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ABSTRACT 

As brain imaging data such as fMRI is growing explosively, 

how to reduce its size but not to lose much information 

becomes a pressing problem. To address this problem, this 

work aims to represent resting state fMRI (rs-fMRI) signals 

of a whole brain via a statistical sampling based sparse 

representation. Specifically, we improve the online 

dictionary learning and sparse coding algorithm by adding a 

sampling step before the whole-brain sparse representation. 

Our comparison experiments demonstrated that this 

sampling-enabled sparse representation method can speed-

up by ten times without losing much information. In 

particular, our results showed that anatomical landmark-

guided sampling is substantially better than statistical 

random sampling in reconstructing concurrent functional 

brain networks from the Human Connectome Project (HCP) 

rs-fMRI data. 

 

Index Terms— DTI, resting state fMRI, sampling, 

DICCCOL, resting state networks. 

 

1. INTRODUCTION 

With the advancement of neuroimaging technologies, the 

spatial and temporal resolution of brain imaging data has 

become higher and higher. For instance, the ongoing Human 

Connectome Project (HCP) [1] released its rs-fMRI data 

with around 240,000 signals of 1200 time points. This fMRI 

big-data imposes significant challenges on the extraction 

and representation of meaningful information for brain 

mapping. In response to this need, recently, sparse 

representation has been explored to represent whole-brain 

fMRI signals [2, 3] and to reconstruct concurrent network 

activities, e.g., the recently developed holistic atlases of 

functional networks and interactions (HAFNI) system [3], 

and promising results have been reported [3]. However, 

these methods still cost significant amount of time and 

memory space to learn a dictionary for one brain’s single 
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fMRI scan because the input is a huge 4-D matrix with a  

number of over 10
6
 voxels (several Giga bytes). The 

computing time cost thus would significantly hamper the 

wider application of sparse representation method to larger 

scale fMRI datasets. Therefore, this motivates us to 

investigate efficient data reduction methods, that is, 

sampling methods in this paper, to extract the representative 

signals without losing much information but can 

significantly speed-up.  

        In this paper, we examined two rs-fMRI signal 

sampling methods: one is anatomical landmark-guided 

sampling by using the dense individualized and common 

connectivity-based cortical landmarks (DICCCOL) system 

[5], and another is statistical random sampling. 

Experimental results showed that DICCCOL-guided 

sampling is substantially better than statistical random 

sampling in reconstructing concurrent functional brain 

networks from the HCP rs-fMRI data. In general, sampling 

2% out of the 240,000 whole-brain signals is sufficient to 

learn an accurate dictionary (in comparison with that using 

all of the whole brain signals) for sparse representation and 

10 times speed-up can be achieved.        

 

2. METHODS 

2.1. Overview 

 
Fig.1. The overview of our computational framework. The 

sampling step (step 1) could include DICCCOL-based 

sampling, statistical random sampling, or no sampling. In 

any of these sampling methods, the whole brain signals (S) 

will be used for sparse representation (Step 3).      

Our framework of signal sampling for sparse representation 

of resting state fMRI data is summarized in Fig.1. First, we 

sampled the rs-fMRI signal of the whole brain based on 

DICCCOL [5] which includes a set of consistent landmarks 
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of the brain. For the purpose of comparison and evaluation, 

we also sampled randomly and used the whole brain’s 

signals (no sampling). Then the sampled signals were used 

as an input matrix to learn an over-complete dictionary for 

sparse representation of whole brain’s signals, based on 

which we can identify the RSNs. We described the theory in 

detail about why we designed these three steps in Section 

2.3 and Fig.2(b). Furthermore, we compared and evaluated 

the temporal dictionary atoms and their spatial maps 

generated by the DICCCOL-guided sampling, random 

sampling, and no sampling, respectively. The details of the 

dataset and preprocessing are referred to [1, 3, 5, 6]. 

2.2. Dictionary learning and sparse representation 

To map the resting state networks (RSN) of human brain, 

we adopt a dictionary learning and sparse coding method [2, 

3] from the machine learning and pattern recognition fields. 

Briefly, it can be considered as a matrix factorization 

problem, given the rs-fMRI signal matrix of whole brain 

      . Here, each column represents an rs-fMRI signal 

time series and S can be factorized as S=D×A, where 

         is the dictionary, and         is called 

coefficient matrix. Each column in D is an atom of a learned 

basis dictionary D, and each rs-fMRI time series    can be 

represented as a linear combination of atoms of dictionary, 

that is,         , where    is a coefficient column in A 

which gives the sparse weights for the combination. 

Meanwhile, each row of the A matrix represents the spatial 

volumetric distributions that have references to certain 

dictionary atoms. In this work, the factorization problem 

was resolved by the publicly available effective online 

dictionary learning and sparse coding method [4], which 

aims to learn a meaningful and over-complete dictionary of 

functional bases        (m>t, m<<n) for the sparse 

representation of S, and then learn an optimized A matrix 

for spare representation of rs-fMRI time signal using the 

obtained dictionary D. More details are referred to [2-4]. 

        Finally, the fMRI signal matrix from a single subject’s 

whole brain (named no sampling method in this paper) will 

be represented by a learned dictionary matrix and a sparse 

coefficient matrix. Here, we also assume, as in previous 

studies [2, 3], that the atoms of each voxel’s fMRI signal are 

sparse and the neural integration of those atoms is linear [7].  

2.3. DICCCOL-based sampling for sparse 

representation  

It has been shown that DICCCOL [5] provided a set of 

consistent cortical landmarks which have corresponding 

structural and functional features across subjects. Based on 

these landmarks, first, we extracted the 2-ring surface 

neighborhood of all DICCCOL landmarks (shown in 

Fig.2(a)), and then picked up the rs-fMRI signals on these 

neighborhood voxels and aggregated them into a signal 

matrix S’.  In the second step, as similarly done in Section 

2.2, we employed the online dictionary learning and sparse 

coding method [4] to learn the dictionary D’ and the 

corresponding coefficient matrix A’, that is S’=D’×A’. 

Finally, to obtain the sparse representation of whole brain 

signals, we performed the sparse coding method again on 

the whole brain signals matrix S using the learned D’ in this 

step, that is S=D’ ×A, as shown in Fig.2(b). Because 

learning D and A are two separate processes in the online 

dictionary learning and sparse coding algorithm [4], we can 

combine the last two steps as one-time dictionary learning 

(obtaining D’) and one-time sparse coding (obtaining A), as 

shown in Fig.1. So it does not add additional computation in 

the algorithm. 

              
(a)                                                  (b) 

Fig.2. (a) 2-ring neighborhood of DICCCOL (orange patches). (b) 

Dictionary learning based on sampled signals (top row) and 

separate sparse representation of whole-brain signals (bottom row). 

        In addition to DICCCOL-based sampling, we also 

performed no sampling (using whole-brain signals, that is, 

S=D×A) and statistical random sampling (now S’ denotes 

the randomly sampled signals in Fig.2 (b)) for the purpose 

of comparison. To conduct a fair comparison, we selected 

the same parameters for all of these three sampling methods, 

that is, the number of dictionary atom is 400, the sparsity 

regularization parameter λ=0.07, and set the batch size times 

iteration divided by the number of signals equals 4, and etc.   

Finally, we mapped each row in the A matrix back to 

the brain volume, thus functional network components can 

be visualized and characterized on brain volumes. These 

network components are then identified as the known RSNs 

in the following section. 

2.4. Identifying and evaluating RSNs by matching with 

templates  

To determine and evaluate the resting state networks, we 

defined a metric named as Spatial Matching Ratio for 

checking the spatial similarity between the identified RSNs 

and the RSN template. In this work, we adopted the ten 

well-defined RSN templates provided in the literature [8]. 

For the rs-fMRI data of each subject, we identified each 

RSN by matching its spatial weight map with each specific 

RSN template. Those network components with the 

maximum Spatial Matching Ratio (SMR) were selected as 

RSNs. The Spatial Matching Ratio is defined as follows: 

   (   )  
|   |

|   |
 

where   is the spatial map of network component and   is 

that of the RSN template.  |   |  and |   |  are the 

numbers of voxels in both X and T and in X or T, 

respectively. Notably, before the comparison of X and T, we 

registered all X images to T via the linear registration 

method of FSL FLIRT. 
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3. RESULTS 

By applying the DICCCOL sampling, random sampling and 

no sampling [3] on ten randomly selected subjects from the 

HCP datasets according to the procedure shown in Fig.1, we 

generated their atomic dictionaries and corresponding 

coefficient matrices. For random sampling, we sampled the 

same number of points as DICCCOL-based sampling for the 

fairness of comparison and evaluation. Their results are as 

follows. 

3.1 Comparison of temporal dictionary atoms 
We identified the RSNs by matching them with the ten well-

defined RSN templates [8]. Those with the highest spatial 

matching ratio were selected out of the 400 network 

components as the RSNs. For the DICCCOL-based 

sampling, random sampling and whole brain signal without 

sampling, we performed the same identification procedure 

to find the most matched RSNs with the templates. Then we 

traced back to find the ten corresponding dictionary atoms 

associated with the ten identified RSNs. Thus we can 

compare the time series differences of the derived 

dictionaries by different sampling methods, as shown in 

Fig.3. We quantitatively computed the Pearson correlation 

coefficients between the dictionaries by these sampling 

methods, as listed as in Table 1(a).  

 
                     atom 0                                       atom 1 

 
      atom 2                                       atom 3 

 
atom 4                                       atom 5 

 
atom 6                                       atom 7 

 
                   atom 8                                       atom 9 

 

Fig.3. The time series signals of the 10 dictionary atoms from 

DICCCOL-based sampling (blue curve), random sampling (green 

curve) and no sampling methods (red curve, as a baseline for 

comparison) for a randomly selected subject. The blue curve 

represents the time series signal generated by 2-ring neighborhood 

of DICCCOL. The green curve represents the time signals 

generated by random sampling with the same number of points as 

DICCCOL sampling. It is clear that the blue curve is more similar 

to the red curve than the green one. For the reason of limit space, 

only 300 time points are shown here as examples. 

Table 1. (a) The Pearson correlations of 10 corresponding 

dictionary atoms between the two sampling methods and no 

sampling method. (b) The SMR of 10 corresponding identified 

RSNs from the two sampling methods and no sampling method.  

“D2” represents 2-ring DICCCOL sampling and “R2” represents 

sampling randomly the same number of points as the 2-ring 

DICCCOL sampling. “W” in (b) means using whole brain’s signals 

(no sampling). 

(a)                                                            (b) 

 D2 R2   W D2 R2 

atom0  0.79 0.23  RSN0 0.52 0.54 0.22 

atom1  0.64 0.22  RSN1 0.35 0.30 0.17 

atom2  0.74 0.23  RSN2 0.35 0.34 0.15 

atom3  0.74 0.25  RSN3 0.36 0.31 0.16 

atom4  0.52 0.23  RSN4 0.35 0.19 0.13 

atom5  0.77 0.23  RSN5 0.35 0.29 0.15 

atom6  0.66 0.25  RSN6 0.37 0.34 0.17 

atom7  0.57 0.24  RSN7 0.26 0.24 0.20 

atom8  0.64 0.23  RSN8 0.29 0.27 0.14 

atom9  0.72 0.25  RSN9 0.33 0.32 0.24 

mean 0.678 0.236  mean 0.356 0.318 0.174 

 

From Fig.3 and Table 1(a), we can see that the 

dictionaries from DICCCOL-based sampling have 

substantially higher similarity with those of no sampling, 

compared with statistical random sampling. It is 0.678 vs 

0.236 for the averaged 10 dictionary atoms. Therefore we 

can conclude that the dictionaries obtained by DICCCOL-

based sampling are much more representative of the whole 

brain’s functional activities information. This result also 

suggests the DICCCOLs cover key functional areas of the 

brains, offering supporting evidence of the effectiveness and 

validity of the DICCCOL system [5].  

3.2 Comparison of spatial RSNs 

We identified 10 RSNs by matching each network 

component with that of 10 RSN templates, and performed 

this same step for the three sampling methods, respectively. 

Then we compared their spatial maps of the RSNs and the 

SMRs with 10 templates, as shown in Fig.4 and Table 1(b).  

Due to space limit, we did not show the results from the 

random sampling because we already know its less 

effectiveness from Table 1(a). Instead, we listed its SMRs 

with templates in Table 1(b). We can see from Fig. 4 that 

the RSNs from whole brain’s signals and DICCCOL-based 

sampling were identified very well. Also, the DICCCOL-

based sampling has almost the same results as that by no 

sampling method, which demonstrates that the rs-fMRI 

signals of DICCCOL-based sampling can well represent the 

rs-fMRI signal of the whole brain in terms of learning sparse 

dictionaries. It has also been demonstrated in Table 1(b) that 

the SMR from DICCCOL-based sampling and whole 

brain’s signals have very close values (0.318 vs 0.356). 
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However, the random sampling method only has the much 

lower SMR of 0.174. It should be noted that the SMR values 

in Table 1 are relatively low because we computed group-

averaged RSNs from only 10 subjects, so it is reasonable to 

see that they have some differences with the templates. 

RSN0    RSN1  

RSN2    RSN3  

RSN4    RSN5  

RSN6    RSN7  

RSN8    RSN9  

Fig.4. The spatial maps of RSNs by DICCCOL sampling, no 

sampling and the templates. In each panel of RSNs, the first row is 

the RSN template, the second row represents the RSNs identified 

from whole brain’s signals and the third one represents those 

identified from 2-ring DICCCOL sampling. These RSNs are all 

group-averaged results from 10 randomly selected subjects. 

3.3 Comparison of computing time 

Additionally, we evaluated and compared the computing 

time cost for dictionary learning, which is the major part of 

the online dictionary learning and sparse coding [4]. The 

dictionary learning step costs more time than the sparse 

coding step (which is fixed), and the difference of time cost 

heavily depends on the number of rs-fMRI signals given 

that the size of dictionary is fixed as 400. So we just 

computed and compared the time cost of dictionary learning. 

Each whole brain has about 2.4×10
5
 rs-fMRI signals, and a 

2-ring DICCCOL-based sampling resulted in 4825 signals.  

The averaged time cost of no sampling, DICCCOL 

sampling and random sampling for 10 subjects are 321.9s, 

31.7s and 82.1s, respectively. It is obvious that DICCCOL-

based sampling is approximately 10 times faster than no 

sampling without sacrificing much accuracy for sparsely 

representing the whole brain’s rs-fMRI signals. 

 

4. DISCUSSION AND CONCLUSION 

In this paper, we presented and evaluated a novel signal 

sampling strategy for efficient sparse representation of 

resting state fMRI data. We quantitatively and qualitatively 

compared three sampling schemes and experimental results 

demonstrated that the DICCCOL-based sampling signals 

exhibit much better performance than statistical random 

sampling for identifying RSNs, and have almost the same 

high performance as no sampling method. Also, the signal 

sampling method achieved around ten times speed-up. Thus, 

we can conclude that DICCCOL-based sampling is able to 

well represent the whole brain’s rs-fMRI signals with low 

costs. In the future, we plan to apply and evaluate it on task-

based fMRI datasets, and learn multiple task-evoked and 

resting state networks simultaneously from a group of 

subjects. 
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