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ABSTRACT 

 

Identification of concurrent spatially overlapping functional 

networks and understanding of their mechanisms of jointly 

realizing the total brain function have been important yet 

challenging problems. In this work, we have applied a data-

driven sparse representation framework to learn a dictionary 

consisting of multiple network components and their 

associated weight coefficients from a given fMRI dataset. 

Then we analyzed the network component composition at 

the voxel level by correlating component weights to the 

characteristics of regions with strong involvements in 

multiple components, which are defined as functionally 

highly heterogeneous regions (HHR). Consequently, the 

spatial overlap of HHRs obtained across multiple tasks of a 

given subject is defined as the multiple-demand (MD) 

system. By applying the proposed framework on the 

recently publicly released Human Connectome Project 

(HCP) task fMRI dataset, we have obtained reproducible 

HHR and MD systems that concentrated on the frontal and 

parietal cortex. Interestingly, the spatial distribution of those 

MD regions has been found to be highly correlated with the 

cortical folding and structural connectivities, revealing 

closely related brain structural and functional architectures. 

 

Index Terms—Functional network, dictionary learning, 

multiple-demand system, structural-functional relationship 

 

1. INTRODUCTION 

In the field of functional neuroimaging analysis, there has 

been increasing literatures investigating the spatial and 

temporal characteristics of functional networks in brain. It 

has been well recognized that brain function is mediated by 

functionally distinct yet spatially overlapping networks [1] 

and the brain’s functional integration will require “large 

scale neuronal dynamics sharing a substantial anatomical 

infrastructure” [2]. Recently, multiple-demand (MD) system 

with general-purpose machinery and highly heterogeneous 

functional profiles has been located at the frontal and 

parietal cortex using various methodologies [3, 4]. 

However, the fact that certain brain regions can be part 

of multiple functional networks makes them difficult to be 

identified by traditional analysis approach (i.e. activation 

detection by the general linear model (GLM)) [5, 6]. In this 

work, we propose a sparse representation framework to 

identify the MD system in task fMRI (tfMRI) data. In the 

first step, tfMRI signals over the whole-brain of an 

individual are decomposed into hundreds of over-complete 

dictionary components using dictionary learning method 

along with the weight vectors that are the corresponding 

regression coefficients [9-10]. In the second step, the weight 

vectors obtained by the dictionary learning on each tfMRI 

dataset of each subject are examined to investigate the 

component composition of each region in the brain. Regions 

with multiple high values in their weight vectors, indicating 

high involvement in multiple functional network 

components, are defined as highly heterogeneous regions 

(HHR) of that task. Then the multiple demand (MD) system 

is defined by the consistently occurring HHRs over multiple 

tasks of the same subject.  
The proposed framework has been applied on the 

dataset provided by the recently publicly released Human 

Connectome Project (HCP) Q1 dataset [7]. The results 

revealed two important characteristics of the identified MD 

system: 1) MD systems identified over multiple subjects 

show a similar spatial pattern that mainly concentrates on 

the parietal cortex as well as scattered around the frontal 

cortex; 2) Interestingly, by analyzing the cortical folding 

patterns and DTI-derived fiber density on the MD system, 

we have found that there exists a strong and groupwise 

consistent relationship between the data-driven functionally-

derived MD system with the cortical folding patterns and 

the structural connectivity profile.  

 

2. MATERIALS AND METHODS 

2.1. Data acquisition and pre-processing 

We have applied the proposed model on the Human 

Connectome Project tfMRI dataset consisting of 68 subjects 

scanned in 7 tasks. The scan length varies between tasks 

from 2 to 5 minutes (176 volumes to 405 volumes). The 

acquisition parameters are: 90×104 matrix, 220mm FOV, 72 

slices, TR=0.72s, TE=33.1ms, flip angle = 52°, BW =2290 

Hz/Px, in-plane FOV = 208 × 180 mm, 2.0 mm isotropic 

voxels. The preprocessing pipeline includes motion 

correction and slice time correction. The signals were then 

normalized to zero mean and unit standard deviation. More 

details of the experiment design, behavior measurements 

and activation maps can be found at [7]. Then linear 

registration using FSL FLIRT was performed on the fMRI 

dataset to DTI space for the later cortical surface wrapping. 



2.2. Dictionary learning on fMRI data 

The pre-processed brain functional fMRI signals S, which is 

a (T×N) matrix consisting of T volumes and N voxels for 

each task each subject are then used as the input for the l-1 

norm regularized dictionary learning scheme. Using a 

publicly available online dictionary learning method 

SPAMS [9], the fMRI signals on N voxels are modeled as 

the linear combinations of the learned dictionary D with 

weight matrix α, by solving the optimization problem: 
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refrains the optimization from getting the trivial solution. D 

and α will be alternatively solved based on gradient descent 

algorithm in the optimization procedure, and the 

optimization is converged when the change of overall error 

is smaller than a given value ε (set as 1% in this work). The 

learned dictionary D consists of K (T<K<<N) number of 

components, each is a time series with the same length T 

serving as the basis for sparsely regressing the input whole-

brain fMRI signals. Correspondingly, fMRI signal on the i-

th voxel is regressed by those K basis with the 

corresponding weight vector α
i
. In this work, the component 

number K and the regularization parameter λ were all 

determined experimentally (K=400, λ=0.01) [9-10]. It has 

been tested that within a reasonable range, the parameters 

will not affect the model performance much.  

 

 
Fig.1. Illustration of the dictionary learning/sparse representation 

framework and the spatial overlaps across network components. (a) 

Summed absolute weight value of the K components learned from 

the emotion task fMRI dataset of a randomly selected subject, 

indicating their overall area of activation in the brain. Task related 

and resting-state network components have been highlighted by 

various colors; (b) Spatial activation map and temporal time series 

pattern (pink curve) of a specific (187th) component, as well as the 

paradigm design of the emotion task (black block); (c) Spatial 

activation map and temporal activation pattern (green curve) of 

another (264th) component; (d) Three task-evoked components 

(including the 187th), plus three resting network components 

(including the 264th), mapped on the cortical surface together. The 

cortical surface is color-coded by the color bar on the left, which is 

correspondent to the colors used in (a). 

As an example, a brief illustration of the components 

obtained by the dictionary learning on emotion data of a 

randomly selected subject is given in Fig. 1. There are two 

important facts revealed by their spatial and temporal 

characteristics: 1) The components, which are obtained from 

a totally data-driven approach, are neuroscientifically 

meaningful, as shown in Fig. 1(b) and (c). 2) There is 

substantial spatial overlap across different components, even 

between task-evoked and resting network components, 

which are traditionally regarded as independent from each 

other. Such observation, especially regarding the component 

overlap regions in the brain, motivated us to perform more 

in-depth analysis of the network component composition at 

voxel level to investigate their detailed characteristics. 

 

2.3. Identification of Functionally Highly Heterogeneous 

Regions (HHR) and the Corresponding Multiple-

Demand (MD) System 

By examining the voxel-by-voxel weight vectors α
i
 in the 

learned dictionary results, we have found that there are three 

types of voxels in the whole brain, considering the fact that 

the signal of each voxel has been normalized: 1) Voxels 

with low weights of all basis, indicating that fMRI signals 

defined on them can not be well-regressed by the dictionary. 

This might be mainly due to l-1 norm regularization on the 

cost function which enables larger reconstruction error. 2) 

Voxels with high weight for a few bases but low weights for 

other basis. As shown in Section 2.2, some of those voxels 

can be possibly correlated to task stimulus. 3) Voxels with 

high weight for multiple components. The collection of such 

voxels are the main focus of this work, which we called as 

functionally highly heterogeneous regions (HHR) because 

of their complex component composition , defined by the 

following equation: 

⩝ Voxel 𝑖, 𝑖 ∈ 𝐻𝐻𝑅 𝑖. 𝑓. 𝑓. ∑(|𝛼𝑖| > 𝑇1) > 𝑇2% 

Specifically, we count the number of components 

whose absolute weight value is higher than a given 

threshold T
1
 on each voxel; then we sort all the voxels by the 

counting value, and take the top T
2
% of the voxels as HHR. 

Thus T
1
 will affect the composition of the region (larger T

1 

will prefer voxels with larger absolute value of α and vice 

versa), while T
2
 will affect the size of it. It should be noted 

that the thresholding method is used here because we have 

observed that the number of components with weight greater 

than any given threshold over the whole brain is roughly 

normally distributed, thus the identification of HHR and 

MD system will not be biased by the threshold value used. 

An illustrative example of HHR and its relationship with T
1
 

and T
2
 is given in Figs. 2 (a)-2(b).  



 
Fig.2. Illustration of the relationships between weight vector, HHR 

and MD system in the proposed framework. (a) Visualization of 

HHR of emotion task from a randomly selected subject mapped on 

cortical surface; (b1) Weight vector αi from a voxel (marked by 

blue dot) with a few high values, thus it will be excluded from 

HHR but might be included with a lowered T2; (b2) Weight vector 

from a voxel from HHR with several high values; (b3) Weight 

vector from a voxel (marked by blue dot) with no high values, thus 

it will be very unlikely to be part of HHR; (c) HHRs obtained from 

other 6 tasks from the same subject; (d) MD system obtained from 

the thresholded summation of the HHRs from 7 tasks (>=4). 

 

After identifying HHRs for all 7 tasks on a given 

subject, those HHRs are added together as they are in the 

same space. Thus we can obtain a new map of the brain on 

which each voxel is assigned a “multiple-demand” (MD) 

value ranging from 0 to 7 (as similarly defined in the 

literature [3, 4]), measuring the frequency the voxel being 

included in the HHR as shown in Fig. 2. As there are 7 tasks 

in the HCP fMRI dataset, the collection of voxels with MD 

values no smaller than 4 (more than half of 7 tasks) is 

considered as MD system of that subject in this work.  

 

3. EXPERIMENTAL RESULTS 

3.1. Identified HHR and MD System 

As described in section 2.3, given an fMRI dataset 

consisting of multiple tasks, the HHR and the resultant MD 

system will be identifiable with thresholding values T1 and 

T2. By applying our proposed framework on the HCP tfMRI 

dataset using various T1 and T2 combinations, we have 

obtained the dictionary learning results and the 

corresponding HHR/MD system of 68 subjects with 7 tasks. 

In this section, we will use the results obtained from the 

emotion task from a randomly-selected subject as an 

example to discuss how the parameter setting will affect the 

results, while the conclusion is similar across all subjects. 

As shown in Fig. 3, increasing level of T1 (threshold on 

weights when counting the components on each voxel) will 

slightly move the identified HHR from a scattered spatial 

distribution over the whole brain to the concentration on 

parietal and frontal cortices, consistent with the spatial 

distribution of MD system in previous literature reports [3, 

4]. On the other hand, the spatial distribution of HHR and 

MD system from an increased level of T2 (threshold on the 

number of voxels included in the HHR) will also be more 

likely to locate on the parietal cortex.  

 

 

Fig.3. (a)-(e) Visualization of identified HHR of emotion task from 

the same subject as in Fig. 1 using different T1 values of 0, 0.1, 0.2, 

0.3 and 0.4. (f)-(j) Visualization of MD system of emotion task 

using different T1 values of 0, 0.1, 0.2, 0.3 and 0.4. The 

visualization in Fig. 2(a) and (d) uses T1=0.4. 

 
Fig.4. (a)-(e) Visualization of identified HHR of emotion task from 

the same subject as in Fig. 1 using different T2 values of 80%, 

84%, 88%, 92% and 96%. (f)-(j) Visualization of identified MD 

system of emotion task using different T2 values. 

 

3.2. Relationship between MD System, cortical folding 

pattern and white-matter Fiber Density 

The spatial pattern of the MD systems across multiple 

subjects show an interesting and consistent characteristic, as 

shown in Figs. 5 (a1), (b1) and (c1), where it is largely 

located on the gyral regions of the cortical surface. In 

addition, because of the close relationship between the 

folding pattern and the structural connectivity profiles of the 

brain [8], the MD system also tends to have high DTI-derive 

fiber density, as shown in Figs. 5 (a3), (b3) and (c3), where 

the fiber density information is obtained using similar 

method as in [8]. To quantitatively investigate such 

relationship, we have used the principal curvature 

(illustrated in Fig. 5 (a2), (b2) and (c2)) as an indicator for 

the folding pattern, where a positive principal curvature 

value of a unit region indicates that region is on gyrus and 

negative value indicates it is on sulcus. Then the numbers of 

gyrus/sulcus are counted over the unit regions defined by 

MD system. Finally we used the ratio between gyrus count 

and sulcus count as a measurement of where the MD system 

locates. On the other hand, the DTI-derived fiber density 

provides a natural measurement for characterizing the 

structural connectivity profile of the MD system, where we 

averaged the fiber density across each unit region in the MD 

system, the averaged results over 20 subjects are in table 1.  

 
Fig.5. (a1) Visualization of MD system from the same subject as 

used in Fig. 1; (a2) Same surface color-coded by the principal 

curvature value; (a3) color-coded by the fiber density; (b1)-(b3), 

(c1)-(c3) Similar visualizations from other two random subjects;  



 

The groupwise MD system is more likely to be located 

on the gyrus (all rates greater than 1.3, comparing with 

whole-brain average rate of 1.13) with higher fiber density 

(comparing with whole-brain average density=3.95). The 

trend of the table shows a higher T
1
 threshold will result in 

more gyrus-located MD system, indicating regions that are 

more intensively involved in multiple networks are more 

likely to be on gyral area. A higher T
2
 threshold will also 

identify MD system with larger gyrus/sulcus rate, indicating 

regions that are involved in larger number of networks 

components are more likely to be on gyrus. Similar trend is 

also observed in the relationship between MD system and 

fiber density distribution. In summary, the group-wise 

consistent result reveals a unanimously close relationship 

between brain functional integration, cortical folding pattern 

and structural connectivity. While we have been aware that 

the effect of different signal-to-noise ratio of the imaging 

between gyrus and sulcus can be affecting the MD system 

identification as well as the fiber tracking results, we believe 

the functional segregation between gyrus/sulcus revealed by 

the results of this work is neuroscientifically meaningful as 

supported by previous reports on the concentration of fibers 

on gyrus in human fetus brains [11], as well as the 

difference of axonal connectivity and gene expression 

between cerebellum gyri and sulci in rodent brains [12].  

 
Table 1. Top: Mean fiber density value and its standard deviation 

of the MD system identified with different thresholding parameter 

combinations. Bottom: Average gyrus/sulcus rate and its standard 

deviation of the MD system, arranged in a similar fashion. 

Fiber density 

T1\T2 80% 84% 88% 92% 96% 

0.000 3.7±0.5 3.8±0.6 4.1±0.8 4.3±1.1 4.7±1.7 

0.050 4.0±0.4 4.1±0.5 4.4±0.8 4.7±1.1 4.9±1.6 

0.100 4.2±0.5 4.4±0.7 4.6±1.1 4.9±1.4 5.0±1.7 

0.150 4.3±0.6 4.5±0.9 4.8±1.2 5.0±1.6 5.1±1.7 

0.200 4.4±0.6 4.7±0.9 4.9±1.3 5.2±1.6 5.2±1.8 

Gyrus/Sulcus rate 

T1\T2 80% 84% 88% 92% 96% 

0.000 1.3±0.1 1.7±0.0 2.0±0.1 2.5±0.2 2.9±0.6 

0.050 1.4±0.1 2.0±0.0 2.3±0.1 2.5±0.2 3.0±0.6 

0.100 1.5±0.1 2.1±0.1 2.3±0.2 2.5±0.3 3.1±0.5 

0.150 1.6±0.1 2.2±0.1 2.5±0.2 2.6±0.3 3.2±0.5 

0.200 1.7±0.1 2.3±0.1 2.4±0.2 2.6±0.3 3.1±0.5 

 

4. CONCLUSION 

In this work, we have proposed a computational framework 

for deriving the functionally highly heterogeneous regions 

and the corresponding multiple-demand system by 

component compositions. The result by applying the 

framework on HCP tfMRI datasets showed consistent 

spatial distribution of the MD system across subjects. The 

MD system has been found more likely to locate at gyral 

regions with higher fiber density, revealing close 

relationships between brain function and structure, 

especially the possibility that cortical gyral regions can be 

the functional hub and multi-functioning center of the brain. 
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