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Abstract. Cortical gyrification is one of the most prominent features of human
brain. A variety of studies in the brain mapping field have demonstrated the
specific structural and functional differences between gyral and sulcal regions.
However, previous studies of gyri/sulci function analysis based on the fMRI
data assume the temporal stationarity over the entire fMRI scan, while the
possible temporal dynamics of gyri/sulci function is largely unknown. We
present a computational framework to model the functional dynamics of cortical
gyri and sulci based on task fMRI data. Specifically, the whole-brain fMRI
signals’ temporal segments are derived via the sliding time window approach.
The spatial overlap patterns among functional networks (SOPFNs), which are
crucial for characterizing brain functions, are then measured within each time
window via a group-wise sparse representation approach. Finally, the temporal
dynamics of SOPFNs distribution on gyral/sulcal regions across all time win-
dows are assessed. Experimental results based on the publicly released Human
Connectome Project task fMRI data demonstrated that the proposed framework
identified meaningful temporal dynamics difference of the SOPFNs distribution
between gyral and sulcal regions which are reproducible across different sub-
jects and task fMRI datasets. Our results provide novel understanding of func-
tional dynamics mechanisms of human cerebral cortex.
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1 Introduction

Cortical gyrification, which is highly convoluted as convex gyri and concave sulci, is
one of the most prominent characteristics of human brain [1]. A variety of studies have
reported the specific structural/functional difference between gyral and sulcal regions.
For example, from structural perspective, it is reported that the termination of
streamline white matter fiber bundles derived from diffusion tensor imaging or high
angular resolution diffusion imaging concentrate on gyrus in both human fetus and
adult brains, as well as chimpanzee and macaque brains [2—4]. From functional per-
spective, a recent study reported that the functional connectivity based on resting state
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functional magnetic resonance imaging (rsfMRI) data is strong between gyral-gyral
regions, weak between sulcal-sulcal regions, and moderate between gyral-sulcal
regions [5]. Another study demonstrated that the task-based heterogeneous functional
regions derived from task fMRI (tfMRI) data locate significantly more on gyral regions
than on sulcal regions [6].

Although significant progresses have been achieved in exploration of structural/
functional difference between gyral and sulcal regions, a potential limitation is that
previous studies of gyri/sulci function analysis based on the fMRI data (e.g., [5, 6])
assume the temporal stationarity over the entire fMRI scan, i.e., the functional mea-
surement is performed over the entire fMRI scan, while the possible temporal dynamics
of gyri/sulci function has been largely unknown. Neuroscience studies have suggested
that the function of the brain is dynamic both spatially and temporally [7]. That is, the
dynamically changing functional interactions between different cortical regions mediate
the moment-by-moment functional switching in the brain [7]. Recent studies based on
fMRI data also demonstrate that brain undergoes dynamical changes of functional
connectivity [8]. In short, the investigation of possible functional dynamics difference
between gyral and sulcal regions is crucial for understanding functional dynamic
mechanisms of human cerebral cortex.

As an attempt to address the abovementioned limitation, in this work, we propose a
computational framework to model the functional dynamics of cortical gyri and sulci
based on task fMRI data. Firstly, the whole-brain fMRI signals’ temporal segments are
derived via the widely used sliding time window approach. Secondly, the spatial
overlap patterns among functional networks (SOPFNs), which characterize the brain
regions that are involved in multiple concurrent neural processes under specific task
performance and has been demonstrated crucial in depicting brain functions [9, 10], are
measured within each time window via the proposed group-wise sparse representation
approach. Finally, based on the SOPFN distribution on gyral/sulcal regions within each
time window, the temporal dynamics of SOPFN distribution on gyral/sulcal regions
across all time windows are assessed. We hypothesize that there is functional dynamics
(which is characterized by temporal dynamics of SOPFN distribution in this work)
difference between cortical gyral and sulcal regions. Given the lack of ground-truth in
brain mapping, we argue that the reproducibility across different subjects and tasks is a
reasonable verification of the identified temporal dynamics difference of SOPFN dis-
tribution between cortical gyral and sulcal regions.

2 Materials and Methods

2.1 Data Acquisition and Pre-processing

The recently publicly released HCP (Q1 release) grayordinate tfMRI data [11]
including 64 subjects and 7 task designs (emotion, gambling, language, motor, rela-
tional, social, and working memory) were used in this work. The tfMRI acquisition
parameters and task designs are referred to [11]. Pre-processing of the tfMRI data was
referred to [10]. Note that all subjects have the same number (64984) of ‘grayordinates’
(cortical surface vertices) [11] which have reasonably precise correspondences across
subjects for group-wise analysis.
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2.2 tfMRI Signals’ Temporal Segments Extraction

The temporal segments of whole-brain tfMRI signals are firstly extracted for each
subject as illustrated in Fig. 1. Specifically, for subject i, the tfMRI signals of whole-
brain grayordinates were extracted, normalized to zero mean and standard deviation
of 1, and aggregated into a signal matrix X;eR”" with ¢ tfMRI time points and
n grayordinates (Fig. 1a). The sliding time window approach, which has been widely
and effectively applied for functional brain temporal dynamics analysis (e.g., [8]), is
then adopted and defined in Eq. (1) to segment X; into a series of consecutive temporal
segments X" eR™" within the time window w; which starts at time point #; and has
unified window length [:

X" ={Xll;<q<y+l5=1,.(t—-1+1)} (1)

where X! is the value of g-th row of X; at time point g. There are (r — [+ 1) time
windows in total for each subject.

Fig. 1. tfMRI signals’ temporal segments extraction. (a) The cortical surface and whole-brain
tfMRI signal matrix X; of subject i. The tftMRI signal of an example grayordinate (cortical vertex)
is shown and highlighted by the blue frame. (b) Examples of extracted two consecutive temporal
segments X;” and X;”*' (highlighted by yellow and blue frames, respectively).

2.3 SOPFN Identification via Group-Wise Sparse Representation
of tfMRI Signal Temporal Segments

Based on the extracted tfMRI signals’ temporal segments within each time window, we
identify the SOPFN within each time window following the two major steps. First, we
identify meaningful group-wise consistent functional networks across different subjects
within each time window via a group-wise sparse representation approach. Second, we
measure the SOPFN based on the identified functional brain networks within each time
window.

The dictionary learning and sparse representation framework has been demon-
strated to be efficient and effective in identifying concurrent functional brain networks
from tfMRI signals [12, 13]. As illustrated in Fig. 2a, considering a group of I subjects,
the temporal segment matrices X;” at time window w; of all subjects are arranged into a

big matrix X"/eR™"™D X" is then represented as an over-complete dictionary matrix
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Fig. 2. (a) The illustration of group-wise sparse representation of temporal segments of a group
of subjects. (b) An example identified group-wise consistent functional network via mapping a
specific row (highlighted by red) of p*i back onto the cortical surface.

D"ieR™™ (m is the dictionary size, m > [ and m < (n x I)) and a sparse coefficient
weight matrix o'/ eR™* (nx1) using an effective online dictionary learning algorithm [14].
In brief, an empirical cost function considering the average loss of regression to n x [
temporal segments is defined as

by A1 i 1 , . .
Fua(D") S ——% min 2 [lx’ — Do [[5 + 2oy | (2)
k

—1 % €

where /;-norm regularization and A are adopted to trade-off the regression residual and
sparsity level of oc,v:j. x,V:’ is the k-th column of X"i. To make the coefficients in o

comparable, we also have a constraint for k-th column d,:vj of D"i as defined in Eq. (3).

The whole problem is then rewritten as a matrix factorization problem in Eq. (4) and
solved by [14] to obtain D"/ and o"/.

cl {D%R’X”’s.t.v k=1,..md") d" < 1} (3)
; Loow W Wi |2 Wi
I 5 e = Doy [[5 + Alloy ||y 4)
D“JC,OCWJE]RMX("XI) 2

Since the dictionary learning and sparse representation maintain the organization of
all temporal segments and subjects in X"/, the obtained «"/ also preserve the spatial
information of temporal segments across I subjects. We therefore decompose «"/ into
I sub-matrices o, ..., 0, eR™" corresponding to I subjects (Fig. 2a). The element (7,
s) in each sub-matrix represents the corresponding coefficient value of the s-th gray-
ordinate to the r-th dictionary in D"/ for each subject. In order to obtain a common
sparse coefficient weight matrix across I subjects, we perform r-test of the null
hypothesis for (r, s) across I subjects (p-value < 0.05) similar as in [15] to obtain the
p-value matrix p"ieR™*" (Fig. 2b), in which element (r, s) represents the statistically
coefficient value of the s-th grayordinate to the r-th dictionary across all I subjects. p"i
is thus the common sparse coefficient weight matrix. From a brain science perspective,
d,f" (k-th column of D) represents the temporal pattern of a specific group-wise
consistent functional network and its corresponding coefficient vector p,V:’ (k-th row of
p"7) can be mapped back to cortical surface (color-coded by z-score transformed from
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p-value) (Fig. 2b) to represent the spatial pattern of the network. We then identify those
meaningful group-wise consistent functional networks from pZi (k=1, ..., m) similar
as in [10]. Specifically, the GLM-derived activation maps and the intrinsic networks
templates provided in [16] are adopted as the network templates. The network from p,v:j
with the highest spatial pattern similarity with a specific network reference (defined as
J(S,T) =|S NT|/|T|, S and T are spatial patterns of a specific network and a template,
respectively) is identified as a group-wise consistent functional brain network at w;.

Once we identify all group-wise consistent functional brain networks at w;, the
SOPFN at w; is defined as the set of all common cortical vertices g; (i = 1..64984)
involved in the spatial patterns of all identified functional networks [9, 10]:

Vy, = Vgi s.t. g belongs to all networks at w; (5)

2.4 Temporal Dynamics Assessment of SOPFN Distribution
on Gyri/Sulci

Based on the identified SOPFN at time window w; in Eq. (5), we assess the SOPFN

distribution on cortical gyral/sulcal regions at w;. Denote the principal curvature value
30 o .

20,8 €8 \which is provided in HCP

<0, g; esulci

data [11], the SOPEN V, on gyral and sulcal regions is represented as

of cortical vertex g; (i = 1..64984) as pcurvgi{

Vilgyri = V8i 5.1 8 € Vi, pcurvg, 20, and Vo ue; = Vgi 5.1, gi € Vi, peurvg, <0,
respectively. Note that Vi, =V, o + Vi jsuiei- We further define the SOPEN distri-
bution percentage at w; as Py gy = }wa|gy,,-,’/ |ij| for gyri and P | =
|ij‘sulci| /|ij.‘ for sulci, where |.| denotes the number of members of a set and
Py \gyri + Pylsutci = 1.

Finally, to assess the temporal dynamics of SOPFN distribution on gyral/sulcal
regions, we define Pgyi = | Py gyris Py fgvris ..,ij|gy,,}. as a (t—1I1+1) dimensional
feature vector representing the dynamics of SOPFN distribution percentage across all
(t—1+1) time windows on gyri. Similarly, we define Py, = [Pwl isutci> Py |sulcis -+
Py |sutci] for sulci.

3 Experimental Results

For each of the seven tfMRI datasets, we equally divided all 64 subjects into two
groups (32 each) for reproducibility studies. The window length / was experimentally
determined (I = 20) using the similar method in [8]. The values of m and 4 in Eq. (4)
were experimentally determined (m = 50 and A = 1.5) using the similar method in [13].
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3.1 Group-Wise Consistent Functional Networks Within Different Time
Windows

We successfully identified group-wise consistent functional networks within different
time windows based on methods in Sect. 2.3. Figure 3 shows the spatial maps of two
example identified functional networks within different time windows in one subject
group of emotion tfMRI data. We can see that for each of the two networks (Figs. 3b—
¢), albeit similar in overall spatial pattern, there is considerable variability of the spatial
pattern across different time windows compared with the network template. Quanti-
tatively, the mean spatial pattern similarity J defined in Sect. 2.3 is 0.69 £ 0.10 and
0.36 £ 0.06 for the two networks, respectively. This finding is consistent between two
subject groups for all seven tfMRI datasets. The spatial pattern variability of the same
functional network across different time windows is in agreement with the argument
that there is different involvement of specific brain regions in the corresponding net-
works across different time windows [7].

Task design 1

Task design 2

(b)TwW #1 TW #2 TW #3 TW #4 TW #5 TW #6 Entire time
TW #7 TW #8 TW #9 TW #10 TW #11 TW #12 GLM '
!l I I template
(©) rw #1 TW #2 TW #3 TW #4 TW #5 TW #6 Entire time H

TW #7 TW #8 TW #9 TW #10 TW #11 TW #12 e l
ow

template

Fig. 3. Two example group-wise consistent functional networks within different time windows
in one subject group of emotion tfMRI data. (a) Task design curves across time windows (TW) of
emotion tfMRI data. 12 example TWs are indexed. Three different TW types are divided by black
dashed lines and labeled. TW type #1 involves task design 1, TW type #2 involves task design 2,
and TW type #3 involves both two task designs. The spatial patterns of (b) one example
task-evoked functional network and (c) one example intrinsic connectivity network (ICN) within
the 12 example TWs are shown.

3.2 Temporal Dynamics Difference of SOPFN Distribution on Gyri/Sulci

We identified the SOPFN based on all identified functional networks using Eq. (5) and
further assessed the SOPFN distribution on cortical gyral/sulcal regions within each
time window. Figure 4 shows the mean SOPFN distribution on gyri and sulci across
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TW type 2 TW type 3

gyri sulci
(.

Fig. 4. The mean SOPFN distribution on gyral (G) and sulcal (S) regions across different time
window types in the two subject groups of emotion tfMRI data. The common regions with higher
density are highlighted by red arrows. The two example surfaces illustrate the gyri/sulci and are
color-coded by the principal curvature value.

Group 2

S

different TW types in emotion tfMRI data as example. We can see that albeit certain
common regions (with relatively higher density as highlighted by red arrows), there is
considerable SOPFN distribution variability between gyral and sulcal regions across
different time windows. Quantitatively, the distribution percentage on gyral regions is
statistically larger than that on sulcal regions across all time windows using
two-sampled t-test (p < 0.05) for all seven tfMRI datasets as reported in Table 1.

Table 1. The mean ratio of SOPFN distribution percentage on gyri vs. that on sulci across all
time windows in the two subject groups of seven tfMRI datasets.

Emotion | Gambling | Language | Motor | Relational | Social | WM
Group 1 | 1.47 1.60 1.46 1.32 | 1.59 1.46 | 1.67
Group 2 | 1.45 1.55 1.38 1.33 | 1.49 147 |1.66

Finally, we calculated and visualized Pgy,; and Py,.; representing the dynamics of
SOPEN distribution percentage across all time windows on gyri and sulci, respectively
in Fig. 5. It is interesting that there are considerable peaks/valleys for the distribution
percentage on gyri/sulci which are coincident with the specific task designs across the
entire scan, indicating the temporal dynamics difference of SOPFN distribution
between gyral and sulcal regions. These results indicate that gyri might participate
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Fig. 5. The temporal dynamics of SOPFN distribution percentage on gyri (green curve) and
sulci (yellow curve) across all time windows in the seven tfMRI datasets shown in (a)-(g),
respectively. The task design curves in each sub-figure are represented by different colors. Y-axis
represents the percentage value (*100 %).

more in those spatially overlapped and interacting concurrent functional networks
(neural processes) than sulci under temporal dynamics. It should be noted that the
identified temporal dynamics difference of SOPFN distribution between gyral and
sulcal regions (Fig. 5) is reasonably reproducible between the two subject groups and
across all seven high-resolution tftMRI datasets. Given the lack of ground truth in brain
mapping, the reproducibility of our results is unlikely due to systematic artifact and
thus should be a reasonable verification of the meaningfulness of the results.

4 Discussion and Conclusion

We proposed a novel computational framework to model the functional dynamics of
cortical gyri and sulci. Experimental results based on 64 HCP subjects and their 7
tfMRI datasets demonstrated that meaningful temporal dynamics difference of SOPFN
distribution between cortical gyral and sulcal regions was identified. Our results pro-
vide novel understanding of brain functional dynamics mechanisms in the future. We
will investigate other potential sources of differences that are observed in the results in
the future. We will apply the proposed framework on resting state fMRI data and more
tfMRI datasets, e.g., the recent 900 subjects’ tfMRI data released by HCP, to further
reproduce and validate the findings.
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