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ABSTRACT 

 
Although there is growing recognition and interest in the 

dynamic organization of the brain’s functional architecture, 

the characterization and systematic analysis of such 

dynamic patterns are still largely under-investigated. In this 

work, we proposed a novel multi-scale dynamic dictionary 

learning framework which decomposes the input fMRI 

signals into functional networks via sliding/growing time 

window network analysis approach based on a fast 

dictionary learning method. As the functional networks are 

obtained at every possible temporal position and multiple 

scales within the framework, links across functional 

networks are then defined by the direct or indirect 

correlations between their temporal variation patterns. The 

identified links between networks are then concatenated into 

network continuums, which are the dynamic combinations 

of functional networks at various temporal segments. By 

applying the proposed framework on the task fMRI data 

from the Human Connectome Project (HCP) Q1 release, we 

have found that the network continuum has the capability of 

capturing the dynamic transition patterns of functional 

networks and providing an intuitive characterization of the 

network stationarity across time scales. 

Index Terms—fMRI, dynamic functional network, 

dictionary learning. 

 

1. INTRODUCTION 

In the field of functional magnetic resonance imaging 

(fMRI) analysis, there has been growing recognition and 

interest in discovering and modeling the dynamic 

organization patterns of the brain’s functional architectures 

from various perspectives, including studies on dynamic 

spatial/temporal patterns of fMRI signals [1] and on the 

dynamics of functional connectivity [2-4], as well as 

resting-state functional networks [13]. In addition, previous 

successes in applying component-based analysis on fMRI 

data, including spatial independent component analysis 

(sICA) [5], temporal independent component analysis 

(tICA) [6] and network decomposition by dictionary 

learning methods [7-9], have enabled us to analyze 

functional brain dynamics based on the temporal 

variation/organization pattern of the components identified 

from those methods. As such functional networks have been 

shown to have the capability of revealing the underlying 

functional brain behavior and organization patterns [6, 9], an 

intuitive yet largely unresolved question is whether the 

networks are consistent across different time periods and/or 

on different time scales. Specifically, in most of current 

studies, the networks were identified from the whole fMRI 

time series, which imposes an implicit assumption that the 

networks’ spatial distributions are constant over time [10]. 

However, as indicated by the simultaneous spatial/temporal 

partitioning results on fMRI data [2], as well as in the 

sliding-time window sICA study [11], functional networks 

including the well-known default mode network (DMN) 

have time-varying spatial distribution patterns.  

In order to address the above questions, in this work we 

have proposed a multi-scale dynamic dictionary learning 

framework to identify functional networks from input fMRI 

signal at various temporal positions and scales. Then based 

on the obtained functional networks at discrete temporal 

segments, we have developed a generalized correlation 

measurement to define the network continuum, which aims 

at collecting the persistent yet evolving networks over 

different temporal positions and scales. By applying the 

proposed framework on the motor task fMRI (tfMRI) 

dataset from the Human Connectome Project (HCP) Q1 

release, we have found that certain functional networks will 

maintain a relatively stable spatial and temporal pattern 

across different time scales/positions, while other networks 

were more transient, quickly diminishing in other temporal 

segments. In general, the proposed framework offers a 

breakdown of the fMRI signals into a series of functional 

networks at various temporal positions/scales, while 

network emerged at any temporal segments will be tracked 

throughout the time to obtain its transition map. 

  

2. MATERIALS AND METHODS 

2.1. Data acquisition, preprocessing and model overview 

In this study we used the tfMRI dataset consisting of 68 

subjects from the HCP Q1 release during the motor task for 

testing and validation. Each individual dataset contains 284 

volumes of tfMRI data defined on around 140k volumetric 

voxels. The details of image acquisition parameters, 

preprocessing steps and reports from behavior studies of the 

HCP Q1 release dataset can be refereed to [12]. An 

overview of the proposed framework is shown in Fig. 1, 



where the fMRI data will be first temporally segmented at 

each possible temporal position/scale (a), followed by 

dictionary learning on each temporal segment (b), then 

dictionary learning results (i.e. identified functional 

networks) will be linked to networks at other segments by 

generalized correlation (d), and the linked networks will 

finally be collected into the network continuum (e). 

 

 
Figure 1. Illustration of the algorithmic flow of the proposed 

framework. (a): Segmentation of the input signal X into multi-scale 

temporal segments. (b): Dictionary learning applied on each 

temporal segment X, with results α (loading coefficients) and D 

(dictionaries). (c): Learned dictionaries used for the continuum 

inference, targeting the first temporal segment D<1, 1> (blue). (d): 

Generalized correlation calculated between the target network and 

all other networks. Carrier network used during the correlation are 

shown as grey blocks. (e): Network continuum C summarized from 

the generalized correlation. Blocks with highlighted text indicate 

the presence of linked networks associated with the target network. 

 

2.2. Nested dictionary learning on fMRI time series data 

Similar to the previous works of utilizing dictionary learning 

methods for fMRI data analysis [7-9], in this study, we aim 

to learn a set of dictionaries D with sparsity-constrained 

loading coefficients α from the input signal matrix X 

consisting of N number of time series with the length T: 

min
𝐷𝑖,𝑗𝜖ℝ𝑇×𝐾,𝛼𝑖,𝑗𝜖ℝ𝐾×𝑁 

1

2
||𝑋𝑖,𝑗 − 𝐷𝑖,𝑗𝛼𝑖,𝑗||𝐹 + 𝜆||𝛼𝑖,𝑗||1 

where K is the predefined dictionary size, and λ is the 

parameter used to tune the balance between regression 

accuracy and loading sparseness. In this work, K and λ were 

determined experimentally (K=400, λ=0.08), which are the 

same across all subjects and temporal segments. The 

optimization is regularized by the l-1 norm (i.e. sum of the 

absolute value of all elements) of matrix α, thus adding the 

sparsity constraint on the number of dictionaries used to 

represent the input signal. Within the proposed framework, 

the dictionary learning results are termed as “functional 

networks”, where the learned dictionary characterizes the 

temporal variability pattern of the network and the 

corresponding loading coefficients characterize the spatial 

distribution of the network. An example of applying the 

dictionary learning method on the whole time series of an 

individual’s motor tfMRI data is shown in Fig. 2. 

 
Figure 2. Four functional networks obtained by performing 

dictionary learning method on the whole time series of motor 

tfMRI data of the sample subject. The time series (from D matrix) 

of each network is shown on the top, with four slices of its spatial 

distribution pattern (from α matrix) shown at the bottom. 

 

Different from most of previous static component-based 

analysis methods [5-9], in this work, we have applied the 

dictionary learning method on temporal segments of the 

fMRI data with various positions and scales over the whole 

time span, essentially applying a sliding/growing window 

approach for the dictionary learning method. Specifically, 

for the input data X with length of T, we will define two 

window size parameters b0 and b1, where b0 is the minimal 

length for all segments, and b1 is the size for window 

sliding/growing. Then a series of temporal segments with 

unique identifier tuple <s, w> will be extracted: 

∀𝑠 ∈ [1,
(𝑇 − 𝑏0)

𝑏1
] , ∀𝑤 ∈ [1,

(𝑇 − 𝑏0)

𝑏1
] : 

𝑋〈𝑠, 𝑤〉 = 𝑋[(𝑠 − 1) ∗ 𝑏1 + 1, … , (𝑠 − 1) ∗ 𝑏1 + 1 + 𝑏0 + (𝑤 − 1)
∗ 𝑏1 ], 

    subject to: (𝑠 − 1) ∗ 𝑏1 + 1 + 𝑏0 + (𝑤 − 1) ∗ 𝑏1 ≤ 𝑇  
In this way, we can completely break down the input data 

into temporal segments with every possible positions/scales 

combination. For example, X<1, 1> is the temporal segment 

at the starting point of the input data with minimal scale 

(b0). Then for each temporal segment X<s, w>, we will 

obtain the functional network with temporal pattern D<s, w> 

and spatial distribution α<s, w> by the dictionary learning 

method introduced above, which solely represents the major 

functional variation patterns of the brain at the specific time 

period identified by the tuple <s, w>. It should be noted that 

as each set of functional networks were learned individually, 

there is no correspondence between networks learned from 

different temporal segments, even though these segments 

are consecutive or enfolding. In this way, we can transform 

the original fMRI time series defined on volumetric space 

into a series of dynamic combination of functional 

networks. In this work, b0 is set to 50 and b1 is set to 20 

based on the paradigm design of the motor task. The 

dynamic transition pattern of each functional network 

emerged at a given period will then be tracked.  

 

2.3. Construction of functional network continuum 

In this work, the functional brain organization dynamics are 

characterized by the temporal coherence between functional 

networks obtained at different temporal positions and/or 

scales. For functional networks at the same temporal 

position, the coherence can be directly inferred by the 
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correlation value between their time series. Specifically, for 

each functional network identified from a given temporal 

segment (i.e., a fixed temporal position and window length), 

termed “target network” in this manuscript, shown as the 

blue curve in Fig. 3(a), we will first iterate through all the 

functional networks identified from the same position but 

different window lengths to locate the network(s) with a 

similar time series to the target network, termed “linked 

network”, shown as the red curves in Fig. 3(a). As the 

lengths of the time series are different between the target 

and the linked networks, we trimmed the longer time series 

to the shorter length when calculating the correlation value. 

To link functional networks that are temporally away 

from each other (i.e., with different temporal positions), we 

have defined an indirect correlation measurement, called 

“carrier correlation”, utilizing a third network identified 

from a longer temporal segment which covers both of the 

target and the linked networks. If the dictionary of the 

carrier network is similar to the dictionaries of both the 

target and the linked network at their respective temporal 

segments, the two networks are then regarded as indirectly 

correlated. In the top two panels in Fig. 3(b), the partially 

overlapping target (blue) and linked network (red) are joined 

by the carrier curve (grey dotted). In the bottom two panels 

in Fig. 3(b), although the target and linked networks are 

temporally far away, it is still possible to identify the 

appropriate carrier network to correlate them. The 

generalized correlation function Γ between the m-th atom in 

D<si, wj> and the n-th atom in D<su, wv> is: 
𝛤(𝑚, 〈𝑠𝑖 , 𝑤𝑗〉, 𝑛, 〈𝑠𝑢 , 𝑤𝑣〉)

= {

𝑐𝑜𝑟𝑟(𝐷〈𝑠𝑖 , 𝑤𝑗〉𝑚, 𝐷〈𝑠𝑢 , 𝑤𝑣〉𝑛), 𝑖𝑓 𝑆𝑖 = 𝑆𝑢

max (∀𝑝∈[1,𝐤], min (
𝑐𝑜𝑟𝑟(𝐷〈𝑠𝑖 , 𝑤𝑗〉𝑚, 𝐷〈𝑠𝑖 , 𝑠𝑢 + 𝑤𝑣 − 𝑠𝑖〉𝑝),

𝑐𝑜𝑟𝑟(𝐷〈𝑠𝑢 , 𝑤𝑣〉𝑛 , 𝐷〈𝑠𝑖 , 𝑠𝑢 + 𝑤𝑣 − 𝑠𝑖〉𝑝)
))

 

Note that without loss of generality, we have assumed si<su 

and (si+wj)<(su+wv). The Γ function tries to locate the best 

carrier functional network from the dictionary learned at the 

temporal segment with the position of Si and window length 

of Su+Wv-Si, while the generalized correlation is defined by 

the smaller of the two correlations: correlation between 

carrier network and targeting network, and the correlation 

between the carrier network and the linked network.  

 
Figure 3. Illustration of the linked functional networks at the same 

temporal position but different window lengths by direct 

correlation (a), and the linked functional networks at different 

temporal positions and window lengths by indirect correlation (b). 

Carrier networks are shown as grey dotted curves.  

 

After obtaining the generalized correlation between the 

targeting networks with each of the other functional 

networks over all possible temporal positions/scales by the 

multi-scale dynamic dictionary learning, we will apply a 

constant threshold T on the correlation values to determine 

the set of linked networks related to the target network. The 

thresholding results are then concatenated into a collection, 

termed “network continuum”, to characterize the presence 

of linked networks at various temporal positions/scales with 

regard to the target network. An illustrative diagram of the 

procedure of obtaining continuum is shown in Fig. 1(d-e). 

For the target network at position Si with window length wj, 

its corresponding continuum collects the information of the 

presence of the linked network in all temporal segments as 

well as the carrier network to link them, where all links are 

effectively characterized by the generalized correlation 

function Γ. In this way, the quasi-stable brain state transition 

patterns can be captured by the continuum consisting of the 

functional network flows.  

 

3. RESULTS 

3.1. Results from multiscale dynamic dictionary learning 

By applying the multi-scale dynamic dictionary learning 

method introduced in 2.2 on the tfMRI dataset with motor 

task scan from the HCP Q1 release, for each subject we 

have obtained 78 sets of functional networks characterizing 

the functional brain activities during various temporal 

segments at different scales. The 78 sets were organized into 

12 groups according to their temporal starting positions. As 

we used the constant dictionary size parameter (K=400) 

across all temporal segments in all subjects, each set 

contained 400 functional networks characterizing major 

temporal and spatial functional organization patterns during 

a specific period. Illustration of the dynamic dictionaries 

learned at three different positions/scales from one sample 

subject is shown in Fig. 4. An important premise of the 

results from the dictionary learning method is that the 

spatial/temporal characteristics of the functional networks 

learned from the given fMRI signals can holistically cover 

the major functional fluctuations of the brain within that 

period, as shown in literature reports such as [8] and [9]. As 

shown in Fig. 4, results with intriguing spatial/temporal 

patterns can be obtained even on very short time scales. By 

analyzing the temporal (correlation) and spatial (overlapping 

rate) similarities between the atlases obtained from the 

whole time series and the networks obtained from the 

temporal segments, we have found that over 50% of the 

task-evoked and over 30% of the resting-state networks are 

presented in the networks learned at each temporal segment. 

 

 
Figure 4. Time series (left) and spatial map (right) of the 5 

functional networks with intriguing spatial patterns obtained at 

temporal position 1, window size 270 (top panel); temporal 

position 81, window size 190 (middle panel); temporal position 41, 

window size 90 (bottom panel), from the sample dataset. 
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3.1. Functional networks continuums  

Based on the multi-scale dynamic dictionary learning results 

on each individual dataset, we further inferred the functional 

network continuums based on the method introduced in 2.3. 

Using all of the 400 networks at <1, 1> (i.e. start of the 

time) as target networks, the corresponding resulting 

network continuum is visualized in Fig. 5, with one sample 

target network with strong temporal stability (highlighted in 

blue) analyzed in details. It can be observed from the linked 

networks (b-c) within the continuum derived from the 

sample target network that: 1) the time series of the target, 

linked and the carrier networks were highly correspondent 

and were characterizing the same functional variation 

pattern, which validated the effectiveness of the generalized 

correlation method used in this framework; 2) The spatial 

patterns of the linked networks within the obtained 

continuum were similar yet varying with time, which cannot 

be detected by static component-based analysis methods, 

showing the necessity of a dynamic framework in this paper. 

Further, continuum varies significantly across columns (i.e., 

functional networks), indicating the considerable difference 

of temporal stability between functional networks.   

 
Figure 5. Top panel: visualization of the network continuum matrix 

from the sample individual dataset. Middle panel: Time series of 

the functional network highlighted by the blue block in the 

continuum matrix. Bottom panel: Spatial patterns of the networks. 

 

4. CONCLUSION 

In this paper we have shown that the proposed multi-scale 

dynamic dictionary learning framework can effectively 

identify and track the functional network dynamics as the 

network continuum. With the promising results achieved by 

the framework, the quantification of the time-varying 

network spatial patterns within the continuum and the 

modeling of the evolving functional activated regions will 

be studied in details in our future work. Also, as the current 

framework identifies sets of functional networks from the 

temporally-overlapping segments independently, another 

important potential algorithmic improvement is to take the 

possible autoregressive behavior of the network’s temporal 

variation pattern into account, thus establishing a formalized 

temporal relationship across the functional networks. 
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