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Abstract: Multivariate connectivity and functional dynamics have been of wide interest in the neuroi-
maging field, and a variety of methods have been developed to study functional interactions and dynam-
ics. In contrast, the temporal dynamic transitions of multivariate functional interactions among brain
networks, in particular, in resting state, have been much less explored. This article presents a novel
dynamic Bayesian variable partition model (DBVPM) that simultaneously considers and models multi-
variate functional interactions and their dynamics via a unified Bayesian framework. The basic idea is to
detect the temporal boundaries of piecewise quasi-stable functional interaction patterns, which are then
modeled by representative signature patterns and whose temporal transitions are characterized by finite-
state transition machines. Results on both simulated and experimental datasets demonstrated the effec-
tiveness and accuracy of the DBVPM in dividing temporally transiting functional interaction patterns.
The application of DBVPM on a post-traumatic stress disorder (PTSD) dataset revealed substantially dif-
ferent multivariate functional interaction signatures and temporal transitions in the default mode and
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emotion networks of PTSD patients, in comparison with those in healthy controls. This result demon-
strated the utility of DBVPM in elucidating salient features that cannot be revealed by static pair-wise
functional connectivity analysis. Hum Brain Mapp 35:3314–3331, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Functional segregation and integration are two general
principles of the human brain architecture [Friston, 2009],
and thus studying functional brain connectivity or interac-
tion [Friston, 1994] based on functional magnetic reso-
nance imaging (fMRI) data has received substantial
interest. In the literature, a variety of computational and
statistical methodologies have been developed to infer
functional and=or effective connectivity [e.g., Friston, 1994;
Zhou et al., 2009; Seth, 2010] and functional interactions
[e.g., Chang and Glover, 2010; Deng et al., 2012; Marrelec
et al., 2006; Ramsey et al., 2011; Smith et al., 2011]. In par-
ticular, in addition to the widely-used pair-wise correla-
tion based functional connectivity analysis [e.g., Fox and
Raichle, 2007; Honey et al., 2007; Li et al., in press], a vari-
ety of multivariate approaches, such as the dynamic causal
modeling (DCM) [Friston, 2003], the multivariate autore-
gressive model (MAR) [Harrison et al., 2003], the struc-
tural equation modeling (SEM) [Protzner and McIntosh,
2006], Granger Causality Analysis [Deshpande et al., 2011]
and the joint MAR-SEM model [Kim et al., 2007], have
been introduced to examine multiple nodes=networks
simultaneously. More recently, a series of studies have
demonstrated that graphical causal models [Ramsey et al.,
2011; Sun et al., 2012], or so called casual Bayes nets,
exhibit superior performance in identifying effective con-
nections from real or simulated fMRI data. For instance, it
has been shown [Ramsey et al., 2011; Sun et al., 2012] that
the graphical causal models can effectively deal with sev-
eral key problems in modeling effective connectivity such
as inferring robust causal structures across individuals
and handling varying delays in fMRI blood oxygen level
dependent (BOLD) responses. Conceptually, multivariate
graphical causal models based on Bayesian networks bene-
fit significantly from simultaneous consideration of the
whole network for functional interaction inference and
being less sensitive to noise in the fMRI BOLD signals
[Ramsey et al., 2011; Sun et al., 2012]. In general, multivar-
iate models of functional connectivity or interaction have
received increasing attention in the neuroimaging field.

Meanwhile, another important yet challenging issue that
has received intensive recent interest is the temporal
dynamics of functional connectivity. In many previous
studies [e.g., Fox and Raichle, 2007; Honey et al., 2007; Li
et al., in press], the functional=effective connectivity map-
ping approaches traditionally assumed temporal stationar-
ity. That is, functional=effective connectivities or functional

interactions were computed over the entire fMRI scan,
which were then used to characterize the strengths or direc-
tionalities of connections across brain regions. However,
there is mounting evidence from other authors [e.g., Bassett
et al., 2011; Chang and Glover, 2010; Deco and Jirsa, 2012;
Deshpande et al., 2008; Freyer et al., 2009; Ghosh et al.,
2008; Lindquist et al., 2007; Majeed, et al., 2011; Robinson
et al., 2010; Smith et al., 2012] and ourselves [Deshpande
et al., 2006; Hu et al., 2011; Li et al., 2011, in press; Lim
et al., 2011] indicating that functional=effective connectiv-
ities are undergoing dynamic state changes at different
time scales. At a more basic level, neuroscience research
suggests that the function of any cortical area is subject to
top-down influences of attention, expectation, and percep-
tual task [Gilbert and Sigman, 2007]. For instance, dynamic
interactions between connections from higher- to lower-
order cortical areas and intrinsic cortical circuits mediate
the moment-by-moment functional switching in brain. Even
in resting state, the functional connectivity is still under-
going dynamic changes within time scales of seconds to
minutes [e.g., Chang and Glover, 2010; Li et al., 2011, in
press; Smith et al., 2012].

There has been exciting advances in both modeling multi-
variate functional connectivity=interaction [Friston 2003;
Harrison et al., 2003; Kim et al., 2007; Protzner and McIn-
tosh, 2006; Ramsey et al., 2011; Sun et al., 2012] and detecting
temporal brain dynamics [Chang and Glover, 2010; Li et al.,
2011, in press; Smith et al., 2012]. Recently, there are several
literature reports that utilized the sliding time window
based framework to investigate the functional brain dynam-
ics [Allen et al., 2012; Li, et al., 2013], as well as works that
used graphical modeling methods to detect change point in
brain functional connectivity based on regression tree results
by sparse regression between regions of interests (ROIs).
However, it is important and much needed for an integrated
framework to infer the representative signature patterns of
the multivariate functional interactions and to quantitatively
characterize the temporal transitions of those signature pat-
terns simultaneously. Considering that functional brain
activities are essentially network behaviors, we are moti-
vated to develop novel computational and statistical
approaches to investigate the temporal dynamics of multi-
variate functional interactions among brain networks, in
order to elucidate interesting features that cannot be
revealed by multivariate or non-stationary methods alone,
nor by static pair-wise functional connectivity analysis.

Inspired by the success of Bayesian graphical causal
models in neuroimaging [e.g., Ramsey et al., 2011; Smith
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et al., 2011; Sun et al., 2012] and in recognition of the
importance of revealing dynamics of functional interaction
patterns [e.g., Bassett et al., 2011; Chang and Glover, 2010;
Hu et al., 2011; Li et al., 2011, in press; Lim et al., 2011;
Majeed, et al., 2011; Smith et al., 2012], in this article, we
propose and present a novel dynamic Bayesian variable
partition model (DBVPM) that simultaneously infers global
functional interactions within brain networks and their
temporal transition boundaries. A key conceptual novelty
in DBVPM is that the temporal boundaries of functional
brain activities represented by fMRI time series are
defined and determined by the abrupt change points of
multivariate global chain and V dependences among net-
works, instead of the fMRI time series changes [Gao and
Yee, 2003; Lindquist et al., 2007; Morgan et al., 2004], pair-
wise functional connectivity changes [Li et al., in press], or
multivariate regression model [Cribben et al., 2012]. The
major methodological novelty is that the temporal statio-
narity of functional interaction patterns within each time
segment is achieved automatically and the temporal boun-
daries of successively different multivariate functional
interaction patterns are statistically inferred naturally
within a unified Bayesian framework. The DBVPM was
evaluated and validated with simulated and experimental
datasets, demonstrating its performance and robustness.

As a brief demonstration of potential application of
DBVPM, the temporally segmented functional interaction
patterns within the default mode network (DMN) [Fox and
Raichle, 2007; Greicius et al., 2004; Raichle et al., 2001] and
emotion [Sabatinelli et al., 2009] network derived from a
post-traumatic stress disorder (PTSD) dataset were clustered
into representative signature patterns via effective dictionary
learning methods [Yang et al., 2011]. The results revealed
substantially different multivariate functional interaction sig-
natures and temporal transitions in the default mode and
emotion networks of PTSD patients, in comparison with
those in healthy controls. This result demonstrated the effec-
tiveness and utility of DBVPM in elucidating interesting fea-
tures that cannot be revealed by traditional static pair-wise
functional connectivity analysis. The rest of this article is
organized as follows. Method’s section details the DBVPM
and identification of representative signature patterns.
Experimental setups and results are presented in Result sec-
tion. Discussion and Conclusion section discusses limitations
and possible future works, and concludes the article.

METHODS

Dynamic Bayesian Variable Partition Model

Preliminaries of Bayesian inference

Given y1, y2, . . ., ym iid (independent and identically dis-
tributed) observations from the d-dimensional multivariate
normal distribution

yi � N l;Rð Þ i51; 2; . . . ;m

where l denotes the d-dimensional mean vector and R
denotes the d3d covariance matrix. Then the conjugate
prior distribution of l;Rð Þ is the N2Inv2Wishart l0;K0=ð
j0; m0;K0Þ [Gelman et al., 2003] with the following form:

ljR � N l0;R=j0ð Þ

R � Inv2Wishart m0;K0ð Þ

The posterior distribution of l;Rð Þ based on the data y1,
y2, . . . , ym is the same type of N2Inv2Wishart
lm;Km=jm; mm;Kmð Þ, where

lm5
j0

j01m
l01

m

j01m
�y

jm5j01m

mm5m01m

Km5K01S1
j0m

j01m
ð�y2l0Þð�y2l0ÞT

S5
Xm

i51

ðyi2�yÞðyi2�yÞT

Here, S is a d3d matrix.

Figure 1.

(a) Chain-dependence model of the group of variables YG. (b) V-

dependence model of the group of variables YG. (c). Illustration

of data matrix of YG, where yi are the values of all ROIs at time

i (the ith column in the matrix), and Yj are the values of the jth

ROI at all times (the jth row in the matrix).
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Because we are interested in the posterior distribution
of the configuration, we calculate the marginal distribu-
tion of the data y1, y2, . . ., ym as follows [Gelman et al.,
2003]:

P y1; y2; . . . ; ymð Þ5 P y1; y2; . . . ; ym; l;Rð Þ
P l;Rjy1; y2; . . . ; ymð Þ 5

1

2p

� �md=2 j0

jm

� �d=2

3
Cd

mm

2

� �
Cd

m0

2

� � det K0ð Þð Þm0=2

det Kmð Þð Þmm=2
2md=2 (1)

where Cd is the multivariate gamma function:

Cd xð Þ5pd d21ð Þ=4
Yd

j51

C x1 12jð Þ=2ð Þ

We call the function defined in Eq. (1) as F(.), which will
be used in the following calculations.

Chain-dependence model

We say that a group of d normally distributed variables
YG 5 fY1, . . . ,Ydg (G5f1,. . .,dg) follows a chain-
dependence model if the index set G can be partitioned
into three nonoverlapping subgroups A, B, and C such
that A and C are conditionally independent given B, as
shown in Figure 1a, while only C is allowed to be empty,
and A and B must contain at least one ROI.

Under the chain-dependence model, the joint probabil-
ity of YG could be decomposed and calculated as
follows:

P A;B;Cð Þ5P Að ÞP BjAð ÞP CjBð Þ

5P Að ÞP A;Bð Þ
P Að Þ

P B;Cð Þ
P Bð Þ

5
P A;Bð ÞP B;Cð Þ

P Bð Þ

5
F A;Bð ÞF B;Cð Þ

F Bð Þ

(2)

where F Yi;Yj; . . .
� �

is the joint probability of (Yi, Yj, . . .)
as defined and will be calculated in Eq. (1). For calculat-
ing the posterior distribution function F(.), the time series
(y1, y2,. . .,ym) defined in the ROI of each group (groups
of rows in the data matrix) are used as the function
input.

V-dependence model

We say that d normally distributed variables YG 5

fY1, . . . ,Ydg (G 5 f1,. . .,dg) follows a V-dependence model
if A and B are marginally independent, as shown in Figure
1b. In this case, C can be viewed as “children” of A and B,

and the joint probability of YG could be decomposed and
calculated as follows:

P A;B;Cð Þ5P Að ÞP Bð ÞP CjA;Bð Þ

5P Að ÞP Bð ÞP A;B;Cð Þ
P A;Bð Þ

5
F Að ÞF Bð ÞF A;B;Cð Þ

F A;Bð Þ

(3)

where F Yi;Yj; . . .
� �

is the joint probability of (Yi, Yj, . . .) as
defined and will be calculated in Eq. (1).

Here, we choose chain and V dependences to model the
global structure, instead of using a Bayesian network to
model the detail structure [Neapolitan, 2004]. Essentially,
these two structures can contain all the global structures
for all the Bayesian networks (i.e., directed acyclic graph
(DAG)). For example, suppose we have four ROIs with
structure 1->2, 3->4, our method will find a V structure
with 1 and 2 in A, 3 and 4 in B (or 3 and 4 in A, 1 and 2
in B, see Fig. 1b) and nothing in C. Because within each of
A, B and C, we use the saturated model (complete graph,
every ROI is connected with others), and chain structure
and V structure model the global connectivities between
three (local) groups of ROIs (A–C). Thus our dynamic
Bayesian partition model is looking for change points that
make big changes in global structure, not the small change
in local structure. The global structure found by chain and
V structure is an (asymptotically) inclusion model of the
true DAG model (i.e., all the conditional independence in
this global structure exist in the true DAG model, but not
vice versa) [Chickering, 2002; Chickering and Meek, 2002;
Heckerman et al., 1995].

Bayesian variable partition model (BVPM)

Given an d 3 m ROI data matrix Y 5 (y1, y2, . . ., ym) in
which y1, y2, . . ., ym are iid from the d-dimensional multi-
variate normal distribution. Here, m denotes the number
of observations (the number of time points in an fMRI sig-
nal) and d denotes the number of ROIs within a functional
brain network, as illustrated in the sample matrix (Fig. 1c).
We design a Bayesian variable partition model to infer
the dependence structure (chain or V structure) among
d ROIs.

Let S denote the dependence structure as chain (S 5 1)

or V (S 5 0) structure. Given S, let P
*

5 P1; . . . ;Pdð Þ denote
the grouping (partition) of the index G 5 f1,. . .,dg) to sub-
group A–C where Pj 5 k; k 5 0; 1; 2ð Þ means the jth ROI is

grouped in subgroup k (k 5 0 means A, k 5 1 means B, k
5 2 means C). Thus data matrix Y 5 (y1, y2, . . ., ym) are

our observed data, while S and P
*

5 P1; . . . ;Pdð Þ are
unknown parameters of interest. The likelihood is

p YjP
*

; S
� �

which is calculated as Eq. (2) when S 5 1, and

Eq. (3) when S 5 0. The prior p P
*

;S
� �

5p P
*
� �

p Sð Þand
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p P
*
� �

5
Qd

j51 p Pj

� �
, and uniform priors are used for both

p Sð Þ and p Pj

� �
. Thus the posterior distribution is

p P
*

; SjY
� �

/ p YjP
*

;S
� �

p P
*
� �

p Sð Þ, and Markov chain Monte

Carlo (MCMC) (Metropolis-Hastings) (Liu, 2001) are
designed to sample from the posterior distribution with
the following proposals:

1. Randomly choose one ROI and change its subgroup
membership;

2. Randomly choose two ROIs and switch their sub-
group memberships;

3. Swap the values of S (either from 0 to 1, or from 1 to 0).

Dynamic Bayesian variable partition model

Given an d3m ROI data matrix Y 5 (y1, y2, . . ., ym)
(here m denotes the number of observations in the tempo-
ral order and d denotes the number of ROIs), we are inter-
ested in whether there are underlying differences in the
dependency structures among the d ROIs between differ-
ent time periods and where are the boundaries of tempo-
ral blocks that exhibit significant differences from each
other. Once these boundaries are determined statistically,
they are considered as the change points of functional
interaction patterns within the brain networks. In this arti-
cle, we propose a dynamic Bayesian variable partition
model (DBVPM) equipped with two-level MCMC scheme
that aims to infer the boundaries of temporal blocks and
the variable dependency structures within each block

simultaneously in a Bayesian framework. Figure 2 illus-
trates the basic ideas of the proposed DBVPM, in which
two temporal change points partitioned three fMRI time
series into three different functional interaction patterns.

Define a block indicator vector

I
*

5 I1; . . . ; Imð Þ

where Ii 5 1 if the ith observation (yi) is a change point
(defined as the starting point of a temporal block), and Ii

5 0 otherwise. Therefore, the m temporal observations
were segmented into totally

Pm
i51 Ii blocks, as the first

change point is always the starting time point and the
number of change points segmenting the observations isPm

i51 Ii21. In each block, the variables follow (unknown)
either the chain-dependence model or V-dependence
model. We introduce the structure indicator vector

S
*

5 S1; . . . ;SRIi
ð Þ

where Sb 5 1 if the b-th block follows the chain-
dependence model, and Sb 5 0 if the b-th block follows
the V-dependence model. Moreover, the variables in each
block will be partitioned into three subgroups A–C. We
introduce a partition indicator vector:

P
*

5 P
*

1; . . . ;P
*

RIi

� �
where P

*

b5 P1; . . . ;Pdð Þ with Pj50; 1; 2 is the partition
indicator vector of the b-th block. The marginal likelihood
of the data matrix Y 5 (y1, y2, . . ., ym) can be represented
as follows

p Yj~I ;P
*

;S
*

� �
5
YRIi

b51

p YjP
*

b;Sb

� �

in which p YjP
*

b;Sb

� �
could be calculated according to

Eqs. (1–3). Here, the DBVPM simultaneously models and
characterizes high-order functional interactions and their
temporal dynamics via a unified Bayesian framework.
Notably, in the above DBVPM, the statistical independence
among the temporal segments is assumed here, which is
practically critical to solve the above equation. Therefore,
the posterior distribution of the configuration can be easily
obtained since

p ~I ;P
*

; S
*

jY
� �

/ p ~I ;P
*

;S
*

� �
� p Yj~I ;P

*

; S
*

� �

where p ~I ;P
*

;S
*

� �
5p ~I
� �
�
QRIi

b51 p ~Pb; Sbj~I
� �

. We used uni-

form prior for p ~I
� �

and p ~Pb; Sbj~I
� �

.

Two-level MCMC scheme

In this section, we propose a two-level Metropolis-Hast-
ings (MCMC) [Liu, 2001] scheme to sample from the pos-
terior distribution of the block boundaries and

Figure 2.

Illustration of two temporal change points of functional interaction

patterns at time point 1 and 2. In the time period before change

point 1, the functional interaction among three fMRI signals is a

Chain-dependence model (e.g., signal 1 -> signal 2 -> signal 3), while

between time points 1 and 2, it is a V-dependence model (e.g., signal

1 -> signal 2 <- signal 3). After the time point 2, it is again a V-

dependence model (e.g., signal 2 -> signal 1 <- signal 3). [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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dependency structures within each block. In the proposed
scheme, the lower level MCMC samples from the posterior
distribution of the dependency structures of each block
given the block boundaries, and the higher level MCMC
samples from the posterior distribution of the block boun-
daries. Specifically, in the lower level MCMC, the proposal
scheme involves alternating between the chain and V
structures and changing the group labels of each variable.
The likelihood can be calculated using the formula [Eq. (1–
3)] described in previous sections. In the higher level
MCMC, the proposal scheme involves segmenting one
block into two, merging two neighboring blocks and shift-
ing a block boundary. In each higher level step, every
block runs through a lower level MCMC. A dependency
structure is sampled for each block as the dependency
structure for that block in the higher level proposal. Then
the log likelihood of the proposal can be calculated by
summing up the log likelihood of each block. We then
check the mixing of MCMC and exclude the burn-in from
the actual MCMC sample of the posterior distribution.
Then the posterior probability for each time point (1,
2,. . .,m) to be a change point was calculated from MCMC
samples. A running example of how the DBVPM reveals
the dynamics of functional interaction patterns is provided
in Supporting Information Fig. 1.

Functional interaction pattern classification and

temporal finite-state machines

The DBVPM was applied on the resting state fMRI (R-
fMRI) signals extracted from both the default mode network
(DMN) and emotion networks in 98 brains (53 healthy con-
trols and 45 PTSD patients). Additional details of the subject
recruitment, neuroimaging parameters, and localizations of
the default mode and emotion networks are provided in
Supporting Information. In brief, we first defined the R-
fMRI signals on our recently developed and validated 358
consistent and corresponding DTI-derived landmarks across
multiple brains and populations, named dense and individ-
ualized common connectivity-based cortical landmarks
(DICCCOL) ROIs [ZHu et al., 2011a,b, 2012] (The source
codes and data models have been released online at: http://
dicccol.cs.uga.edu). Then, we used the functionally labeled
DICCCOLs and their prediction models to locate the default
mode network (DMN) [Fox and Raichle, 2007; Greicius
et al., 2004; Raichle et al., 2001] and emotion [Sabatinelli
et al., 2009] network. In total, we obtained 2,335 quasi-static
temporal segments of functional interaction patterns in the
default mode network and 1,567 segments in the emotion
network from the 98 subjects by using DBVPM.

Because the two brain networks were localized by the
DICCCOL system which already established the corre-
spondences of network nodes across individuals, we can
congregate the functional interaction patterns from differ-
ent brains and perform statistical modeling of common
interaction patterns. Without loss of generality, we used

the DMN as an example to showcase the algorithmic pipe-
line for preprocessing and inference of representative func-
tional interaction patterns. First, since the identified
function interaction patterns are binary and could be
affected by noise, we used the Fisher discriminative dic-
tionary learning algorithm [Yang et al., 2011] to seek a dic-
tionary D describing the 2,335 function interaction patterns
defined in each temporal segment in the DMN, by mini-
mizing the energy function in the equations:

J D;Xð Þ5argminðD;XÞfr A;D;Xð Þ1k1jjXjj1k2f Xð Þg D;Xð ÞðD;XÞ (4)

where

r A;D;Xð Þ5jjAi2DXijj2F1jjAi2DiX
i
ijj

2
F1

Xc

j51;j6¼i

jjDjXi
jjj

2
F (5)

and

f Xð Þ5tr
Xc

i51

Xc

xk2Xi

xk2 �Xi

� �
xk2 �Xi

� �T

 !

2tr
Xc

i51

ni
�Xi2�X
� �

�Xi2�X
� �T

 !
1hjjXjj2F

(6)

where A contains the vectorized functional interaction pat-
terns of all the quasi-static temporal segments, which is a
64 3 2,335 matrix as the DMN consists of 8 DICCCOL
ROIs and its functional interaction pattern is an 8 3 8
matrix. X is the encoded matrix A based on the learned
dictionary D. In Eq. (4), r(A, D, X), is the constraint on dis-
criminative fidelity, thus making the dictionary D able to
code the data with minimum residual and ensuring that
the coding should only use one sub-dictionary Di, but not
other sub-dictionaries. The second term k1jjXjj in Eq. (4) is
the sparsity constraint [Yang et al., 2011], requiring the
coding coefficient X be as sparse as possible, i.e., the total
number of nonzero items in X should be minimized. The
third term f(X) in Eq. (4) is the constraint on the discrimi-
native coefficient [Yang et al., 2011], which aims to mini-
mize within-class scatter of X and maximize the cross-class
scatter of X, according to the Fisher discrimination crite-
rion [Yang et al., 2011]. This constraint can make the cod-
ing coefficient X to be discriminative.

In Eq. (5), Xi is the encoding result of Ai, which is one of
the classes of data A, based on the whole dictionary D.
Thus the first term in Eq. (5) is the overall residual of using
dictionary D to encode Ai. Xi

i is the encoding of Ai on sub-
dictionary Di, which is the specific sub-dictionary in corre-
spondence with Ai. Thus the second term in Eq. (5) is the
residual of using only part of the dictionary to encode Ai.
Xi

j is the encoding of Ai on other sub-dictionaries Dj other
than Di, and it would be minimized because we only wish
to use the correct dictionary Di to encode it. In Eq. (6), c is
the total number of classes in A, as well as the total number
of sub-dictionaries in dictionary D, while ni is the number
of items in the projected data Xi, as there are multiple items
in each class. k1, k2 and g are the trade-off parameters.
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During the learning process, the learned dictionary D
was constrained to consist of 12 subdictionaries (corre-
sponding to the subsequent 12 labels for the function inter-
action patterns). To find the optimized number of
subdictionaries to encode the interaction patterns and
avoid model over-fitting, we used various numbers of
classes ranging from 5 to 20 to encode the input data A. It
was found that the encoding residual was decreasing
monotonically with more numbers of sub-dictionaries, and
the minimum number of dictionaries that could encode
over 95% of the input data (i.e. encoding residual less than
5%) was 12. Then, we used the center of each sub-
dictionary (which are 12 matrices with dimension of 8 3

8) to encode the original 2335 8*8 interaction segment mat-
rices, in order to remove the noise:

X5Dcenter � R1E �ð Þ and X
_

5Dcenter � R (7)

In the above equation, we performed linear regression
between the function interaction patterns and the center of
each subdictionary, and the regression coefficients were used
to obtain a linear combination of subdictionaries in expressing
the original data while removing the regression residual e.

In this work, we have applied the above dictionary
learning method to all of the pre-processed functional
interaction patterns in the DMN and emotion network to
derive the representative signature patterns. It turned out
that we can identify a number of meaningful patterns (12
for both DMN and emotion networks) that account for a
majority of the temporal interaction segments. In particu-
lar, these common patterns are reproducible across popu-
lations, and they were defined as the representative
signature patterns of functional interactions. Finally, each
temporally segmented interaction pattern was assigned to
one of the signature patterns by the largest regression
coefficient obtained in Eq. (7), and their temporal transi-
tion patterns within each individual and across subjects
were modeled by a finite-state machine [Black, 2008],
which will be shown in Representative Functional Interac-
tion Patterns and Temporal Transitions section.

RESULTS

Evaluation of the DBVPM model on simulated

data

We used two simulation methods and the associated
datasets to evaluate and validate the DBVPM models. In
the first method, we used statistical models to generate
interacting time series with dynamically changing struc-
tures (iid within each quasi-stable segment). Specifically,
we simulated six sets of interaction models with different
levels of complexities, ranging from 3 nodes to 10 nodes
and ranging from single chain-dependence structure to
more complex ones. Figure 3 illustrates the temporally
changing interaction structures in the six interaction mod-
els (top panels) and the posterior probability for each time

point as the change point (bottom panels). For instance,
shown in Figure 3a, there are 3 nodes (ROIs, Y1, Y2, and
Y3) and 200 time points that are divided into two blocks at
time point 101. The simulated data is generated as follows:
all the three ROIs are marginally N(0,1). From time points
1 to 100 (the first block), all the three ROIs are independ-
ent of each other. From time point 101 to 200 (the second
block) the structure is a chain structure: Y2->Y1->Y3, with
correlation coefficients q1;25q1;350:8, as shown in the top

panel of Figure 3a. For another example, in Figure 3e,
there are 10 ROIs (Y1 to Y10) and 200 time points that are
divided into 2 blocks at 101. The simulation data is gener-
ated as follows: all the 10 ROIs are marginally N(0,1).
From time point 1 to 100 (the first block), all the five pairs
of 10 ROIs are independent of each other. Within each

pair, two ROIs are �N(0, R),
P

5
1 0:8

0:8 1

 !
. For the sec-

ond block (from 101 to 200), the structure is a star-like
structure, with Y1 being the center and other ROIs (Y2 to
Y10) dependent on it with correlation coefficient q 5 0:8.
This star-like structure means given Y1, all other ROIs (Y2

to Y10) are conditionally independent of each other. It is
interesting that our DBVPM successfully detected all of the
simulated changes of interaction patterns in all of the mod-
els, as shown in each of the bottom panels in Figure 3a–f. It
is striking that both of the model sensitivity and specificity
of DBVPM in this experiment are 100%, indicating the
good performance of DBVPM. Further, we have repeated
the simulation for 100 times, and the averaged Type I error
rate over all six types of simulations is 1.83%, and the aver-
aged Type II error rate is 1.67%.

In the second simulation method, the nodes were mod-
eled as the neurons in the neural networks and the interac-
tion between them were simulated as the coupled
neuronal spiking (firing), and thus there are some tempo-
ral dependency within each quasi-stable segment (com-
pared with the iid case in the first simulation method).
The neuron spiking model was introduced in [Izhikevich,
2003, 2004], where the time series of each node generated
by this method is the oscillation of the membrane potential
of neuron in a network, which follows the equation
described in [Izhikevich, 2003]. Similar to the first simula-
tion method, we generated nine sets of time series on five
nodes according to the different dynamic interaction pat-
terns defined in nine models, as visualized in Figure 4. We
repeated the simulation for 100 times, and the average
Type I and Type II error rates over nine models were 5
and 7.78%, respectively, where the threshold of posterior
probability was set as 0.99.

Evaluation of the DBVPM Model on

Experimental Data

To evaluate the change point detection accuracy of the
proposed DBVPM in Dynamic Bayesian Variable Partition
Model section on experimentally acquired fMRI data, we
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visually identified the temporal boundaries of functional
interaction patterns for 98 subjects with multimodal R-
fMRI and DTI data, as illustrated in Figure 5a. The details
of the neuroimaging data acquisition and preprocessing
are provided in the Supporting Information. Given the
lack of ground-truth in experimental R-fMRI data, this
semi-automatic visual delineation of temporal boundaries
was used for algorithm evaluation. Here, the total func-
tional interaction strength of each DICCCOL has been
summed together among all of its connections to other
DICCCOLs. It is evident that there are clear functional
interaction pattern changes along the temporal axis, as
highlighted by the dashed black lines in Figure 5a. These
boundaries were independently verified for all of the 98
subjects we studied in this article, and were used as the
benchmark data for algorithm accuracy evaluation. Based
on the above benchmark segmentation, Figure 5b shows
the evaluation results of DBVPM for the emotion network.
It is evident that given a marginal difference of the six
time points, the results by DBVPM and those by the inter-
active labeling have quite high probability of agreements.

The average agreement for the emotion network for all of
the 98 subjects was 0.9142, which is considered as quite
accurate. This result demonstrates the good accuracy of
DBVPM in segmenting temporally varying functional
interaction patterns within brain networks. Furthermore,
the temporal transitions of functional interactions within
the DMN were identified interactively for twenty ran-
domly selected cases and then compared to the change
points obtained by DBVPM. It turned out that the average
difference between the interactively-labeled change points
and those by DBVPM is 3.5 time points, and over 90% of
the interactively-labeled change points are within 10 time-
points neighborhoods of those by DBVPM. This result
further demonstrates that the DBVPM is accurate in identi-
fying temporal functional interaction transitions in experi-
mental R-fMRI data.

To evaluate whether DBVPM can differentiate possible
altered functional interactions and transition dynamics in
brain diseases, we analyzed a clinical dataset that includes
both PTSD and healthy controls (details in the Supporting
Information). In this section, we compared the frequencies

Figure 3.

The dynamics of interaction pattern (top) of the simulation data using

the first method and the change point detection result (bottom, the

posterior probability for each time point as a change point) of

DBVPM model in six different models, depicted in (a–f), respectively.

Nodes Y1-Y10 correspond to the generated ROIs and the arrows

connecting them show the directed interaction between them

(Bayesian network structure). In each model, the interaction pattern

between simulated ROIs would change as indicated by the bold red

lines separating the blocks, and the numbers on those red lines show

the time of the change. The change point detection results are visual-

ized as the value of posterior probabilities at each time point

obtained by DBVPM, where a high value indicates high probability for

state change. It should be noted that the time lengths of the

simulated signals are not same through the six simulations. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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of the functional interaction pattern changes in the DMN
and emotion network in both PTSD and control subjects. It
turned out that there are no significant differences (p value
> 0.05) between the change point frequencies in PTSD and
those in controls, as demonstrated in Supporting Informa-
tion Figure 3. This result suggests that the difference
between PTSD patients and controls might lie in the func-
tional interaction patterns and their temporal transitions,
instead of in the mere change point frequencies. Therefore,
we further characterized the functional interaction and
temporal transition patterns within PTSD and controls.

Representative Functional Interaction Patterns

and Temporal Transitions

We applied the DBVPM on the datasets described in the
Supporting Information, and found that the functional
interaction patterns in the DMN can be clustered into 12
distinctive centers, which are matrices describing the func-
tional interaction among eight DICCCOL ROIs in DMN, as
shown in Figure 6. It is evident that in each distinctive
cluster pattern, one or more DICCCOL ROIs have strong
interactions with others and serves as the interaction
inflow center, e.g., the DMN node ID #7 (left middle tem-
poral gyrus) in pattern #1 and the DMN node ID #4 (right
angular gyrus), #5 (left medial frontal gyrus) and #7 (left

middle temporal gyrus) in pattern #4, as highlighted by
the blue arrows. It is interesting that different DMN nodes
serve as the functional interaction inflow centers in the 12
distinctive patterns, and the inflow node exhibits high-
order (e.g., 7th order in DMN node ID #7 in pattern #1)
functional interactions with other nodes within the DMN.
These results not only verified our hypothesis that there
exists high-order functional interactions within brain net-
works (e.g., DMN), but also demonstrated that our
DBVPM can effectively infer those high-order interactions.
Also, the results in Figure 6 demonstrated the complexity
of high-order functional interaction patterns in the DMN,
although the neural basis of these patterns remains to be
explained and interpreted in the future. It is emphasized
that it is critical to employ the DICCCOL system that
offers intrinsic correspondences of network nodes across
individuals, such that the remarkably different functional
interaction patterns within a relatively short period of 7
min R-fMRI scans from different brains can be pooled,
integrated and clustered at the population level.

Therefore, the cluster centers in Figure 6 are defined as
the representative signature states of functional interac-
tions for the DMN, and are indexed by order of the num-
ber of temporal segments clustered (i.e., their occurrence
frequencies). For visual examination, the top 5 functional
interaction signature states along with the temporal seg-
ments assigned to them are shown in Supporting

Figure 4.

The dynamics of interaction pattern (top) of the simulation data using

the second method and the change point detection result (bottom,

the posterior probability for each time point as a change point) of

DBVPM in nine different models, depicted in (a)–(i), respectively.

Nodes N1-N5 are the interacting neurons in the neural network,

each with the generated time series characterizing its membrane

potential. The arrows connecting them show the undirected interac-

tion between these nodes. Similar to Figure 3, the interaction pattern

changes are indicated by the bold red lines separating the blocks, and

the numbers on those red lines show the time of the change. At the

bottom of each model is the plot of the value of posterior probability

for each time point as a change point obtained by DBVPM. It should

be noted that the time lengths as well as the position(s) of the change

points of the simulated signals are not same through the nine simula-

tions. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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Information Figure 4 via multidimensional scaling. It can
be clearly seen that there are substantial differences among
those different signature states, despite that the higher
dimensional functional interaction patterns have already

been reduced to only two dimensions. After the above dic-
tionary learning procedure described in Functional Interac-
tion Pattern Classification and Temporal Finite-State
Machines section, the temporal segments of functional

Figure 5.

(a) Illustration of the temporal dynamics of functional interactions

within brain networks. The horizontal axis indicates time, and the

vertical axis indicates the 358 DICCCOLs with color indicating their

functional interaction strength. Thus, each row represents the tem-

poral dynamics of each DICCCOL’s interaction strength, while each

column is the functional interaction strength pattern of the whole

brain represented by 358 DICCCOLs [Zhu et al., 2012]. The tempo-

ral boundaries (highlighted by dashed black lines) between different

interaction patterns were visually determined and verified by experts.

(b) Result on the emotion network. The horizontal direction is the

difference between the interactively labeled change time point and

the DBVPM-derived time point. The vertical axis is the probability of

the agreement with the results by two methods (DBVPM and inter-

active labeling). Each blue curve represents one subject. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r Inferring Functional Interaction and Transition Patterns r

r 3323 r



Figure 6.

The visualization of functional interaction patterns in 12 clustered representative signature states

from DMN. The details of DMN nodes are listed in Supporting Information Figure 2 and Sup-

porting Information Table I. The functional interactions among DMN nodes are represented by

the blue arrows. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



interaction patterns in the DMN of all subjects (both PTSD
and controls) were encoded into the same signature state
space (12 representative states). Examples of the encoded
functional interaction state changes of the DMN from three
randomly selected healthy control subjects are shown in
Supporting Information Figure 5. It can be clearly seen
that the functional interaction patterns in the DMN change
dramatically along the temporal axis, and particularly, the
transition patterns vary significantly across different
brains. This result replicated previous literature reports
that the brain function undergoes significant temporal
dynamics [e.g., Bassett et al., 2011; Chang and Glover,
2010; Majeed, et al., 2011; Robinson et al., 2010; Smith
et al., 2012]. Furthermore, the results in Supporting Infor-
mation Figure 5 suggest that the relatively short period of
around 7 min resting state fMRI scan might only take a
snapshot of the large-scale space of possible temporal
brain state transition patterns. Again, it is emphasized that

it is essential to employ the DICCCOL system that offers
intrinsic correspondences of network nodes across individ-
uals, such that the remarkably different snapshots of tem-
poral transition patterns of functional interaction within a
short period of R-fMRI scans from different brains can be
aggregated, modeled and characterized at the population
level.

To further interpret the encoded functional state
changes, and to quantitatively characterize the brain state
dynamics, we encoded the functional states in the DMN in
two groups of subjects (normal controls and PTSD
patients) by the same set of representative signature states
listed in Figure 6, and examined the statistical distribu-
tions of the signature states respectively. For each of these
two groups, the histogram of 12 representative signature
states were obtained and investigated, as shown in Figure
7a. In the figure, we can clearly see substantial differences
in several state distributions in normal controls and PTSD

Figure 7.

(a) Histogram of percentage of functional states assigned to each

signature states in the DMN from normal control subjects (shown

in blue) and patient subjects (shown in red). The error bars stand

for the standard errors of the two histograms. (b–c) The proba-

bility of transition from each state to another (i.e., the finite-state

transition machine). The color of each cell indicates the frequency

of the state transition from its row index to its column index. The

values in the matrix have been normalized so that the sum of all

cells is equal to 1, and the color bar is on the right. Visualization

on the left (b) is from normal control group and the right (c) is

from PTSD patient group. Five transition patterns with substantial

difference between PTSD and control brains are highlighted by

colored arrows. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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patients. For instance, the control subjects tend to have
higher frequencies than PTSD patients (by 13%) in signa-
ture state #1, while the PTSD patients tend to have sub-
stantially higher frequencies in signature states #3 and #11,
with differences of 28 and 34%, respectively. Based on the
visualizations of functional interaction patterns in Figure
6, the neuroscience interpretation of higher frequencies in
states #3 and #11 is that PTSD patents tend to fall more
frequently in the brain states with intense functional inter-
actions in both the left and right posterior cingulate gyri
(DMN nodes #2 and #6 in Fig. 6), which is consistent with
current neuroscience knowledge of PTSD [Francati et al.,
2006].

Furthermore, we examine the temporal transition pat-
terns of the functional interaction patterns. In this sense,
the brain activity within the DMN can be regarded as a
dynamic process that transits successively through a set of
representative signature states S1, S2, S3, . . ., Sn, which is
akin to a finite-state machine (totally 12 states) [Black,

2008]. Quantitatively, the transition from any states Si to
its next state Sj is represented by the probability Pij. Then,
these probabilities obtained from the identified state
changes as shown in Supporting Information Figure 5 are
summarized and visualized in a 12 3 12 finite-state transi-
tion matrix in Figure 7b–c. It can be easily seen that there
are substantial differences between the transition patterns
in PTSD and control brains, some of which are highlighted
by the colored arrows. For instance, the black arrows
show two transition patterns that are substantially more
frequent in healthy brains than the PTSD brains, while the
green, red and orange arrows point to transition patterns
that are substantially more frequent in PTSD brains than
healthy brains. It is interesting that although the total
occurrence frequencies of state #2 in PTSD and control
brains are very similar (Fig. 7a), their temporal transition
patterns to state #2 are quite different (pointed by the
green and black arrows in Figure 7b–c, where the cells
pointed by the black arrows have an average difference of

Figure 8.

(a) Histogram of percentage of interaction segments assigned to

each signature states in the DMN from normal controls, which were

split into two subsets with same number of subjects. The error bars

show the standard errors of the two histograms. (b–c) The transi-

tion matrix from two groups of equal numbers of interaction pat-

terns. The color of each cell indicates the frequency of the state

transition from its row index to its column index. Values in the

matrix have been normalized so that the sum of all cells is equal to

1. Visualization at the left (b) is from subgroup 1 and the right (c)

is from subgroup 2. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 9.

The visualization of functional interaction patterns in 12 clustered representative signature states

for the emotion network. The details of emotion network nodes are listed in Supporting Infor-

mation Figure 2 and Supporting Information Table I. The functional interactions among nodes are

represented by the blue arrows, as similar to Figure 6. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]



40%, the cells pointed by the red arrows have 47% differ-
ence, and the cells pointed by the green arrow has 112% dif-
ference. Totally, there are 78 out of 144 (54.2%) transition
cells that have differences larger than 30% between normal
controls and PTSD patients. The finite-state transition
matrix can also be depicted as a visual diagram (Supporting
Information Fig. 6), in which each state is represented as a
node and the probability of transition is represented the
edge strength. This result suggests the importance of reveal-
ing temporal transition patterns of functional interactions.
However, the mechanisms underlying these functional state
transitions are to be elucidated in the future.

Reproducibility Studies and Comparisons

To examine the reproducibility of the above functional
interaction signature states and the finite-state transition
machines, we randomly split the temporally segmented
functional interaction patterns in healthy brains into two

equally sized groups. Then, the similar approaches were
applied on these two separate groups of interaction pat-
terns. Interestingly, the results visualized in Figure 8 dem-
onstrated the very good reproducibility of the proposed
methods. For instance, the distributions of the frequencies
of the 12 signature states in subset 1 and subset 2 are quite
similar. Also, the finite-state transition patterns in Figure
8b,c are similar as well. These results demonstrated that
the clustered 12 functional signature states are truly repre-
sentative of the dynamic functional states of the DMN in
healthy brains.

In addition to the DMN, DBVPM was also used to ana-
lyze the emotion network of 53 normal controls and 45
PTSD patients (details in the Supporting Information). In
total, the functional interaction patterns in the emotion
network can be clustered into 12 distinctive centers, as
shown in Figure 9. It is evident that in each distinctive
cluster, one or more DICCCOL ROIs have much stronger
interactions with others and serves as the interaction

Figure 10.

(a) Histogram of 12 states in emotion network in normal control

subjects (shown in blue) and PTSD patient subjects (shown in red).

The error bar represents the standard error of the two histo-

grams. (b–c) Visualization of state transition matrices in emotion

network in normal control (b) and PTSD patient subjects (c). The

color of each cell indicates the frequency of the state transition

from its row index to its column index. Values in the matrix have

been normalized so that the sum of all cells is equal to 1. The

color bar is on the right. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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inflow center=centers, e.g., the emotion node ID #1 (left
inferior temporal gyrus) in pattern #1 and the emotion
node ID #9 (right lingual gyrus) and #11 (right lingual
gyrus) in pattern #2, as highlighted by the blue arrows. It
is interesting that different emotion nodes serve as the
functional interaction inflow centers in the 12 distinctive
patterns, and the inflow node exhibits high-order (e.g.,
13th order in emotion node ID #1 in pattern #1) functional
interactions with other nodes within the emotion network.
These results further verified our hypothesis that there
exists high-order functional interactions within brain net-
works and that our DBVPM can effectively infer those
high-order interactions. The results in Figure 9 addition-
ally demonstrated the complexity of high-order functional
interaction patterns in the emotion.

The histograms of representative functional interaction
patterns and the temporal finite-state transition matrices
within the emotion network are shown in Figure 10. In Fig-
ure 10a, it can be clearly seen that there are substantial state
distribution differences between PTSD and healthy controls
(on average: 30% difference; maximum: 56% difference).
For instance, the control subjects tend to have substantially
higher frequencies in signature states #6 and #9, while the
PSTD patients tend to have substantially higher frequencies
in signature states #1, #5, #7, and #11. In addition, the dif-
ferences between the finite-state transition machines (Figure
10b,c) are substantial. For instance, some of the significantly
different transition patterns are highlighted by correspond-
ing colored arrows. However, the neural basis of these dif-
ferences is to be elucidated in the future. Additional
quantitative comparisons of the PTSD and controls are pro-
vided in the Supporting Information.

DISCUSSION AND CONCLUSION

We have presented a novel dynamic Bayesian variable
partition model (DBVPM) to infer functional interaction
pattern and its temporal transitions in the default mode
and emotion networks that were localized via the DICC-
COL system. Experimental evaluations have demonstrated
the accuracy of the DBVPM method. In particular, our
simulations with known ground-truth showed that the
dynamic Bayesian partition model can accurately identify
change points for all types of global structures, even
though we did not model the detailed local structure.
Such strategy not only highlights the points of large
changes in global structures and tends to ignore points of
small change in local structures, but also eases the compu-
tational burden of our Bayesian method. Furthermore, we
observed from simulations that the proposed model still
inferred global structures of blocks accurately when the
lengths of blocks were between 10 and 20 for most of the
cases such as Figure 3a,b,d–f. In some rare case as Figure
3c, the smallest length of block needs to be greater than 50
to infer global structure accurately. However, even in the
cases where the sample size was smaller than the required

length, the DBVPM still detected change points accurately
without perfect estimation of global structures of blocks.
Once we accurately pinpoint the change points, we can
always use all the structure learning methods which
assume temporal stationary (like greedy equivalence
search (GES) [Meek, 1997], Peter and Clark (PC) [Spirtes
and Glymour, 1991], independent multiple greedy equiva-
lence search (IMaGES) [Ramsey et al., 2011]) to learn the
detail local structures.

Then, the inferred functional interaction patterns within
the DMN and emotion network from a group of 98 PTSD
and control brains were aggregated into a pool and were
then classified into 12 representative functional states. It
turned out that the distributions of the frequencies of these
12 states and their temporal finite-state transition machines
are reproducible across healthy control brains. The appli-
cations of these methods in the PTSD dataset demon-
strated that PTSD exhibits substantial differences in terms
of both distributions of state frequencies and transition
patterns. In particular, our results demonstrated that the
emotion network of PTSD subjects has significant differ-
ence in comparison with healthy controls.

In contrast, the measurements of temporal state change
frequencies cannot reveal any substantial difference
between PTSD and controls. Therefore, the work in this
article demonstrated the importance of quantitative model-
ing of dynamic functional interactions in elucidating the
intrinsic behavior differences of functional networks
between brain conditions (PTSD in this article) and their
healthy controls. It should be noted that these differences
can only be observed and characterized at the population
level at current stage due to the limited scan time (e.g., 7
min) of R-fMRI, in which the abnormal behaviors of func-
tional interactions and temporal transitions can hardly be
captured at the individual subject level. In the future, we
plan to acquire additional repeated R-fMRI scans for the
same group of PTSD subjects so that those abnormal
behaviors of functional interactions could be possibly
observed at the individual level.

Our extensive experimental results have demonstrated
the existence of higher-order functional interaction and
their remarkable temporal dynamics, which cannot be
revealed by traditional static pair-wise connectivity analy-
sis. However, it should be noted that the computational
load of DBVPM grows significantly with the increase of
the number of network nodes, which makes it difficult to
assess the functional interactions within the whole-brain
network such as that represented by all of the 358 DICC-
COL landmarks. In the future, we will investigate novel
methodologies to assess large-scale functional interactions
in whole-brain scale networks by integrating effective
structural connectivity constraints that could potentially
remarkably reduce the model search space.

PTSD patients typically exhibit one or more of the fol-
lowing symptoms: intrusive memories, flashbacks, hyper-
vigilance, sleep disturbance, avoidance of traumatic
stimuli, physiological hyperresponsivity, numbing of

r Inferring Functional Interaction and Transition Patterns r

r 3329 r



emotions, and social dysfunction [Bremner and Charney,
1994]. In particular, PTSD patients are typically more
aroused and hyper-vigilant than healthy individuals [Fran-
cati et al., 2006]. The work in this article has demonstrated
that the DMN and emotion network in PTSD tend to have
higher probabilities of transiting to states with higher
functional interactions, consistent with current PTSD theo-
ries and findings. In particular, our comparison described
in Supporting Information Table II indicates that the emo-
tion network exhibits substantial difference in both the his-
togram of signature state distributions and finite-sate
transition machines between PTSD patients and normal
controls. This result of substantially altered emotion net-
work is consistent with the notion that PTSD is associated
with changes in extensive neural circuitries including fron-
tal and limbic systems [Francati et al., 2006]. Interesting, as
shown in Supporting Information Figure 3, there are no
significant differences in the change point frequencies
between PTSD patients and controls in the emotion net-
work, indicating that DBVPM’s ability to examine func-
tional interaction patterns and their temporal transitions
played a decisive role in revealing major emotion network
differences between PTSD patients and controls.

In the future, we plan to look into the functional interac-
tion patterns and their dynamics of other relevant brain
networks such as attention and working memory systems
in PTSD. In addition, similar methodologies in this article
could be applied in the future to reveal the possible abnor-
malities, which cannot be seen by traditional static pair-
wise connectivity analysis, in many other brain networks
such as working memory and attention systems, and in
numerous other brain diseases=conditions such as Alzhei-
mer’s disease and Schizophrenia.
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