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Abstract Gene coexpression patterns carry rich informa-

tion regarding enormously complex brain structures and

functions. Characterization of these patterns in an unbi-

ased, integrated, and anatomically comprehensive manner

will illuminate the higher-order transcriptome organization

and offer genetic foundations of functional circuitry. Here

using dictionary learning and sparse coding, we derived

coexpression networks from the space-resolved anatomical

comprehensive in situ hybridization data from Allen

Mouse Brain Atlas dataset. The key idea is that if two

genes use the same dictionary to represent their original

signals, then their gene expressions must share similar

patterns, thereby considering them as ‘‘coexpressed.’’ For

each network, we have simultaneous knowledge of spatial

distributions, the genes in the network and the extent a

particular gene conforms to the coexpression pattern. Gene

ontologies and the comparisons with published gene lists

reveal biologically identified coexpression networks, some

of which correspond to major cell types, biological path-

ways, and/or anatomical regions.

Keywords Gene coexpression network � Sparse coding �
Transcriptome

Introduction

Gene coexpression patterns carry rich information about

enormously complex cellular processes (Brown et al. 2007;

Eisen et al. 1999; Grange et al. 2014; Lee et al. 2004;

Oldham et al. 2006; Peng et al. 2007; Stuart et al. 2003).

Previous studies have shown that genes displaying similar

expression profiles are very likely to involve in the same

transcriptional regulatory program (Allocco et al. 2004;

Mody et al. 2001), encode interacting proteins (Ge et al.

2001), or participate in the same biological processes

(Tavazoie et al. 1999). A gene coexpression network

(GCN) represents the interactions among genes and is often

used to study biological and genetic mechanisms across

species and during evolution. For example, one pioneering

work by Stuart et al. (2003) is a comparative study on the

microarray data of humans, flies, worms, and yeast. The

results showed that multiple groups of conserved genes are

associated with core biological functions. Knowledge of

these key groups is an essential step to understand the

overall design of genetic pathway. Efforts also went toward

deriving common GCNs in the human brain (Hawrylycz

et al. 2015; Oldham et al. 2008). Despite significant vari-

ations between individuals, preserved clusters of genes
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corresponding to discrete neuronal subtypes emerged from

the comparisons of GCNs in different subjects. These

consensus groups of genes consistently found in different

subjects across brain regions provide strong evidence of a

link between conserved gene expression and functionally

relevant circuitry. In addition to revealing the intrinsic

transcriptome organizations, GCNs have also demonstrated

superior performance when they are used to generate novel

hypotheses for molecular mechanisms of diseases because

many disease phenotypes are not caused by one or a few

genes or proteins, but as a result of dysfunction of a

complex network of molecular interactions (Bando et al.

2013; Carter et al. 2013; Gaiteri et al. 2014).

Various proposals have been made to identify the GCNs.

The most common and useful class of approach is clustering.

Many clustering variants including hierarchical clustering and

k-means clustering have demonstrated a good capability in

identifying genes that share common roles in cellular processes

(Bohland et al. 2010; Eisen et al. 1999; Tamayo et al. 1999).

The alternative group of methods is to apply network concepts

and models, which offers a more descriptive power to the

complicated gene–gene interactions (Oldham et al. 2012).

Given the high dimensions of genetic data and the urgent need

in unveiling the differences or the consensus between subjects

or species, one common theme of all of these methods is

dimension reduction. Instead of analyzing the interactions

across over tens of thousands of genes, the groupings of genes

by their coexpression patterns can considerably reduce the

complexity to dozens of networks or clusters, while preserving

the original interaction relationships.

Along the line of data reduction, we proposed dictionary

learning and sparse coding (DLSC) algorithm for GCN

construction. DLSC is an unbiased data-driven method that

learns a set of new bases (denoted as dictionaries) from the

signal matrix so that the original signals can be represented

in a sparse and linear manner. The popularity of applying

sparse coding and dictionary learning on images is derived

from the observations that neurons encode sensory infor-

mation using a small number of active neurons at any given

point in time (Olshausen and Field 2004). It is reported that

sparsification can ‘‘weed out’’ those basis functions not

needed to describe a given image structure, thus obtaining

an easier interpretation (Olshausen and Field 2004). Unlike

decompositions based on principal component analysis and

its variants, sparse learned models do not impose that the

basis vectors be orthogonal, allowing more flexibility to

adapt the representation to the data (Mairal et al. 2010). An

equally important feature is that sparse coding can model

inhibition between the bases by sparsifying their activa-

tions. Due to these properties, DLSC has found great

success in applications such as image denoising, demo-

saicing, and inpainting (Mairal et al. 2008). In the context

of extracting coexpression patterns, we assume that if two

genes use the same dictionary to represent their original

signals, then their gene expressions must share similar

patterns, thereby considering them as ‘‘coexpressed.’’ On

the other hand, it is reported that most genes are expressed

in a fairly small percentage of cells (70.5% of genes are

expressed in less than 20% of total cells in the ISH dataset)

(Lein et al. 2007). We assume this notion can be captured

by imposing a sparsity constraint that limits the number of

voxels that a gene can be active on. The added sparse

constraint will also encourage the dictionary to capture the

most common gene coexpression patterns so that a parsi-

monious representation is possible. Thus, DLSC can serve

as a useful tool for GCN construction.

Most of the GCNs were constructed from the microarray

data and in situ hybridization (ISH) data. One major advantage

of ISH over microarray data is that ISH preserves the precise

spatial distribution of genes. One of the most valuable ISH

resources is the openly available Allen Mouse Brain Atlas

(AMBA) initiated by the Allen Institute for Brain Sciences

(Lein et al. 2007), which surveyed over 20,000 genes

expression patterns in 56-day-old C57BL/6J mouse brain

using ISH. This dataset, featured by the whole-genome scale,

cellular resolution and anatomically comprehensive coverage,

allows systematic and holistic investigation of the molecular

underpinnings and related functional circuitry. Using AMBA,

the GCNs identified by DLSC showed significant enrichment

for major cell types, biological functions, anatomical regions,

and/or brain disorders. The identified GCNs hold promises to

serve as foundations to explore different cell types and func-

tional processes in diseased and healthy brains.

Methods

The computational pipeline of the proposed framework is

illustrated in Fig. 1. The pipeline consists of two parts: the

slice-based GCN construction and validation (Fig. 1a–d)

and global GCN construction and analysis (Fig. 1e).

Experiment material

AMBA is a genome-wide cellular resolution map of gene

expressions using ISH that offers brain-wide anatomical

coverage of mouse brain. The inbred mouse strain is used

to reduce the animal-to-animal variation in brains. For each

tested gene, the mouse brain was sectioned into series of

tissues in coronal or sagittal planes and then imaged. To

enable three-dimensional volumetric representations from

the acquired coronal or sagittal series images, a common

coordinate space of the three-dimensional (3D) reference

atlas was first created so that the ISH images of each gene

can be consistently registered to the same space and

aligned. Later each image was uniformly divided into
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200 9 200 lm grids and gene expression statistics were

computed from the detected signals for each voxel. The

resulted voxelized expression grids encoding the important

spatial information of 4345 genes in coronal sections and

21,718 genes in sagittal sections make up the key com-

ponents of the AMBA.

We downloaded the 4345 3D volumes of expression

energy of coronal sections as well as the corresponding

reference atlas from the website of ABA (http://mouse.

brain-map.org/) to perform our analysis. Coronal sections

were chosen because they registered more accurately to the

reference model than the counterparts of sagittal sections.

The dimension of all 3D volumes applied in this study is

67 9 41 9 58.

Slice-wide GCN construction and validation

The major obstacle to a global analysis of ISH data on all

coronal slices is the number of missing data observed on

each slice (Supplementary Figure S1). Since each slice has

its own missing genes, obtaining a common set of genes on

all slices would require roughly 33% of the genes removed

from analysis, resulting in a significant amount of infor-

mation loss. Additionally, as the ISH data were acquired by

each coronal slice before they were stitched and aligned

into a complete 3D volume, despite extensive preprocess-

ing steps (Ng et al. 2007) such as a global adaptive

thresholding method and morphological filtering employed

to remove noise and connect broken segments, quite

Fig. 1 Computational pipeline for constructing slice-wide GCNs (a–

d) and brain-wide GCNs (e). a Raw ISH data preprocessing step that

removes unreliable genes and voxels and estimates the remaining

missing data. b Dictionary learning and sparse coding of ISH matrix

with sparse and nonnegative constraints on a matrix. D is the

dictionary matrix and a is the coefficient matrix. e is the reconstruc-

tion error. c Visualization of spatial distributions of slice-based

GCNs. d Visualizations of coexpression networks. e Integrating slice-

based GCNs into global GCNs and global GCN gene ontology.

f Visualization of slices of raw expression grids before preprocessing.

g Visualization of slices of raw expression grids after preprocessing.

Some missing data were estimated. h Expression girds were arranged

in an M by N matrix. i Visualizations of 3D spatial patterns of global

GCNs
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significant changes in average expression levels of the

same gene between slices were observed (Supplementary

Figure S1). Considering these problems, studying the

coexpression networks slice by slice enables leveraging off

the information loss and alleviation of the artifacts due to

slice handling and preprocessing (Supplementary Fig-

ure S2). Yet additional efforts are needed to integrate

gene–gene interactions on each slice.

Data preprocessing

For slice-wide analysis, the input of the pipeline is the

expression grids of one of 67 coronal slices. A prepro-

cessing module (Fig. 1a) was first applied to handle the

foreground voxels with missing data (-1 in expression

energy). The lack of data is assumed mostly due to prob-

lems during ISH and image processing steps such as

missing slices, broken tissue, and slice alignment error.

Specifically, this module includes an extraction step, a

filtering step and an estimation step. First, the foreground

voxels of the slice based on the annotation map from ARA

were extracted. Then the genes of low variance (standard

deviation\0.5) or genes with missing values in over 20%

of foreground voxels were excluded from further analysis

because they provided little information for network con-

struction. A similar filtering step was also applied to

remove voxels in which over 20% genes do not have data.

Most missing values were resolved in the two filtering

steps. The remaining missing values were recursively

estimated as the mean of foreground voxels in its 8

neighborhood until all missing values were filled. The

maximum number of iterations is 4 with most values using

2 or 3 iterations. The low number of iterations suggests that

the estimated data are reasonable. After preprocessing, the

cleaned expression energies were organized into a matrix

and sent to DLSC (Fig. 1b). In DLSC (Sect. 2.2.2), the

gene expression matrix was factorized into a dictionary

matrix D and a coefficient matrix a. These two matrices

encode the distribution and composition of GCN (Fig. 1c–

d) and were further analyzed and validated against the raw

data and existing methods.

Dictionary learning and sparse coding

The gene expression grids were arranged into a single

matrix X 2 RM�N , such that M rows correspond to M

foreground voxels for analysis and N columns correspond

to N genes (Fig. 1b). Then, each column of the matrix

(gene signal in a voxel) was normalized by the L2-norm of

the column. After normalization, the publicly available

online DLSC package was applied to solve the matrix

factorization problem proposed in Eq. (2) (Mairal et al.

2010). Eventually, the gene expression energy matrix X

was represented as sparse combinations of learned dic-

tionary atoms D. Each column in D is one dictionary

consisted of a set of voxels. Each row in a corresponds to

one dictionary and details the coefficient of each gene in a

particular dictionary.

Formally, given a set of M-dimensional input signals

X = [x1,…,xN] in RM�N , learning a fixed number of dic-

tionaries for sparse representation of X can be accom-

plished by solving the following optimization problem:

D; ah i ¼ argmin
1

2
X � D� ak k2

2s:t ak k1 � k ð1Þ

where D 2 RN�K is the dictionary matrix, a 2 RK�M is the

corresponding loading coefficient matrix, k is a sparsity

constraint factor and indicates each signal has fewer than k
items in its decomposition, �k k2 is the summation of ‘2 norm

of each column and �k k1 is the summation of ‘1 norm of each

column. X � D� ak k2
2 denotes the reconstruction error.

In efficient sparse coding algorithm, the optimization

problem is solved by an alternating minimization proce-

dure through lasso and least-square steps that iteratively

updates to improve the estimate of the sparse codes while

keeping the dictionaries fixed and then updating dic-

tionaries that fit the sparse codes best. At all times, the

energy function in Eq. (1) should be minimized.

As will be discussed later that each entry of a indicates

the degree of conformity of a particular gene to a coex-

pression network, a nonnegative constraint was added to

the ‘1-regularization. This additional prior, included in

Eq. (2), can be handled by homotopy method presented in

Efron et al. (2004):

D; ah i ¼ argmin
XN

i¼1

1

2
xi � D� aik k2

2s:t ak k1 � k; 8i; ai � 0:

ð2Þ

The key assumption of enforcing the sparsification is

that each gene is involved in a very limited number of gene

networks. The nonnegativity constraint on a matrix

imposes that no genes with the opposite expression patterns

will be placed in the same network.

In the context of deriving GCNs, we consider that if two

genes use the same dictionary to represent the original

signals, then the two genes are coexpressed in this dic-

tionary. There are two benefits of this setup. First, both the

dictionaries and coefficients are learned from the data and

therefore should reflect the intrinsic organization of tran-

scriptome. Second, the level of coexpressions is quantifi-

able, and the level is not only comparable within one

dictionary, but the entire a matrix.
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Further, if we consider each dictionary as one network,

the corresponding row of a matrix contains all the genes

that use this dictionary for sparse representation, or that

are ‘‘coexpressed.’’ Additionally, each entry of a mea-

sures the extent to which this gene conforms to the

coexpression pattern described by the dictionary atom.

Therefore, this network, denoted as the coexpression

network, is formed. Since the dictionary atom is com-

posed of multiple voxels, by mapping each atom in

D back to the ARA space, we can visualize the spatial

patterns of the coexpressed networks. Combining infor-

mation from both D and a matrices, we would obtain a set

of intrinsically learned GCNs with the knowledge of both

their anatomical patterns and gene compositions. As the

dictionary is the equivalent of the network, these two

terms will be used interchangeably.

Parameter selection

The choice of the number of dictionaries and the regular-

ization parameter k are crucial for effective sparse repre-

sentation. As no gold standard exists for parameter

selection, we first proposed three criteria to evaluate the

performance of DLSC and then carried out a grid search on

the optimized parameters using one example slice.

The first criterion is the reconstruction error. It is defined

as the square difference between the original signal matrix

and the reconstruction from sparse representation [Eq. (3)].

A high reconstruction error indicates a less accurate

representation:

errory ¼
1

2
X � Dak k2

F: ð3Þ

The second evaluation metric is the average uncertainty

coefficient (AUC) between the obtained dictionaries and

the reference atlas. The uncertainty coefficient, defined in

[Eq. (5)], is a normalized variant of mutual information

(MI). Many studies have shown that different combinations

of gene expression profiles mirror the gross anatomical

partitioning (Dobrin et al. 2009; Oldham et al. 2008). We

thus assume the set of the parameters that result in the

highest correspondence between the transcriptome patterns

and canonical anatomical structures are the optimal

parameters. MI, as a powerful criterion that measures the

dependencies between variables, can be used to charac-

terize how well the transcriptome patterns match with the

canonical neuroanatomical divisions, thereby a good esti-

mate on how meaningful the components are. The advan-

tage of using the normalized MI is that it varies between 0

and 1 with values close to zero indicating the two spatial

distributions are independent, whereas values close to one

suggesting knowledge of one spatial pattern can reduce the

uncertainty of the other and thereby dependent.

In specific, MI is first calculated between the spatial

distribution of each gene network and the reference atlas.

Given a continuous variable X that contains the spatial

distribution of one gene network, discretization is per-

formed via histogram with an empirically selected 32

equally divided bins. Let categorical variable Y represent

the labels in the reference atlas. The MI can be calculated

as:

I X; Yð Þ ¼
X

y2Y

X

x2X
p x; yð Þlog

pðx; yÞ
p xð ÞpðyÞ

� �
ð4Þ

where p(x,y) is the joint probability distribution function of

X and Y, and p(x) and p(y) are the marginal probability

distribution functions of X and Y, respectively.

Then the uncertainty is obtained from:

U X; Yð Þ ¼ 2 � I X; Yð Þ
H Xð Þ þ H Yð Þ ð5Þ

where H(X) and H(Y) are the marginal entropies. For a

particular combination of k and number of dictionaries, the

average AUC of all GCNs is used for comparison.

Another important measurement to examine the DLSC

performance is the degree of density measured by the

percentage of nonzero-valued elements in the coefficient

matrix. As we are searching for a set of dictionaries that

are rich in representation power so that a compact code

can be achieved, a relatively low value is expected. As

discussed in Sect. 2.2.2, the density is regulated by k. In

most cases, increasing k will give rise to more zero entries

in the coefficient matrix. It should be noted that there is no

exact monotonic relation between k and the density of the

solution (Mairal et al. 2010). Therefore, it would be

helpful to monitor k during the parameter selection

process.

Having set up the three criteria, a grid search was per-

formed on slice 27. This slice was chosen due to its good

anatomical coverage of various brain regions. As different

number of genes was expressed in different slices, the

number of dictionaries for each slice should change

accordingly. Instead of fixing the number of dictionaries, a

gene dictionary ratio was used to determine the optimal

ratio between the number of genes expressed and the

number of dictionaries required to achieve a good repre-

sentation. Fifty-five combinations of k and gene dictionary

ratios were considered with 5 choices of k and 11 different

gene dictionary ratios (Supplementary table S1–3). The

results obtained from 55 different combinations of

parameters are available at http://mbm.cs.uga.edu/mouse/

gcn/para_select/slice.html. As the final goal of parameter

selection is a set of parameters that result in a sparse and

accurate representation of the original signal, which is

translated to a low reconstruction error, a high AUC and a
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low coefficient density, k = 0.5 and gene dictionary ratio

of 100 is the best option among 55 parameter combinations

and chosen as the optimal parameters.

Brain parcellation using DLSC

The decomposition of gene expression matrix on each

slice results in a dictionary matrix D and a coefficient

matrix a. Each row of D describes which dictionary and

how much weight one voxel participates in that dic-

tionary. It is assumed that if two voxels have similar

dictionary features, i.e., two voxels are involved in the

same dictionary (network) and carry similar weights, then

these voxels are considered highly similar. With the dic-

tionaries as the feature vector of a voxel, Pearson corre-

lation was employed to calculate the similarity between

voxels. Then the voxels on the slice were clustered into

groups by spectral clustering (Chen et al. 2013; Luxburg

2007). The number of clusters was adapted to the data

and determined by the normalized cut using an empiri-

cally selected threshold of 0.7. (Chen et al. 2013; Luxburg

2007).

Comparative analysis with weighted gene correlation

network analysis (WGCNA)

WGCNA was applied on the same dataset to validate

findings generated by DLSC. WGCNA (Langfelder and

Horvath 2008) is an unbiased, unsupervised framework to

identify coexpressed gene modules. In the framework,

genes are viewed as nodes in a weighted network. To

achieve a robust and sensitive measure of the interaction

between genes, the proximity measure between genes—

namely topological overlap measure (TOM), considers not

only the direct connection strength between two genes but

also the connection strengths these two genes share with

other ‘‘third party’’ genes. Then based on TOM, genes are

clustered into multiple modules using average linkage

hierarchical clustering. The module eigengene, defined as

the first principal component of the standardized expres-

sion profiles of the module, is used as a succinct repre-

sentation of the gene expression profiles of the module. In

this study, a signed network is used to avoid the ‘‘anti-

reinforcing’’ connection strength that might occur in the

unsigned network. For clarity, the groups identified by

WGCNA and DLSC are denoted as modules and GCNs,

respectively.

To quantitatively compare the found networks, both

methods were applied on the gene expressions of the same

slice—slice 27. Default parameters of WGCNA resulted in

14 modules, while the DLSC gave 29 GCNs. To get a more

balanced comparison between the two methods, we

increased the number of modules extracted by WGCNA by

tuning three parameters: the soft thresholding power beta,

deepSplit, and minModuleSize. Multiple combinations of

these parameters have been tested and the highest number

of modules WGCNA was able to get was 25 modules with

one additional module for unassigned genes. The parame-

ters used in the experiment were: beta = 18, deepSplit = 4

(highest) and minModuleSize = 15. Also, we changed the

number of GCNs from the optimal 29–26 to ensure a fair

comparison.

Then the number of shared genes was counted for

groups identified by both methods. Besides quantification,

another intuitive way to compare the two methods is by

comparing the obtained spatial maps (Fig. 2). Similar gene

groups are likely to show similar spatial maps. In DLSC,

the dictionary atom encodes the network spatial patterns. In

WGCNA, the spatial distributions are represented by the

spatial pattern of the eigengene of that module.

Brain-wide GCNs construction and analysis

Brain-wide GCNs construction

To construct brain-wide coexpression networks, we need to

consider the gene interactions on all coronal slices. First,

gene similarity on each slice, denoted as the local simi-

larity, was calculated from the coefficient matrix a with the

coefficients as the feature of each gene. Let v1 and v2 be

the coefficient vectors of gene 1 and gene 2. The gene

similarity measure is defined as the overlap rate OR, as

below:

ORðv1; v2Þ ¼ 2
jminðv1; v2Þj
jv1j þ jv2j ð6Þ

where �j j is the ‘1 norm of the feature vector.

As each slice has missing data for different genes, the

interactions of these missing genes on a particular slice

should not be considered in the global similarity matrix

construction. Therefore, the global gene similarity, i.e., the

similarity measure that considers interactions on all slices,

is measured by the median of the local similarities of genes

with sufficient data. The rationale of adopting a global

similarity matrix instead of simply aggregating the coeffi-

cients matrices on each slice is to mitigate the influence of

missing data as well as the artifacts generated during data

acquisition.

In the constructed global similarity matrix, 91 genes

showed zero similarity to any other genes. The very low

similarity was caused by the lack of data, evidenced by that

these 91 genes were present in at most 5 out of 67 slices.

The separation of these genes that suffered from heavy data

loss demonstrates the effectiveness of similarity matrix
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over the original a matrix, and also reflects OR as an

appropriate measure for gene similarity in this situation.

A total of 4254 out of 4345 genes were used to derive

the brain-wide GCNs. The global similarity matrix is the

input to the subsequent DLSC. The goal of performing

DLSC on the similarity matrix is to assign network mem-

bership to genes by their associations to all the other genes.

We assume that if two genes display a similar relationship

to all the other genes, these genes should belong to the

same group. The network memberships were encoded in

the resulted sparse coefficient matrix a.

Parameter selection

The parameter selection of decomposing the global simi-

larity matrix is guided by the knowledge from the slice-

based study that each network contains on average 185

genes and each gene participates in 1.85 networks. Using

these criteria, we performed a grid search of k and dic-

tionary numbers (Supplementary table S4–5) and selected

k as 0.3 and dictionary number 50, which resulted in an

average of 189 genes per network and a slightly larger 2.21

networks for one gene.

Fig. 2 Comparison between spatial maps of GCNs and eigengenes of

WGCNA modules on slice 27. For clarity, the groups identified by

WGCNA and DLSC are denoted as modules and GCNs, respectively.

The number of overlapping genes between a GCN and a module was

counted. At the bottom of each image is the name of the

networks/modules. ‘M’ represents a module generated by WGCNA

and GCN represents a coexpression network generated by DLSC. The

number in the parentheses is the number of total genes in that module/

network. Brown arrows indicate that the GCN includes over 50%

genes of that module. Blue arrows indicate that the module has over

50% of the same gene of the GCN. Green double arrows indicate that

the GCN and module share 50% of their own genes. The black boxes

highlight the GCN/module compared in detail in Figs. 3 and 4. The

background color for modules and GCNs are fixed to -0.05 and 0

Brain Struct Funct (2017) 222:4253–4270 4259
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Fuse 3D spatial pattern of GCNs

As described in Sect. 2.2.2, the dictionaries trained in each

slice encode the spatial distribution of GCNs. Intuitively,

we can fuse the dictionaries of each slice to study the 3D

spatial pattern of brain-wide GCNs. First, the similarities

between brain-wide GCNs and slice-wide GCNs were

calculated. Then, we scaled slice-wide dictionaries based

on the similarity and integrated them into a 3D volume.

Specifically, the similarity was calculated based on the OR

of the coefficient matrix defined in Sect. 2.3.1. Slightly

different from the previous definition, here the similarity

was calculated between GCNs instead of genes. Also,

before comparison, each feature vector was normalized so

that the maximum value equals to 1.

Gene ontology analysis of brain-wide GCNs

Brain-wide GCN characterization was made based on

common GO gene ontology categories (Molecular Func-

tion, Biological Process, Cellular Component), Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways

using Database for Annotation, Visualization and Inte-

grated Discovery (DAVID) (Dennis et al. 2003). Enrich-

ment analysis was performed by cross-referencing with

published lists of genes (Miller et al. 2011) related to cell-

type markers, known and predicted lists of disease genes,

specific biological functions, etc. Significance was asses-

sed using one-sided Fisher’s exact test with a threshold of

0.01.

Results

The organization of the result section is as follows. In

Sect. 3.1, we constructed GCNs on each slice. With slice

27 as an example, the slice-based GCNs were validated

first by a visual inspection against raw ISH data where the

GCNs were derived and then by a comparative study with

one of the most widely used methods—WGCNA as well as

a matrix factorization method principal component analysis

(PCA). On the side as an application, we demonstrated that

the learned dictionaries, 100-fold shorter in length than the

gene expressions, can be a relevant and compact feature for

brain parcellation. Having established the slice-wide

GCNs, Sect. 3.2 focuses on the construction of global

GCNs by integrating the gene–gene interactions on all

slices. Along with the spatial distributions of the GCNs, we

showed that the obtained GCNs are biologically mean-

ingful by comparing with the known gene ontologies and

published gene lists.

Slice-wide GCN analysis

To show as an example, slice 27 was analyzed due to its

good anatomical coverage of various brain regions. Results

of all other slices are available at http://mbm.cs.uga.edu/

mouse/gcn/allslices/all_slice_anatomy_overview.html. The

detailed information including the genes and spatial dis-

tributions of modules identified by WGCNA can also be

found at http://mbm.cs.uga.edu/mouse/gcn/wgcna_s27_

adj/overview.html.

Comparative analysis with WGCNA

Both DLSC and WGCNA were applied on the gene

expressions data of slice 27. Although a larger number of

modules (from 14 to 25) were obtained by tuning the

parameters of WGCNA, the number of genes in a module

varies significantly. Specifically, the top three modules

(module 1, 2, and 3) consist of 783, 240, and 136 genes,

respectively, and modules 15–25 all contain fewer than 60

genes, indicating the genes were not well separated. The

observation of a single large module together with multiple

small modules was also seen when the default WGCNA

parameters were used. Fourteen modules were obtained

with the largest module containing over 1000 genes. In

contrast, the number of genes in the GCNs was more bal-

anced. The top three GCNs contain 609, 543, and 406

genes even though some genes have been counted multiple

times. In this sense, the DLSC gives better coexpression

networks as it is able to separate genes into more balanced

groups when the number of groups is relatively large.

To test whether DLSC provides an improved view of

coexpressed genes, we measured the correspondence at the

level of network/module pairs by quantifying the number

of shared genes. We used a brown arrow pointing from a

GCN to a module to denote that the GCN containing over

50% of the genes in that module. Similarly, a blue arrow

pointing from a module to a GCN indicates a module

containing over 50% of genes in that GCN. If the number

of shared genes is above 50% of the genes in the module as

well as the GCN, a green double arrow was used. By laying

out the spatial maps of the GCNs and the eigengenes of

WGCNA modules (Fig. 2), it is evident that the spatial

maps of GCNs and modules sharing over 50% are either

very similar (e.g., GCN17 and M20, GCN4 and M11,

GCN8 and M6) or have large spatial overlaps (e.g., GCN22

and M16, GCN19 and M5, GCN7 and M2). Overall, the

spatial maps of the groups generated by WGCNA and

DLSC are on the same scale. For each spatial map of the

module, we can find one or more similar spatial maps of

the GCNs.

4260 Brain Struct Funct (2017) 222:4253–4270

123

http://mbm.cs.uga.edu/mouse/gcn/allslices/all_slice_anatomy_overview.html
http://mbm.cs.uga.edu/mouse/gcn/allslices/all_slice_anatomy_overview.html
http://mbm.cs.uga.edu/mouse/gcn/wgcna_s27_adj/overview.html
http://mbm.cs.uga.edu/mouse/gcn/wgcna_s27_adj/overview.html


Then we focus on the genes in the GCNs/modules. Most

GCNs have more genes than the respective module that

share the similar spatial pattern, indicated by the consid-

erably more brown arrows than the blue arrows (Fig. 2).

Relatedly, there are many modules small in size given that

roughly half of the genes are assigned to module 1 and

module 2.

There are multiple pairs that share over 50% of their

genes (Fig. 2 green arrows). One example is GCN 18 and

module 15, whose spatial patterns are quite similar

(Fig. 3A, B). The number of genes in GCN 18 is 83 and

module 15 has 59 genes. It turns out 52 out of 83 genes

were shared by both GCN18 and module 15. Thirty-one

genes were found only by GCN18, and seven genes were

found only by module 15. We first examined the raw ISH

data of genes that were only found by DLSC. The spatial

map of GCN 18 featured high activations at cortex layer 5

and 6, covering the cingulate area (Fig. 3A white arrow),

motor area (Fig. 3A yellow arrow) and somatosensory area

(Fig. 3A pink arrow). Three genes were selected for

illustration from those only found by DLSC (Fig. 3a–c).

The weight above the green arrow is a measure of the

degree to which a gene conforms to the coexpression pat-

terns. With a decreasing weight, the resemblance of the raw

data to the spatial map became weaker. All three genes

showed strong signals in layers 5 and 6 and agree with the

overall shape of the GCN 18 (Fig. 3 red arrows). However,

Scg3 displayed additional activations at medial preoptic

area (Fig. 3c, f yellow arrow) and lateral septal nucleus

(Fig. 3c black/white arrow) and thus was assigned a lower

weight of 0.202. By examining the normalized energy

matrix as well as the raw ISH, we were convinced that

these genes have similar spatial distributions to the GCN18

and that the assignment is correct.

Interestingly, 27 out of the 37 genes that were assigned

to GCN18 and not assigned to module 15, including the

Limch1, Loc381765, and Scg3, were assigned to module 1

(Fig. 3C) by WGCNA, which featured the entire cortex

layer from layer 1 to layer 6 and the expression peaks at the

anterior cingulate area and the motor area and gradually

decreased in the primary and supplementary somatosensory

regions. Despite some similarities, the absence of expres-

sions in the outer layer of cortex and the fairly homoge-

neous expression across cingulate, motor and

somatosensory regions (Fig. 3a–f red arrows) suggests the

expression pattern a better consistency to GCN18.

We also looked at the genes found only by WGCNA

(Fig. 3d–f). These genes were given zero weights by DLSC

in GCN18, meaning they were not part of GCN18. It

should be noted that the weights are comparable between

GCNs because the entire alpha matrix was learned alto-

gether during the matrix factorization. Although the raw

data showed some similarities with the spatial map of M15,

we believe the assignments made by DLSC a better fit. For

Fig. 3 Comparisons of genes in GCN18 and module 15 on slice 27.

For each gene (a–f) we showed the raw ISH image together with the

normalized energy matrix. On the left are three representative genes

only found by DLSC. On the right are three genes only found by

WGCNA. A–F Are the spatial distributions of selected GCNs and the

eigengenes of selected modules. The number in the parentheses of

GCNs/modules denotes the number of genes in the module/GCN. The

long red arrows show the module assignment made by WGCNA. The

green arrows show the GCN assignment made by DLSC. DLSC

offers a weight that measures the degree to which the gene expression

conforms to the coexpression pattern. These weights are the values

above the respective green arrows
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example, Gng2 was assigned to GCN10 (Fig. 3D) with a

high weight of 0.449. The peak expressions at the

endopiriform nucleus (Fig. 3d, red arrows) and relatively

weaker expressions at the cortex regions (Fig. 3d black

arrows) showed more resemblance to the spatial pattern of

GCN10 than that of module 15. As to the second gene

Agpat4, its raw ISH showed enhanced signals at the medial

preoptic nucleus (Fig. 3e black arrows), the piriform area

(Fig. 3e yellow arrows), as well as all outer layers of cin-

gulate areas (Fig. 3e red arrows). These patterns were

absent in M15, but featured in GCN12. The high weight of

0.378 also suggests a good agreement between Agpat4 and

GCN12. The last WGCNA-only gene is Taldo1. The sim-

ilarity to module 15 is low as evidenced by the weak

activations in cortex layers (Fig. 3f red arrows) and the

enhanced signals in septal nucleus (Fig. 3f black arrows).

DLSC assigned the gene to GCN1 which has wider yet

lower activations throughout the slice with a low weight of

0.172. The energies from the three WGCNA-only genes

were found diverged from the spatial map of represented

by the eigengene of M15.

Following the same strategy, we examined another pair

of networks where GCN includes over 50% of genes in the

corresponding module, GCN17 and M20. This pair dis-

plays very similar spatial patterns that feature high

expressions at lateral preoptic area and substantia innomi-

nata (Fig. 4D, E red arrows) and extends to piriform area

with lower expressions (Fig. 4D, E white arrows). There

were 95 genes in GCN17 and 40 genes in M20. Among

them, 35 genes were shared. Five genes were WGCNA

only, and the other 60 genes were DLSC only. Five DLSC-

only genes with different weights were presented. With the

decreasing weights, the resemblance to the spatial map of

GCN17 decreased. Interestingly, both Elfn1 and Tmem22

were assigned to M17, which showed a better match at

isocortex in comparison with that of GCN 17 (Fig. 4a, b

Fig. 4 Comparisons of genes in GCN17 and module 20 on slice 27.

For each gene (a–j), the raw ISH image together with the normalized

energy matrix is shown. a–e are five representative genes only found

by DLSC. f–j are five genes only found by WGCNA. A–D are the

spatial distributions of the eigengenes of selected modules. M0 is the

module for unassigned genes. E–I are the spatial distributions of

selected GCNs. The number in the parentheses of GCNs/modules

denotes the number of genes in the GCN/module. The long red

arrows show the module assignment made by WGCNA. The green

arrows show the GCN assignment made by DLSC. DLSC offers a

weight that measures the degree to which the gene expression

conforms to the coexpression pattern. These weights are the values

above the respective green arrows
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yellow arrows). sncq was assigned to module 5, presum-

ably due to the similarity of the overall activations at

hypothalamus although there was a mismatch of the degree

of activation at medial preoptic area (Fig. 4c yellow

arrows). In contrast, the high activations at the lateral

preoptic area were more consistent with GCN17 (Fig. 4c

red arrows). Spp1 and sgpp2 both showed broad activations

in addition to the enhanced signals at the lateral preoptic

area (Fig. 4d,e red arrows). They were left unassigned by

WGCNA (M0 is the unassigned module).

Then we examined all the WGCNA-only genes. The

expression of kcnk13 peaked at the medial preoptic area

(Fig. 4f red arrows) and was more consistent to GCN 22

(Fig. 4F) than M20. Dner showed enhanced signals at

piriform areas (Fig. 4g yellow arrows) and extended fur-

ther to isocortex (Fig. 4g green arrow), thalamus (Fig. 4g

black/white arrow), and hypothalamus (Fig. 4g red arrow)

with lower expressions. The expression pattern was cap-

tured by both GCN 23 (Fig. 4r) and GCN 22 (Fig. 4s) with

the degree of consistency of around 0.2. Stc1 showed

strong signals at piriform area (Fig. 4h yellow arrows), but

not as strong at lateral preoptic area (Fig. 4h red arrows).

This pattern was more consistent with GCN23 (Fig. 4G). A

similar case was also seen in Dmwd (Fig. 4i). Finally, the

expressions of Slc25a3 almost spanned the entire slice,

with enhanced signals at the cortex (Fig. 4j yellow arrows)

and preoptic areas (Fig. 4j red arrows). The expression

pattern was better captured by GCN21 (Fig. 4I).

By analyzing the gene parcellations using WGCNA and

DLSC on slice 27 in depth, we showed a very good

consistency between the results obtained by WGCNA and

DLSC. The discrepancy in the gene assignment was also

demonstrated, which arises from different interpretation of

the coexpression relationships. Thus, DLSC can provide a

complementary perspective to other framework for gene

coexpression network construction.

Notably, DLSC is robust to parameter selections as the

result shown above were ran using sub-optimal parameters.

When dictionary number is reduced from 29 to 26, most

spatial patterns remain the same with slight changes to

adapt for the reduced number of dictionaries (data not

shown). Among 26 GCNs, 24 of them have over 50% the

same genes as the counterpart in the GCNs derived using

29 dictionaries.

Comparative analysis with principal component analysis

To compare with other matrix factorization method, we

performed principal component analysis on slice 27. Data

was first centered by subtracting column means. Singular

value decomposition algorithm was used as the solver. For

visualization we projected each individual mode back to

the brain space. The first 13 modes account for *95% of

variance, while the top 3 modes explain *90% of the total

variance. The first mode has a very broad distribution

across the brain, with slightly higher expressions at the

isocortex region (Fig. 5a). The second mode is also broadly

distributed with distinctly high amplitude in caudoputamen

(Fig. 5b). In contrast, the third mode features an absence of

caudoputamen and is prominent in the hypothalamus

Fig. 5 Visualization of the first 26 modes obtained from principal component analysis. The values in the parentheses are the percentage of total

variance explained by the mode
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(Fig. 5c). Overall, PCA is able to extract correlated struc-

tures that correspond to the broad anatomical regions, such

as caudoputamen (Fig. 5b) and isocortex (Fig. 5d). Yet

with the additional modes that account for much less

variance, the correspondence to the classical anatomy

becomes increasingly weaker. On the other hand, with the

goal of finding the coexpression patterns regardless of

directions, PCA is not the best model for the problem

because the modes are designed to capture the variance of

the data instead of the common patterns of the data. Fur-

ther, the orthogonal constraint keeps the model from

finding meaningful overlapping coexpression patterns. One

example is GCN 22 and GCN 19 (Fig. 2). Both GCNs

show enhanced activations at the bed nuclei of the stria

terminalis and were reported by DLSC and WGCNA.

Using PCA, only mode 3 was found (Fig. 5c). Another

example is GCN 3 (Fig. 2), GCN 26 (Fig. 2) and GCN16

(Fig. 2), which show distinctly different patterns at cau-

doputamen. All 3 GCNs were identified by both DLSC and

WGCNA, while for PCA only mode 2 is most related to

caudoputamen (Fig. 5b). Additionally, since our goal is to

cluster genes with similar coexpression patterns, there

requires an extra step of clustering analysis for PCA

because with no sparsity constraint on the coefficients, the

representation for the new bases is dense and the group

assignment of genes is not readily available as DLSC. One

last disadvantage of using PCA for GCN construction is

that PCA generates negative numbers. The interpretation of

the negative values does not appear immediately obvious in

the context of gene expression patterns.

Gene coexpression network and brain parcellation

Existing literature have shown that transcriptional profiles

reflect the gross brain anatomical structures (Lein et al.

2004). Since DLSC is also a dimension reduction step that

reduces the transcriptional profile consisting of *3500

features into a feature vector composed of *35 dic-

tionaries for a single voxel, we hypothesized that the

learned dictionaries can preserve the (dis)similarities

between two regions defined by their transcriptional pro-

files, thus serving as a very relevant and compact feature

for brain delineation. Additionally, since parcellation

agreement is used as an objective in the parameter opti-

mization that is only performed on slice 27, we want to

validate whether the selected parameters can result in good

performance on other slices, by examining the features

with reduced dimensionality. To quantify the level of

correspondence between clustered voxels and the ARA on

each slice we used normalized mutual information that is

also used in parameter optimization. As seen in Fig. 6,

voxels resulted from spectral clustering form a set of spa-

tially contiguous clusters partitioning the slice. The

formation of these single tight clusters agrees with the

previously identified brain’s organizational principle that

transcriptome similarities are strongest between anatomical

neighbors (Bernard et al. 2012). The delineations are in

general symmetric and match major canonical brain

regions including the hippocampus (Fig. 6 blue arrows),

hypothalamus (Fig. 6 red arrows), and thalamus (Fig. 6

magenta arrows). The good correspondence is also reflec-

ted in the high normalize mutual information. The values

are comparable to 0.6 which is the mutual information

obtained from slice 27 (Fig. 6, Supplementary figure S3),

suggesting the parameters are close to optimal for other

slices. The most striking and principal features are the

laminar and areal patterning that are seen in almost all

slices (Fig. 6a–e yellow and orange arrows). The patterning

defined by the abrupt changes in gene expression has been

discovered in mammalian brains such as mouse (Hawry-

lycz et al. 2010) and human (Miller 2014) and is known

crucial to the formation of specialized brain anatomical and

functional areas (O’Leary et al. 2007). Within a dominant

layered organization, layer specific areal patterning is also

apparent. For instance, isocortex layers are further divided

into motor areas (Fig. 6 green arrows), somatosensory area

(Fig. 6 orange arrows), piriform area (Fig. 6 pink arrows),

retrosplenial area (Fig. 6 dark green arrows), auditory area

(Fig. 6 purple arrows), and visual area (black arrows). It is

worth mentioning the level of coherence in the partitioning

across slices. Some subregions with potentially stable gene

expression patterns are consistently found in adjacent slices

despite of the slice-to-slice variations in anatomical struc-

tures and that DLSC and spectral clustering are performed

separately on each slice. One example is slice 39 and slice

40. Some major canonical regions such as ventricles

(Fig. 6e–f white arrows), hippocampus (Fig. 6e–f blue

arrows), thalamus (Fig. 6e–f magenta arrows), and retros-

plenial area (Fig. 6e–f dark green arrows) are consistently

identified in both slices. The consistent and legitimate

segmentations not only demonstrate the validity of DLSC

in succinctly representing the transcriptome profile, but

also provides strong evidence that the observed networks

are reproducible and that there exist unique and robust

genetic signatures for different brain structures.

Brain-wide GCN ontology and spatial pattern

Comparisons with the published lists of genes related to

cell-type markers, specific biological functions and known

and predicted lists of disease genes reveal exciting bio-

logical insights for the constructed GCNs. A complete

summary of each brain-wide GCN is available at http://

mbm.cs.uga.edu/mouse/gcn/globalGCN/Global_GCNs_

overview.html. Multiple brain-wide GCNs are consistently

identified to be enriched in a certain functional category by
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several distinct studies using different types of data and

different methods for analysis. For example, a comparison

with the gene lists generated using purified cellular popu-

lation (Cahoy et al. 2004) indicates that GCN 5, 16, 23, 30,

43, and 45 are enriched with markers of astrocyte. Among

them, GCN30 and GCN43 are consistently confirmed as

astrocyte-enriched by the lists generated using WGCNA on

microarray data and gene lists generated using anatomic

gene expression atlas (AGEA) (Ng et al. 2009) on ISH

data. Similarly, the significant enrichment of markers of

oligodendrocyte is reproducibly identified in GCN 24 and

GCN 12, 18, 20, and 22 are significantly enriched with

markers of neuron. The consistency of the biological

interpretations of the obtained GCNs corroborated by

studies using different data types and different analysis

methodologies indicate that the GCNs reflect the intrinsic

transcriptome organization instead of data-specific or

method-specific patterns. Among the major cell types,

several GCNs are identified to be enriched in neuron sub-

types including pyramidal neurons, GABAergic neurons

and glutamatergic neurons (Sugino et al. 2006). The gene

lists for these neuron subtypes are derived from separated

populations using retrograde tracing and fluorescent

labeling at different regions of adult mouse forebrain

(Sugino et al. 2006). Other networks such as GCN 11, 15,

20 and GCN 12, 41 described mitochondrial and ribosomal

functions. Literature suggested that the upregulated or

downregulated expressions in these networks can be

associated with aging and brain diseases (Blalock et al.

2004; Lu et al. 2004).

Fig. 6 Representative anatomical divisions based on the GCN

features. Eight panels correspond to eight selected slices. In each

panel, top row slice number; second row brain parcellation obtained

from spectral clustering with dictionaries as feature vector; third row

number of regions in the slice obtained by brain parcellation; fourth

row visualization of Nissl stain image (left) and brain ontology (right)

of the corresponding slice downloaded from ABA. Fifth row

normalized mutual information between brain divisions and ARA in

that slice. Color codes of each region are shown on the right
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The biological meaning of the GCNs has been not only

confirmed by existing literature but also corroborated by

the GO terms using DAVID. For example, two significant

GO terms in GCN24 are myelination (p = 7.7 9 10-7)

and axon ensheathment (p = 2.5 9 10-8), which are fea-

tured functions for oligodendrocyte, with established

markers including Plp1 (proteiolipid protein), Mbp (myelin

basic protein), Pmp22 (peripheral myelin protein 22), and

Ugt8a (UDP galactosyltransferase 8A). DAVID also sug-

gests that GCN41 are significantly enriched in the KEGG

ribosome pathway (p = 2.5 9 10-6), agreeing with the

other studies in human and mouse (Table 1). Also consis-

tent with the enrichment of mitochondrial function,

DAVID suggests that GCN 11 is highly enriched in the

KEGG oxidative phosphorylation pathway

(p = 4.9 9 10-7) and significant BPs include generation

of precursor metabolites and energy (1.2 9 10-6) and ATP

metabolic process (5.1 9 10-6).

A visualization of the spatial map also offers a useful

complementary information source (Fig. 7). For example,

the fact that GCN 5 (Fig. 7ii) locates at ventricle, where the

subventricular zone is rich with astrocytes (Quinones-Hi-

nojosa and Chaichana 2007), confirms its enrichment in

astrocyte markers. GCN 7 (Fig. 7v) is mainly distributed in

the deeper layers of neocortex, which is reminiscent of the

distribution glutamatergic projection neuron in layer V

(Molyneaux et al. 2007). GCN 23, located mainly at

cerebellar region (Fig. 7vi) and the indicated enrichment in

GABAergic pointed to a potential enrichment of

GABAergic subtype neuron—the Purkinje cells. Compar-

ing with the genes that only labeled Purkinje cells (Wright

et al. 2007), quite a number of genes were found in GCN

23, including Id2, Creg1, Cpne2, Pcsk6, 0610007P14Rik,

Grid2, Itpr1, Baiap2, etc. The presence of a considerable

number of genes with restricted expressions in Purkinje

cell layer provided strong evidence for the enrichment of

Purkinje cells markers in this GCN. Additionally, genes

that are enriched in interneurons and Bergmann Glia cells

within Purkinje Cell Layer are also found (Wright et al.

2007).

In addition to cell-type-specific GCNs, we also found

some GCNs remarkably selective for particular brain

regions, such as GCN 27 (Fig. 7x) in field CA1, GCN 4

(Fig. 7xi) in field CA3, GCN 38 (Fig. 7xii) in Dentate

gyrus, GCN 45 (Fig. 7xiii) in cerebellum, GCN 21

(Fig. 7xiv) in medulla, GCN 1 (Fig. 7xv) in thalamus, and

Table 1 Brain-wide GCN enrichment analysis based on cross-referencing with published lists of genes related to cell-type markers, known and

predicted lists of disease genes, specific biological functions, etc

Categories of cell-type markers and biological functions GCNs (p value\0.01)

Astrocyte (Lein et al. 2007) 13, 24, 30, 35, 43

Astrocyte (Cahoy et al. 2004) 5, 16, 23, 30, 43, 45

Astrocyte (Oldham et al. 2008) 30, 43

Astrocyte (Miller et al. 2010) 5, 30, 43

Oligodendrocyte (Lein et al. 2004) 24

Oligodendrocyte (Cahoy et al. 2004) 24

Oligodendrocyte (Oldham et al. 2008) 24

Oligodendrocyte (Miller et al. 2010) 24

Neuron (Lein et al. 2007) 3, 12, 17, 18, 20, 22, 26, 29, 35, 41

Neuron (Oldham et al. 2008) 12, 18, 20, 22, 37

Neuron (Miller et al. 2010) 3, 10, 11, 12, 13, 17, 18, 20,22, 26, 29, 36, 37, 40, 41, 50

Pvalb interneurons (Oldham et al. 2008) 1, 10, 33

Pyramidal neurons (Winden et al. 2009) 3, 20, 22, 29, 37

GABAergic neurons (Sugino et al. 2006) 23, 33, 41

Glutamatergic neurons (Sugino et al. 2006) 2, 7, 44

Mitochondria human (Miller et al. 2010) 3, 11, 13, 18, 20, 22, 29, 41, 50

Mitochondria mouse (Miller et al. 2010) 11, 20, 29, 37, 40, 41, 50

Mitochondria down in AD patients (Blalock et al. 2004) 3, 11, 12, 18, 20, 22, 29, 37, 40, 41, 50

Mitochondria down in aging human brains (Lu et al. 2004) 2, 11, 17, 18, 20, 26, 44, 50

Ribosome human (Miller et al. 2010) 12, 41

Ribosome mouse (Miller et al. 2010) 12, 41, 50

Ribosome (Oldham et al. 2008) 41

GCNs that are reproducibly identified enriched in certain category across references are bolded
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Fig. 7 Visualization of the spatial distribution of brain-wide GCNs

significantly enriched for major cell types, particular brain regions,

and biological functions. In each sub-figure, top row sub-figure index

and brain-wide GCN ID. Second row 3D spatial maps of axial (left)

and two selected coronal slices (right) of GCN. The location of each

slice is highlighted in the 3D spatial map and the slice index is listed

in the top right corner. Third row sub-category. Fourth row highly

weighted genes in the sub-category following the DLSC weight. The

functionally enriched genes previously reported in the literature are

highlighted in red
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GCN 28 (Fig. 7xvi) in caudoputamen. The region-specific

GCNs presumably reflect unique and coherent expression

responsible for the functions of specific neuronal types in

these regions. The unique expression signatures are the

foundation of inferring brain genoarchitecture. Since the

3D GCN patterns are derived from multiple 2D slice-wide

GCNs, the smooth and continuous 3D patterns, in turn,

validates the reliability of slice-wide GCNs.

It should be mentioned that there is no one-to-one

mapping between the GCNs and the cell types or biological

functions. In fact, many GCNs are enriched in multiple

categories and that explains why the top weighted gene is

sometimes not the known markers of the listed function

(Fig. 7). One example is GCN 20. As seen in Table 1,

besides pyramidal neuron markers, this network is also

enriched for neuron markers and mitochondrial-related

genes. The top weighted gene Ptp4a1 (protein tyrosine

phosphatase 4a1) is a neuron marker. In other cases where

the top weighted genes are not involved in any of the

characterized functions, these genes might suggest poten-

tial direct or indirect link with the known functions. For

instance, Tgfbr2 (transforming growth factor, beta receptor

II) is not an astrocyte marker. Research has shown that

TGFb pathway is relevant to the optic nerve head astrocyte

migration (Miao et al. 2010).

Discussions

We have presented a data-driven framework that can derive

biologically meaningful GCNs from the gene expression

data. The motivation of the method comes from the recent

success of applying DLSC for image denoising, demo-

saicing, etc. The sparse constraint on the coefficients can

encourage dictionaries to capture the most common struc-

tures in images so that a parsimonious representation is

possible. On the other hand, it is reported that most genes

are expressed in a fairly small percentage of cells (Lein

et al. 2007). We assume this notion can be captured by

imposing a sparsity constraint that limits the number of

voxels that a gene can be active on. To this end, DLSC can

serve as a useful tool to extract the coexpression patterns.

Using the spatially resolved ISH AMBA data, we have

shown that a set of networks significantly enriched for

major cell-type markers, specific brain regions, and bio-

logical functions. Thus we have contributed a new way of

generating the coexpression networks by considering the

transcriptome sparisty. The proposed DLSC method is

capable of visualizing the spatial distributions of the GCNs

while knowing the gene constituents and the weights they

carry in the network. The precise gene distribution carries

complementary information that helps identify, visualize,

and in the future manipulate different types of neuron cells.

Besides, we find that the learned dictionaries can serve as a

very relevant and compact feature representing transcrip-

tome profile for each voxel. The brain parcellations based

on the learned dictionaries match well with the canonical

neuroanatomy.

In contrast to many approaches that require inputs of

gene–gene similarity matrix, DLSC can take both the gene

expression profiles and gene–gene similarity matrix as

inputs. In this paper, we have demonstrated the applica-

bility of DLSC on both inputs. We first constructed slice-

based GCNs using the gene expression profiles. Then

during the brain-wide GCN construction, the global simi-

larity matrix was first calculated by integrating the local

similarity matrices on all slices and then input to DLSC.

The extra step of slice-based GCNs is to resolve the

potential loss of information in genes with missing values

and the artifacts associated with data acquisition. Ideally, if

gene information is complete and the data acquisition is

perfect, this method can be directly applied to the gene

expression profiles consisted of all slices to form the brain-

wide GCN. The capability of taking two common types of

inputs affords more flexibility and robustness to handle

noisy data and to incorporate/be integrated into promising

methods since many GCN constructions methods are based

on gene–gene associations.

The GCNs outputted by DLSC are not traditional net-

works with nodes and edges. In the slice-wide GCNs,

nodes are the tested genes and the edges are not explicitly

indicated. In DLSC, a set of coexpression patterns is

learned from the data. At the same time, we also obtain a

coefficient matrix detailing how similar the expression

patterns of each gene to each of these coexpression patterns

although no information is provided on the association

between any of the two genes in the network. However, the

pairwise gene–gene similarity can still be readily estimated

from the coefficients using various metrics. One example is

the successful construction of global similarity matrix from

the slice-wide GCNs.

In addition to the presented GCNs that reflect neuronal

diversity and region specificity, many GCNs are much

more difficult to interpret. Comparisons with the published

lists show that numerous GCNs are enriched in multiple

neuronal cells. Other GCNs are significantly associated

with several functions. One explanation to the challenges

of GCN interpretation is that the coexpression relationship

can come from multiple biological sources such as mech-

anisms that synchronously regulate transcriptions of mul-

tiple genes and mRNA degradation as well as

nonbiological sources such as batch processing effects

(Gaiteri et al. 2014). The changes brought by these sources

are not mathematically distinguishable. Additionally, it is

widely known that gene coexpression can be dynamically

regulated by neural development, aging, environment, and
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diseases (Dong et al. 2007; Jiang et al. 2001; Rampon et al.

2000). Since the gene expression profiles used is limited to

one set of conditions, we should be cautious when inter-

preting the GCNs biologically.
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