dataset 1.

Fig. 23. Visualization of three other network components (in addition to the three components in Fig. 1) on the inflated cortical surface. They are atom #20 (yellow), atom
#220 (blue) and atom #278 (red) extracted from the learned dictionary of the same subject in Fig. 1. (a–c) Show different views of representing the spatial distribution
patterns of the three components. (d) demonstrates the color scheme of different components fusion. For example, the regions belonging to both atoms #220 and #278 are
represented as cyan, and green stands for the overlapped areas of atoms #20 and #278. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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idle, directly or indirectly participating in the task performance.
With our data-driven strategy, the whole brain can be decom-
posed into hundreds of distinct networks with specific activity
patterns. These networks are not limited to task-related net-
works, anti-task networks, DMN and the thalamus. There are
also other networks that call for further new methods to charac-
terize them. For example, in the working memory task in which
the task is presented as vision stimulus, in addition to the task-
related networks we can also find auditory network and motor
network among the hundreds of networks as shown in
Fig. 21a and b. Their temporal activities are shown in Fig. 22a
and b. Some neuroanatomic areas can be also grouped into a sin-
gle network, such as the ventricle areas as shown in Fig. 21c and
Supplemental Fig. 16, the time series of which are shown in
Fig. 22c and Supplemental Fig. 17, respectively. Although we still
do not know if the BOLD activity of the ventricle network is
caused by motion noise or it is physically meaningful, our
method provides a new window to explore in the future. In
summary, our premise is that all these networks intrinsically
exist in the brain no matter what task the brain is performing;
however, in different tasks these networks may exhibit different
patterns of activities and interactions. In our future work, new
methods will be developed to characterize all these networks
and to model their interactions.
4.5. Conclusion

We have presented a novel computational methodology of rep-
resenting whole-brain fMRI signals via sparse coding and dictio-
nary learning. The basic idea is to aggregate all of fMRI signals
within the whole brain of one subject into a big data matrix, which
is factorized into an over-complete dictionary basis matrix and a
reference weight matrix via an online dictionary learning algo-
rithm. We then designed a computational framework for quantita-
tive characterization of the dictionary components in temporal,
frequency and spatial domains. The interesting result from this
work is that the decomposed atomic dictionary components in a
working memory task-based fMRI dataset, a semantic decision
making task-based fMRI dataset and a flanker event-related fMRI
dataset exhibit functionally meaningful spatial, temporal and fre-
quency patterns, as shown in the results sections. Our results not
only demonstrated the effectiveness of data-driven sparse repre-
sentation for task-based fMRI signals in identifying multiple func-
tional networks, but also revealed how these functional networks
contribute to the compositions of dozens of thousands of fMRI sig-
nals within the whole brain. The comparisons of the results by our
method with those by group-wise GLM and ICA methods, as well as
with the synthesized data with ground-truth, demonstrated the
validity, robustness, reproducibility and effectiveness of our meth-
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ods. In general, our work potentially provides a novel, alternative
window to examine the holistic functional activities of the brain.

Meanwhile, the methods and work in this paper can be further
enhanced and expanded in the following directions in the future. In
this paper, we have focused on the quantitative characterization of
spatial, temporal and frequency patterns of three well-known cat-
egories of dictionary atoms including the task-related, anti-task
related and default mode network components, as shown in Sec-
tion 3.2. It should be pointed out that there are many other poten-
tially important and meaningful dictionary network components
such as auditory network, motor network, and thalamus that
should be examined and characterized in the future. For instance,
Fig. 23 shows the spatial distributions of three other dictionary
components (the version on the original surface of Fig. 23 can be
found in Supplemental Fig. 13(II)). It is clear that those components
are spatially overlapping and temporally interacting with each
other. Quantitative description and characterization of those hun-
dreds of dictionary components across multiple individuals are
warranted to comprehensively understand and represent the func-
tional activities of the brain in the task-based fMRI data in the
future. Once successful, these well-characterized components can
be potentially used as functional network atlases for other brain
mapping applications in the future.

At the current stage, the sparse representation framework was
applied on each individual subject independently. Our experimen-
tal results have demonstrated the promising reproducibility and
robustness of the framework in which those COIs identified in dif-
ferent subjects can find reasonably good correspondences based on
their spatial, temporal and frequency characteristics (Section 3.2).
In the future, we plan to explore if/how the whole-brain fMRI sig-
nals from a group of subjects can be aggregated into one big data
matrix so that the dictionary atoms can be learned together and
interpreted across a population. In this case, the commonly shared
dictionary network components, such as the task related and anti-
task related components, might exhibit consistent functional
responses to the same stimulus and possess intrinsically estab-
lished correspondences across individuals. However, it would be
more challenging to interpret those intrinsic network components
since their temporal and/or frequency properties might exhibit
much more variable and heterogeneous patterns across individu-
als, as already shown in Supplemental Fig. 9. It is expected that
the spatial distribution templates, e.g., that in Supplemental
Fig. 1, might be an effective constraint to map those intrinsic net-
work components and we plan to explore such possibility for other
intrinsic networks (Fox and Raichle, 2007; Cohen et al., 2008; van
den Heuvel et al., 2008).

Our results in Section 3.2 has demonstrated that intrinsic net-
works such as the DMN (Fox and Raichle, 2007; Cohen et al.,
2008; van den Heuvel et al., 2008) are active in task performance
state and they can be successfully identified by our sparse repre-
sentation methods. Our results also demonstrated that the intrinsic
networks are spatially overlapping with other task related and
anti-task related network components. However, the functional
roles of these intrinsic networks and the interactions among them
(e.g., Fig. 10) and task/anti-task related networks (e.g., Figs. 8 and
9), as well as their temporal dynamics, during task performance
are not sufficiently characterized at the current stage, which
should be extensively explored in the future. In this sense, novel
computational and statistical approaches to modeling network-
level functional interactions and dynamics (Li et al., 2014) should
be developed, validated and employed. We envision that the eluci-
dation of such complex functional interaction and dynamics pat-
terns within large scale networks, such as the hundreds of basis
components in the learned dictionary in this work, would signifi-
cantly advance our understanding of the functioning mechanisms
of the human brain.
At the current stage, our methods were applied on the working
memory task fMRI dataset, semantic decision making task fMRI
dataset and the flanker event-related fMRI dataset. In the future,
we plan to apply the methods on other publicly available task-
based fMRI datasets such as the recently released Human Connec-
tome Project datasets. Then, we will be able to represent and char-
acterize potentially many other functional networks under
different task performances. In addition, we plan to investigate
the possibility of applying the proposed sparse representation
framework on resting state fMRI datasets and potentially charac-
terize those uncovered intrinsic networks. We predict that once
the collection of those well-characterized functional networks
are replicated and validated in independent datasets by different
research labs, they can be used as comprehensive atlases of func-
tional brain activities for many brain mapping applications, such
as measuring functional connectivities and interactions during dif-
ferent task performances, in healthy human brains. In a longer
term, those methodologies can be then applied in different brain
disorders and conditions to potentially reveal the functions and
dysfunctions of many brain disorders such as Alzheimer’s disease
and Schizophrenia.
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