
NeuroImage 61 (2012) 987–999

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
Inferring consistent functional interaction patterns from natural stimulus FMRI data

Jiehuan Sun a,e,1, Xintao Hu b,1, Xiu Huang a, Yang Liu a,c, Kaiming Li b,d, Xiang Li d, Junwei Han b, Lei Guo b,
Tianming Liu d,⁎, Jing Zhang a,⁎
a Department of Statistics, Yale University, CT, USA
b School of Automation, Northwestern Polytechnic University, China
c Department of Computing, The Hong Kong Polytechnic University, HK, China
d Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
e Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
⁎ Corresponding authors.
E-mail addresses: tliu@cs.uga.edu (T. Liu), jing.zhang

1 Co-first authors.

1053-8119/$ – see front matter © 2012 Elsevier Inc. All
doi:10.1016/j.neuroimage.2012.01.142
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 13 January 2012
Available online 14 March 2012

Keywords:
Natural stimulus fMRI
DTI
Functional interaction
There has been increasing interest in how the human brain responds to natural stimulus such as video watching in
the neuroimaging field. Along this direction, this paper presents our effort in inferring consistent and repro-
ducible functional interaction patterns under natural stimulus of video watching among known functional
brain regions identified by task-based fMRI. Then, we applied and compared four statistical approaches, in-
cluding Bayesian network modeling with searching algorithms: greedy equivalence search (GES), Peter and
Clark (PC) analysis, independent multiple greedy equivalence search (IMaGES), and the commonly used
Granger causality analysis (GCA), to infer consistent and reproducible functional interaction patterns
among these brain regions. It is interesting that a number of reliable and consistent functional interaction pat-
terns were identified by the GES, PC and IMaGES algorithms in different participating subjects when they
watched multiple video shots of the same semantic category. These interaction patterns are meaningful
given current neuroscience knowledge and are reasonably reproducible across different brains and video
shots. In particular, these consistent functional interaction patterns are supported by structural connections
derived from diffusion tensor imaging (DTI) data, suggesting the structural underpinnings of consistent func-
tional interactions. Our work demonstrates that specific consistent patterns of functional interactions among
relevant brain regions might reflect the brain's fundamental mechanisms of online processing and compre-
hension of video messages.

© 2012 Elsevier Inc. All rights reserved.
Introduction

FMRI leverages the coupling between neural activity and hemo-
dynamics in the human brain to obtain non-invasive measurement
of brain activity (Logothetis, 2008; Friston, 2009). In the past few
decades, fMRI has revolutionized how we study the function of the
human brain (Fox and Raichle, 2007; Logothetis, 2008; Friston,
2009). Specifically, task-based fMRI has been widely used as a
benchmark approach to localize functionally-specialized brain re-
gions (Logothetis, 2008; Friston, 2009). Therefore, thousands of
fMRI tasks have been reported in the literature to map those
functionally-specialized brain regions (e.g., Laird et al., 2009). Re-
cently, resting state fMRI has been increasingly used in the literature
to map resting brain regions based on the premise that correlations
between resting state fMRI time series originate from coherency in
the underlying neural activation patterns of brain regions and reflect
.jz349@yale.edu (J. Zhang).
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functional connectivity (e.g., Fox and Raichle, 2007; Cohen et al.,
2008; van den Heuvel et al., 2008). In comparison, natural stimulus
fMRI (Bartels and Zeki, 2004, 2005; Golland et al., 2007; Hasson et
al., 2010) is relatively less studied due to more complexity and var-
iability during fMRI experiment design and imaging sessions. Never-
theless, the advantage of natural stimulus fMRI under movie
watching is that the human subjects are naturally engaged in the
perception and cognition of the multimedia streams. This is more
in an uncontrolled natural environment, which is well suited to
study the functional interactions and dynamics among brain regions
in response to multimedia stimuli. In the neuroimaging field, there
have been increasing interests in investigating how the human brain
responds to the natural stimulus such as image/video watching and
in studying if consistent response patterns exist across individuals
(Bartels and Zeki, 2004, 2005; Golland et al., 2007; Kay et al.,
2008; Hasson et al., 2010; Haxby, 2010; Said et al., 2010;
Nishimoto et al., 2011). Notably, a recent work in Hasson et al.
(2004) demonstrated the effectiveness of applying natural stimulus
fMRI in understanding the dynamics of cognitive systems during
movie watching, and showed that different brains' fMRI-derived re-
sponses to the same movie could be similar. A recent review article
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on natural stimulus fMRI and the reliability of brain activity during
natural stimulation is provided in Hasson et al. (2010).

In addition to using video/image stimulus to study the brain's
function (e.g., Bartels and Zeki, 2004, 2005; Golland et al., 2007;
Hasson et al., 2010; Haxby, 2010; Said et al., 2010; Nishimoto et
al., 2011), there has been increasing effort from the video/image con-
tent analysis field in applying brain imaging techniques as neuro-
monitoring tools to extract high-level semantics features, thus guiding
and facilitating video/image analysis (e.g., Wang et al., 2009; Hu et
al., 2010; Ji et al., 2011; Hu et al., 2012). For instance, in Wang et
al. (2009), an electroencephalography (EEG)-based brain-machine
interface was developed to guide image annotation and retrieval
task. In this work, the rapid serial visual presentation (RSVP) para-
digm (Gerson et al., 2006) was used for the presentation of images
to a subject. Then, the recorded EEG signals were mapped as an “in-
terest score” that meant to reflect how much of a user's attention
was directed toward an image. Finally, the interest scores assigned
to training images helped to propagate the labels to retrieve rele-
vant images from a larger pool based on a graph pattern mining
subsystem, and promising results were achieved (Wang et al.,
2009) in contrast to the approach of using visual image representa-
tion alone. Recently, several studies took the advantage of fMRI to
advance human semantics understanding and/or video/image analy-
sis (Walther et al., 2009; Hu et al., 2010; Ji et al., 2011; Hu et al.,
2012). The authors in Walther et al. (2009) studied a network of
specific brain regions of interests (ROIs) that affects the human abil-
ity of discriminating visual scenes and demonstrated that brain ac-
tivity from some ROIs can guide the selection of interesting image
frames. The studies in Hu et al. (2010) and Hu et al. (2012) demon-
strated that functional brain connectivity patterns derived from rel-
evant networks can be used as high-level semantics features to
guide the selection of low-level features for the purpose of video
shot classification. The authors in Ji et al. (2011) extracted meaningful
features from natural stimulus fMRI data to conduct video representa-
tion and retrieval in the brain imaging space, and demonstrated
promising results.

It is clear that there has been growing interest from both brain imag-
ing and image/video analysis fields in applying natural stimulus brain
imaging of image/video watching to study the brain function (Bartels
and Zeki, 2004, 2005; Golland et al., 2007; Hasson et al., 2010), or to
guide video/image content representation and analysis (Wang et al.,
2009; Hu et al., 2010; Ji et al., 2011; Hu et al., 2012). In the field, peo-
ple have to rely on consistent and reproducible patterns, e.g., func-
tional or effective connectivities (Murre and Goebel, 1996; Friston et
al., 2003; Storkey et al., 2007; van de Ven et al., 2008; Chai et al.,
2009), to infer meaningful information from natural stimulus fMRI
data based on existing neuroscience knowledge (Hasson et al., 2004,
2010; Hu et al., 2010, 2012). Along this direction, this paper presents
our effort in inferring consistent and reproducible functional interac-
tion patterns among known functional brain regions under natural
stimulus of movie watching. Given the substantial variability of struc-
tural localization of functionally-specialized brain regions, we used
extensive task-based fMRI studies to identify brain regions involved
in working memory, motor, visual and auditory regions in young
healthy participants. Then, the same group of participants underwent
natural stimulus fMRI while watching video clips selected from the
TRECVID dataset (http://trecvid.nist.gov/), which is an international
consortium providing benchmark video data for content-based
video retrieval. At this stage, the video clips are semantically catego-
rized into sports, weather report, and commercial advertisement
that were defined by the large-scale concept ontology for multimedia
(LSCOM) group (http://www.lscom.org/). Afterwards, the natural
stimulus fMRI BOLD signals are extracted from the mapped functional
brain regions in each individual subject for the purpose of computa-
tional modeling of functional interaction patterns. In particular, we
applied and compared four statistical approaches, including Bayesian
network modeling with searching algorithms: greedy equivalence
search (GES) (Meek, 1997), Peter and Clark (PC) analysis (Spirtes
and Glymour, 1991), independent multiple greedy equivalence
search (IMaGES) (Ramsey et al., 2010), and the popularly used Grang-
er causality analysis (GCA) (Granger, 1969), to infer consistent and re-
producible functional interaction patterns among the above-mentioned
brain regions based on the extracted natural stimulus fMRI BOLD signals.
It is interesting that we found a number of reliable and consistent
functional interaction patterns by the GES, PC and IMaGES algorithms
in different subjects when they watched the same category of video
clips, that is, one of sports, weather report, or commercial advertise-
ment. These interaction patterns are meaningful given current neuro-
science knowledge and are reasonably reproducible across different
brains. In particular, the functionally strong interaction patterns are
supported by structural connection patterns derived from tractogra-
phy (Behrens et al., 2003) result of diffusion tensor imaging (DTI)
data, suggesting the structural substrates of consistent functional
interactions.

From computational and statistical perspectives, our experimental
results suggest that Bayesian network modeling approach is more re-
liable and meaningful than the widely used GCA for the application of
modeling functional interactions in natural stimulus fMRI data for the
following reasons. Bayesian network methods consider all the ROIs
for inference simultaneously and thus has lower false positive rate.
GCA takes into account the temporal lag information of the time series
fMRI data, which makes its inference less accurate due to the influence
of the relatively low temporal resolution of MRI data, the influence of
the intervention of hemodynamics on the fMRI signals (Roebroeck et
al., 2005), and the influence of complex temporal dynamics of effective
connectivity. In comparison, Bayesian network methods do not rely
on the temporal information of fMRI signals and thus tend to be
more robust.

Materials and methods

Overview

The flowchart of the proposed work is summarized in Fig. 1. In
brief, we performed block design task-based fMRI (T-fMRI), which is
widely considered as a reliable and readily available approach
(Logothetis, 2008; Friston, 2009), to accurately localize the functional
brain regions engaged in video comprehension including visual, audi-
tory and language (A&L), motor, and workingmemory (WM) systems
(Dudai, 2008) for each participating subject. Natural stimulus fMRI
(N-fMRI) dataset was then acquired when the same group of subjects
was watching video clips randomly selected from three semantic cat-
egories of sports, weather report, and commercial advertisement in
the TRECVID dataset. After that, we applied and compared four statis-
tical algorithms including GES (Meek, 1997), PC (Spirtes and
Glymour, 1991), IMaGES (Ramsey et al., 2010) and GCA (Granger,
1969) to estimate the consistent functional interaction patterns in
the localized functional brain regions based on the N-fMRI signals.
Moreover, diffusion tensor imaging (DTI) dataset was also acquired
and structural connectivities were inferred to independently assess
the structural underpinnings of those consistent functional interac-
tion patterns identified via N-fMRI data.

Data acquisition and preprocessing

Four healthy young adults were recruited at The University of
Georgia (UGA) under IRB approval to participate in this study. MRI
datasets were acquired in a GE 3T Signa HDx MRI system (GE Health-
care, Milwaukee, WI) using an 8-channel head coil at the UGA Bioi-
maging Research Center (BIRC). The multimodal DTI, T-fMRI and N-
fMRI scans were performed in three separate scan sessions for each
participating subject. DTI data was acquired using the isotropic spatial
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Fig. 1. The flowchart of our experimental design and computational pipeline. (a) Task paradigm. (b) fMRI scanner. (c) Functional brain regions derived from task-based fMRI data.
(d) Video clips randomly selected from TRECVID. (e) Inferred consistent functional interactions during natural viewing of video clips. The interaction patterns are further cross-
validated via structural connectivity derived from independent DTI dataset.
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resolution 2 mm×2 mm×2 mm; parameters were TR 15.5 s and TE
was min-full; b-value=1000 with 30 DWI gradient directions and 3
B0 volumes acquired. DTI data preprocessing includes skull removal,
motion correction and eddy current correction (Zhu et al., 2012).
T1-weighted structural MRI data with 1 mm×1 mm×1 mm isotropic
resolution was also acquired for each subject for anatomical
reference.

The T-fMRI datasets were acquired to map the functionally-
specialized brain regions including working memory, auditory and
language, motor and visual systems. Our rationale is that the working
memory, visual, auditory and language, and motor regions are among
the most relevant brain systems that are involved in the perception
and comprehension of video content (Dudai, 2008). Recently, a work-
ing memory theory of movie watching was developed in Dudai
(2008). In brief, the working memory system combines online infor-
mation (visual and aural inputs) with offline information (long-term
memories) for the purpose of perception and cognition of movie
watching. In this paper, we adopted this theory as the neuroscience
base for modeling the brain's functional interactions in response to
video stimuli, and hypothesize that consistent and meaningful inter-
action patterns can be inferred from the natural stimulus fMRI data.

Specifically, a modified version of the operation span (OSPAN)
task (3 block types: OSPAN, Arithmetic, and Baseline) (Faraco et al.,
2011) was performed to localize the working memory region. In the
task, each run was preceded by visual instructions and contain 15
epochs; The OSPAN, Arithmetic, and Baseline conditions were struc-
tured so that subjects received similar amounts of visual input and
gave the same amount of motor output. FMRI scans were acquired
using a T2*-weighted single shot echo planar imaging (EPI) sequence
and was aligned to the AC-PC line; TE=25 ms, TR=1500 ms, 90° RF
pulse, 30 interleaved slices, acquisition matrix=64×64, spa-
cing=0 mm, slice thickness=4 mm, FOV=240×240 mm, and
ASSET factor=2.

The visual network was mapped using a similar paradigm de-
scribed in Xuan et al. (2007). The paradigm consists of cycled alterna-
tions between a fixation block and a stimulation block. During
fixation block, one white dot is stationary on the black background,
followed by the stimulation block in which a group of pictures are
switching in a wedge-shaped area radiated from the white dot. Dura-
tions of the fixation and stimulation are both 15 s. A cycle consists of
four fixation blocks and four stimulation blocks, among which the lo-
cation of the white dot shifts in the order of ‘left-bottom-right-top’.
144 volumes (6 cycles) of fMRI data were collected using the same
parameters as above except with FOV covering only the visual cortex.
The motor tasks were designed using similar paradigm in Meier et al.
(2008), in which elbow, lip and ankle movements were performed
respectively. The auditory/language tasks were similar to those in
Fernández et al. (2001). The fMRI scan parameters used were the
same as that in OSPAN T-fMRI. Notably, there are a variety of different
task-based fMRI paradigms available in the literature (Laird et al.,
2009) for each of the above mapped brain regions. In this work, we
just used in-house verified fMRI tasks (e.g., Faraco et al., 2011) in
UGA BIRC to map the working memory, visual, motor, auditory and
language regions. A comprehensive examination of the activation
patterns of these regions during various fMRI tasks is beyond the
main focus of this paper. In addition, only those most consistent acti-
vation peaks that appear in all of the four participants' fMRI datasets
were selected as functional ROIs for the following steps of functional
interaction mapping, because accurate correspondence of the func-
tional ROIs among different brains is essential for validity of the func-
tional interaction inference.

The preprocessing of fMRI data included brain skull removal, mo-
tion correction, spatial smoothing, temporal prewhitening, slice time
correction, and global drift removal (Lv et al., 2011). Then, the general
linear model (GLM) implemented in FSL fMRI toolkits (Smith et al.,
2004; Woolrich et al., 2009) was used to generate the activation
map for the task-based fMRI for each subject and each task individu-
ally. Brain regions with the highest activation and high group-wise
consistency were identified as the ROIs in the related brain regions
via the similar methods in Zhu et al. (2012). Specifically, we obtained
group activation map through group-level fMRI data analysis, which
was then linearly warped into each individual subject's space. After-
wards, we applied FSL FEAT to obtain an individual activation map for
each subject. In particular, under the guidance of the initialized group-
wise activation map (p-value: 0.05; multiple comparison correction:
cluster-based thresholding using GRF theory, Worsley et al., 1996) in
each individual brain, all of the consistently activated peaks that existed
in both group-wise and individual maps were selected as the functional
ROIs for each brain network, if they were within a neighborhood of
8 mm on the activation maps and shared similar anatomical locations
on the MRI images. This procedure is similar to those in Zhu et al.
(2012) and Li et al. (2010). Totally, we identified 36 consistently acti-
vated brain ROIs as follows: 1) 16 ROIs in working memory region for
each subject including left and right insula, left medial frontal gyrus,



Table 1
The list of nodes in the identified functional brain regions.

Working memory Auditory and language

1 Left insula 1 Left Heschl's gyrus
2 Right insula 2 Right Heschl's gyrus
3 Left medial frontal gyrus 3 Left Wernicke's area
4 Left precentral gyrus 4 Right Wernicke's area
5 Right precentral gyrus 5 Left Broca's area
6 Left paracingulate gyrus 6 Right Broca's area
7 Right paracingulate gyrus
8 Left superior frontal gyrus Visual
9 Right superior frontal gyrus 1 Left primary visual cortex
10 Left supramarginal gyrus 2 Right primary visual cortex
11 Right supramarginal gyrus 3 Left secondary visual cortex
12 Left occipital pole 4 Right secondary visual cortex
13 Right frontal pole 5 Left middle temporal
14 Right lateral occipital gyrus 6 Right middle temporal
15 Left precuneus 7 Left medial superior temporal cortex
16 Right precuneus 8 Right medial superior temporal cortex
Motor
1 Left primary motor cortex 4 Right primary motor cortex
2 Left supplementary motor area 5 Right supplementary motor area
3 Left premotor cortex 6 Right premotor cortex
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left and right precentral gyrus, left and right paracingulate gyrus, left
and right superior frontal gyrus, left and right supramarginal gyrus,
left occipital pole, right frontal pole, right lateral occipital gyrus, left
and right precuneus; 2) 6 ROIs in auditory/language region included
Heschl's gyrus, Wernicke's area and Broca's area on both brain hemi-
spheres; 3) 6 ROIs in motor regions that are activated in response to
elbow, lip and ankle movements; 4) 8 ROIs in the visual region in-
cluded the primary visual cortex (V1), the secondary visual cortex
(V2), the middle temporal cortex (MT) and the middle superior tem-
poral cortex (MST) on both brain hemispheres. Fig. 2 gives an illustra-
tion of the identified brain ROIs and regions for a subject. The names
of these 36 ROIs are listed in Table 1.

To perform natural stimulus fMRI, we randomly selected 51
shots that are in the semantic categories of sports, weather report
and commercial advertisement (20 sports, 19 weather reports and
12 commercial advertisements, respectively) from the TRECVID da-
tabase and composed them into 8 clips. Each clip is about 11 min
long. Fig. 3 shows screenshot examples of those video clips in
each category. These clips were presented to the four subjects dur-
ing N-fMRI scan via MRI-compatible goggles. Around 480 brain
fMRI volumes were collected in each natural stimulus fMRI session,
and the scan parameters were as follows: 30 axial slices, matrix
size 64×64, 4 mm slice thickness, 220 mm FOV, TR=1.5 s,
TE=25 ms, ASSET=2. The strict synchronization between movie
viewing and fMRI scan was achieved via the E-prime software
(Schneider et al., 2002).

Statistical methods for functional interaction inference

In general, we use graph nodes to represent brain ROIs and infer
the functional interactions among graph nodes based on the N-fMRI
BOLD signals extracted for these ROIs. In the literature, directed
graphs are commonly adopted to represent functional connectivity,
among brain regions (Friston et al., 2003). Here, directed graphs are
Fig. 2. Illustration of the identified brain ROIs and regions via task-based fMRI. It is
noted that the cortical surface used in this rendering was the white matter/gray matter
boundary. Thus some of the ROIs in this figure are slightly outside the cortical surface.
used to model functional interactions. This methodology provides candi-
date models that, under certain additional assumptions, imply functional
interaction relationships. The assumptions (Neapolitan, 2004) include
directed acyclic graph and the Markov condition. Specifically, each
graph is comprised of a set of nodes (each represents a ROI here)
and a set of edges. If there exists a directed edge going from node i
to node j, Ni→Nj, then the Nj is called the child of Ni and thus Ni is
the parent of Nj. For a sequence of nodes (N1,N2,…,Nk), if there exists
a directed edge between Ni and Ni+1, for each i=1,2,…,k−1, then
the sequence of nodes is called a path. Here, k represents the total
number of ROIs we used in the computation, and thus each node rep-
resents one ROI in the following paragraphs.

Specifically, we used three different search algorithms, GES
(Meek, 1997) and PC, which are two methods for searching Bayes-
ian network structure, and an extended version of GES (IMaGES)
(Ramsey et al., 2010) for the following functional interaction infer-
ence. Intuitively, Bayesian network posits a joint probability distri-
bution on nodes of a directed graph so that it could represent
probabilistic relations among those nodes. The directed graphs in
Bayesian networks methods we used here are confined to acyclic
graphs, i.e., directed acyclic graph (DAG), which could satisfy the causal
condition (Glymour, 2003; Spirtes et al., 2000), and thus Markov
Fig. 3. Illustration of selected video clips from TRECVID 2005. 8 clips composed of 51
video shots were used as the natural stimuli.
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Fig. 4. Visualization of the consistent interaction patterns extracted via GES algorithm (pd=1) in the functional brain regions include auditory/language, motor, working memory
and visual systems when subjects watched video clips. Panels (a), (b) and (c) show the consistent connectivity patterns for video categories of advertisement, sports and weather
report, respectively. The nodes of the functional networks are represented as green spheres. The blue lines without arrows and with red arrows represent non-directional and di-
rectional connections, respectively. Panels (d), (e) and (f) show the significance of consistency of the interaction connections demonstrated in panels (a), (b) and (c), respectively.
The color bar is on the right side.
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factorization of the distribution works, i.e., the joint distribution of
the nodes in a DAG is equal to the product of probability of individ-
ual node conditional on their parent nodes.

In GES (Meek, 1997), which is a search and score approach,
we score each DAG by using the Bayesian Information Criterion
(BIC) (Schwarz, 1978) under the normal distribution assumption
on the data:

−2 ln MLð Þ þ k ln nð Þ;

where ML is the maximum likelihood estimate, kis the dimension
of the model (i.e. total number of free parameters) and n is the
sample size (i.e. the number of time points in each fMRI signal
we used). Other assumptions (Neapolitan, 2004) are: we assume
the observed data are from a joint probability P (multivariate Gauss-
ian in our case), and (G, P) satisfies the Markov condition where G
is a DAG. We then define the DAG with the best score as the
most consistent model given the data. However, the total number
of different DAG's increases exponentially with the increase of
nodes in the data, and thus searching over the whole space of
DAG's becomes computationally inefficient. Markov Equivalence
Class, defined as a collection of DAG's whose factorization of
joint distribution is mathematically equivalent, helps to solve the
dimension problem of the space of DAG's. Since the score used
to quantify each model only depends on ML, k and n, where the
joint distribution determines the ML and DAG determines the k
and n, the DAG's in the Markov equivalence class will have the
same score and thus we only need to search over the space of
Markov equivalence classes, which reduces the dimension of the
searching space to a great extent.

The basic algorithm of GES is briefly discussed below. GES
starts with an empty graph and then search forwards over the
space of Markov equivalence classes with one additional edge
each time until the model is not improved (i.e. the BIC does not
change or become worse) by adding a new edge. Then, GES
continues by searching backwards (i.e. with one edge removed
each time) until no improvement by removing an edge. To find
the consistent pattern across multiple datasets, we use IMaGES
(Ramsey et al., 2010), which extends the GES algorithm by gener-
alizing the BIC score to IMscore:

IM score ¼ − 2
m

� �
∑i ln L Di;Gð Þð Þ þ ck ln nð Þ

where m is the number of datasets (Di represents dataset i in our
case and m represents the number of total subjects used in the
computation), G is the graph the algorithm is scoring over, ln(L(Di,
G)) is natural log of the likelihood of the dataset Di calculated by
using the maximum likelihood estimate of the free parameters in
graph G, k is the dimension of the model and n is the sample size
and c is the penalty parameter. IMaGES is run with a range of penal-
ty parameters until the generated graph has no triangles and the pen-
alty parameter used to produce this graph is the penalty parameter
we use in calculating the IMscore, since triangulated nodes can con-
tain a false positive edge, due to the reason that the measurements
are noisy effects of the neural processes in the fMRI studies, whose
functional interaction relations we are trying to estimate (Ramsey
et al., 2010).

Another main approach of learning graph from data we used here
is PC algorithm (Spirtes and Glymour, 1991), which is a constraint-
based approach and thus does not use the BIC score. PC algorithm is
comprised of two steps: finding the skeleton and orienting the
edges. The skeleton of a graph is the graph with only undirected
edges, and thus the graph becomes a DAG after orienting the edges.
PC begins with the undirected complete graph (i.e. every pair of
nodes in the graph has an edge) and iteratively removes the edges
based on the tests of independence or conditional independence
with the pre-specified type one error rate alpha. Since the data used
here is continuous and we assume normality on the data, the test of in-
dependence or conditional independence is equal to test of zero

image of Fig.�4


992 J. Sun et al. / NeuroImage 61 (2012) 987–999
correlation or zero partial correlation respectively. Remove the edge
between node N1 and node N2, if the tests of conditional indepen-
dence of N1 and N2 conditional on all subsets of V with cardinality of
n fail to reject the null hypothesis until the cardinality of V is less
than n, where n is increased by 1 each time unless the cardinality of
V is less than n or one test rejects the null hypothesis, and V is the
set of nodes that satisfy two conditions (1. There exists an edge be-
tween the node and N1 or N2; 2. The node is on the path between
N1 and N2). After finding the skeleton of the graph, orientation of
the undirected edges in the graph will be conducted. For each triple
of nodes (N1, N2, N3) with N1 adjacent to N2 (i.e. there exists an
edge between N1 and N2) and N2 adjacent to N3 but no edge existing
between N2 and N3, the edge in N1–N2–N3 should be orientated as
N1→N2←N3, if and only if N1 and N3 are dependent on all subsets
containing N2 of V (V is obtained in the same way as above, except
it is based on the skeleton obtained in the first step).

For comparison purpose, we applied Granger causality analysis
(GCA) on the same dataset to infer the causalities among brain
ROIs. Proposed by Clive Granger in 1969 (Granger, 1969), GCA in-
vestigates the causality from time series X to time series Y (in this
study, the fMRI data from each pair of ROIs), and has been applied
in brain imaging field in recent years (e.g., Roebroeck et al., 2005).
Briefly, GCA first performs auto-regression of X with its P-order
lagged values:

Xt ¼
Xp
i¼1

aiXt−i þ e1t

to obtain the prediction errors e1, which is a P×1 vector. Then it
adds the lagged values of time series Y into the regression to get
prediction errors e2, which is also a P×1 vector:

Xt ¼
Xp
i¼1

aiXt−i þ
Xp
i¼1

biYt−i þ e2t

As the new regression term Y has been added, the change of pre-
diction error from e1 to e2 could indicate the Granger-causal influ-
ence from Y to X, and an F-statistics is constructed accordingly:

FY→X ¼ var e1ð Þ− var e2ð Þ
var e2ð Þ

When there is no causality caused by Y to X, the value of F will ap-
proach zero since the additional Y terms will not influence the expla-
nation power. While if the value is greater than the given threshold,
we will reject the null hypothesis and add that Granger-causal edge
to the result DAG. The Granger causality from X to Y could be
obtained similarly. By repeating the pairwise analysis for all the
ROIs, we could obtain the final DAG representing the Granger-causal
connectivity of the whole brain.

In this paper, we used the TETRAD software (http://www.phil.cmu.
edu/projects/tetrad/) to apply the GES, IMaGES and PC algorithms.
Also, it is worth noting that there are undirected edges in the output
graphs generated by GES, IMaGES and PC, which do not exist in the
GCA model. The undirected edge (N1−N2) is the hypothesis that N1

causes N2 (N1→N2) or N2 causes N1 (N1←N2), but the algorithms can-
not determine which is better.

Results

Based on the datasets in Data acquisition and preprocessing sec-
tion and statistical methods in Statistical methods for functional
interaction inference section, we performed four experiments to
demonstrate that consistent and meaningful functional interaction
patterns can be inferred from natural stimulus fMRI data under
movie watching. In the PC algorithm, we used the type one error 0.01
as the threshold. In the GES algorithm, we use the penalty parameter
c=1. These are the meanings of PC=0.01 and GES=1 labels in the fol-
lowing sections.

Consistent functional interaction patterns for three video categories

The identified functional connectivity patterns using the GES algo-
rithm are shown in Fig. 4. In each scanned TRECVID video category,
we estimated the functional interactions for all of the video clips for
4 subjects. In total, we performed 80, 76 and 48 estimations for
sport, weather report and commercial advertisement, respectively.
The number of the occurrence of a given interaction connection was
counted for each video category separately. In each video category,
the consistency of an interaction connection between any possible
ROI pair was measured as the ratio between the number of occur-
rence and the total number of estimations in this video category.
Fig. 4 shows the interaction connections with consistency above
0.35. In Figs. 4(a), (b) and (c) show the consistent interaction pat-
terns for video categories of advertisement, sports and weather re-
port, respectively. The nodes in the functional brain regions are
represented by green spheres. The blue lines without arrows and
with red arrows represent non-directional and directional interaction
connections, respectively. In Figs. 4(d), (e) and (f) show the consis-
tency (measured by the percentage of occurrences of a specific edge
over all scanned video shots among all of the 4 subjects) of the interac-
tions demonstrated in Figs. 4(a), (b) and (c), respectively.

It is interesting that for each video category, the GES method can
identify reasonably consistent and meaningful interaction patterns.
For instance, the workingmemory region has more functional interac-
tions in the advertisement video category, meaning that video content
in this category might need more online information processing dur-
ing the video watching. This result is consistent with the working mem-
ory theory of movie watching proposed in Dudai (2008), that is, the
working memory system is responsible for online information processing
for the perception and cognition of movie watching. Examination of the
videos of three categories (see supplemental example video at:
http://www.cs.uga.edu/~tliu/TRECVID/positive_commercial_7.mpg)
suggests that advertisement videos indeed have more complex con-
tent, more rapidly changing shots, and thus demand more online in-
formation processing. In contrast, the weather report videos (see
supplemental example video at: http://www.cs.uga.edu/~tliu/
TRECVID/positive_weather_5.mpg) contain simpler content, have
less motion and video shot changes, and therefore demand less online
information processing. Hence, the results in Figs. 4a–f are reasonable
considering that working memory system is the brain hub for online
information processing that interacts with online visual and auditory
information processing (Dudai, 2008). Also, it is reasonable to observe
that functional interactions with the visual regions are stronger in adver-
tisement and sports (see supplemental example video at: http://www.cs.
uga.edu/~tliu/TRECVID/positive_sport_9.mpg) videos than those in
weather report videos, as the weather report video contains much less
motion. Finally, quite a few interaction items are consistent and repro-
ducible in multiple categories of videos, such as those highlighted by
corresponding black arrows in Figs. 4d–f, and their consistencies are
quite high (e.g., in orange or yellow colors). This result suggests that
these common interaction patterns might be fundamental for online
processing and comprehension of three different types of video mes-
sages. We performed additional statistical analysis of the GES outputs.
Specifically, we calculated the within-video variation and between-
video variation. The ratio of within-video variation over between-video
variation is approximately 13.5 and this ratio is quite consistent across
video categories.

Similarly, the identified consistent functional interaction patterns
using PC algorithm is shown in Fig. 5. The definition of consistency
of the identified functional interaction patterns is the same as that
in Fig. 4. Also, only those interaction connections with consistency
above 0.35 are shown in Fig. 5. It is interesting that most of consistent
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Fig. 5. Visualization of the consistent connectivity patterns inferred via PC algorithm (pc=0.01) in the functional brain regions include auditory and language, motor, working
memory and visual systems when subjects watched video clips. Panels (a), (b) and (c) show the consistent functional interaction patterns for video categories of advertisement,
sports and weather reports, respectively. The nodes of the functional networks are represented as green spheres. The blue lines without arrows and with red arrows represent
non-directional and directional interaction connections, respectively. Panels (d), (e) and (f) show the significance of consistency of the interaction connections demonstrated in
panels (a), (b) and (c), respectively. The color bar is on the right side.
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functional interaction patterns identified in Fig. 4 are well reproduced
in this experiment by using the PC algorithm. For instance, most of
the functional interaction items highlighted by black arrows in
Fig. 4 are replicated in Fig. 5. The similar patterns of stronger working
memory and visual interactions in advertisement and sports videos
than those in weather report videos are also replicated in Fig. 5.
This result suggests that there are truly reproducible and consistent
meaningful functional interaction patterns among the relevant func-
tional brain regions when viewing natural stimulus videos. We pre-
mise that those consistent functional interaction patterns across
three video categories reflect the common functional architecture of
the human brain, while the functional interaction pattern differences
demonstrate the variation of the individual brain's responses to dif-
ferent content and/or types of videos. Similarly, we calculated the
within-video variation and between-video variation in PC outputs. The
ratio of within-video variation over between-video variation is approxi-
mately 15.3 and this ratio is quite consistent across video categories.
Fig. 6. Visualization of the consistent functional interaction patterns inferred via the IMaGES
memory and visual systems when subjects watched video clips. Panels (a), (b) and (c) sho
weather reports, respectively.
IMaGES takes multiple datasets into consideration and will find
only one graph, which tells whether each edge (interaction connec-
tion) occurs or not. Therefore, the result for IMaGES has only one
graph for all the video data in each category and the result is shown
in Fig. 6. It is evident that the results obtained by IMaGES are quite
similar to those by the GES method shown in Fig. 5, further demon-
strating that consistent functional interaction patterns can be inferred
from natural stimulus fMRI data using different statistical methods.
Notably, for weather report/commercial videos, the IMaGES-derived
graphs are much denser compared to the graphs obtained by PC or GES
methods. Specifically, the numbers of edges by the IMaGES method for
weather report/commercial videos are 52/51, while the numbers of
edges are 22/41 and 17/29 by GES and PC methods respectively. This
could be attributable to the fact that the IMaGES method effectively mul-
tiplies the sample size by 4 (we have 4 subjects here), and thus weaker
connections should be identified. This is consistent with the fact that
the agreement of IMaGES with diffusion tensor imaging results in Fig. 9
algorithm in the functional brain regions include auditory and language, motor, working
w the consistent interaction patterns for video categories of advertisement, sports and
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Fig. 7. Visualization of the consistent interaction patterns inferred via GCA in the functional brain networks include auditory/language, motor, working memory and visual systems
when subjects watched video clips. Panels (a), (b) and (c) show the consistent interaction patterns for video categories of advertisement, sports and weather report, respectively.
Panels (d), (e) and (f) show the significance of consistency of the interaction connections demonstrated in panels (a), (b) and (c), respectively. Specifically, we first used a threshold
to remove those inconsistent edges (p-value>0.01). That is, the blue cells in panels d–f represent inconsistent edges. Then, we visualized the frequency of occurrence in the panels d–f for
those consistent edges. The color of frequency of edge occurrence is color-coded by the color bar on the right.
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is much better at the lower threshold (50) for structural connections.
Also, the similar functional interaction patterns for three categories
of videos revealed in Figs. 4–5 are replicated here via the IMaGES
algorithm.

Comparison with GCA

To compare the GES, PC and IMaGES algorithms with GCA, Fig. 7
shows the consistent functional interaction patterns obtained by
GCA for three video categories respectively. It is apparent that the
results inferred by GCA are quite different compared to those by
GES, PC and IMaGES algorithms. Actually, the results by GES and
PC algorithms are much more consistent within and across video
categories, and Fig. 8 provides quantitative comparisons of the sig-
nificance of functional interaction consistence among GCA, GES and
PC algorithms. It is evident that the GES and PC algorithms provide
more consistent results than the GCA method, in particular for the
sports and weather report video categories. Specifically, for each
video category in each subject, we conducted GCA, GES and PC re-
spectively. Then, for each algorithm and each video category, we
summarized the proportion of all the interaction connections that
appear in each subject over all the subjects, and selected the inter-
action connections whose proportion is higher than 35%, which is
the same as those used in Figs. 4–5. As we can see from the histo-
grams (particularly Figs. 8b and c), GES and PC algorithms produce
more consistent interaction connections than that of GCA, e.g.,
most of the histogram bins with higher consistency have green
(GES) and blue (PC) bars. It is noted that for the commercial
video category, all of GES, PC and GCA produced many more inter-
action connections (Fig. 8a), and the GCA method produced even
more connections than GES and PC methods. Our interpretation is
that there are more rapidly changing shots in the commercial
videos, and the GES and PC methods tend to be more conservative
in inferring the interaction patterns as they consider all the ROIs
for inference simultaneously. Since the GCA method only considers
a pair of two ROIs and does not consider the whole network, this
method tends to have more false positives. Another possibility is
that the length of fMRI scan data for the commercial video catego-
ry is 64% larger than the other two video categories on average,
and the multiple testing problem in the identification of significant
causality in GCA could produce more false positives from the com-
mercial video category. The above interpretations will be further
verified by independent, external evaluation via DTI data in
Structural connectivity between functionally interacting brain
regions section.

In addition to the above pairwise GCA analyses between functional
ROIs, in this paper, we also applied the conditional Granger Causal-
ity Analysis among those ROIs in our datasets, to examine possible
multivariate relationships. We used the toolbox implemented by
Seth in MATLAB (Seth, 2010) to perform the conditional GCA anal-
ysis. Our results showed that very few consistent edges could be
detected by conditional GCA. For instance, 4 subjects watched a
total of 30 weather video shots, and only one specific connection
was detected by the conditional Granger Causality Analysis 1
time for all the 30 video shots.

Also, the functional interaction patterns inferred by GES, PC and
IMaGES algorithms have better structural connectivity support,
which will be shown in Fig. 9. Based on the above results, we hypoth-
esize that GES, PC and IMaGES algorithms outperform GCA in the ap-
plication of inferring consistent functional interaction patterns during
natural stimulus fMRI of video watching. From computational per-
spective, our interpretations are as follows. GCA makes the inference
of causality based on the temporal lags between time series fMRI data,
which possibly makes its inference less accurate due to the relatively
low temporal resolution of fMRI, the influence of the intervention of tem-
poral hemodynamics on the fMRI signals (Roebroeck et al., 2005), and
the complex temporal dynamics of effective connectivity between fMRI
signals (Li et al., 2011). In comparison, Bayesian network methods do
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not rely on the precise temporal lag information and thus tend to be
more robust.

Structural connectivity between functionally interacting brain regions

It is believed that the functional role of the cortical region of the
human brain has its structural underpinnings (Passingham et al.,
2002). In this paper, we measured the structural connectivity derived
from DTI data to evaluate the structural substrate of consistent func-
tional interactions identified from natural stimulus fMRI data by the
proposed methods. Specifically, the stochastic DTI tractography algo-
rithm (Behrens et al., 2003) implemented in FSL (Smith et al., 2004;
Woolrich et al., 2009) was adopted to derive the structural connectiv-
ity from the DTI data for each subject individually. By specifying a
seed ROI and a terminate ROI, the stochastic fiber tracking resulted
in a volume image, in which the intensity of the voxel indicates the
probability of the fibers penetrating the corresponding voxel.
Fig. 9(a) shows an exemplar joint visualization of the cortical surface
and the volume rendering of the resulted probability map. The above
procedure was repeated for all possible ROI pairs in the identified
thirty-six brain regions via task-based fMRI in Data acquisition and
preprocessing section. Denote the probability volume for ROI pair Ri
and Rj as Iij and the structural connectivity matrix of the identified
functional brain region as C. After applying a predefined threshold T
on Iij, the existence of structural connection between Ri and Rj was de-
termined by a connectedness analysis described in (Shapiro, 1992).
That is, C(i, j)=1 when they were connected, otherwise C(i, j)=0.
We varied T from 0.01 to 1 with the step length of 0.01, resulted in
100 times of voting for each element in C. The element with higher
number of votes indicates the stronger direct structural connection
between the corresponding ROI pair.

The measured structural connectivity derived from DTI data
using the above-mentioned stochastic fiber tracking is shown in
Fig. 9b for a randomly selected subject. A threshold is applied on
the structural connectivity matrix to remove the non-significant el-
ements. The consistency between the structural connections and
the inferred functional interactions is measured by the ratio of the
functional connections with direct structural connection against all
the identified consistent functional interactions. The ratios for GCA,
PC, GES and IMaGES methods are summarized in Figs. 9c–d, in
which (c) and (d) correspond to different structural connectivity
thresholds of 50 and 70, respectively. It can be seen that the number
of identified consistent functional interactions associated with struc-
tural connections is much higher in PC, GES and IMaGES compared
with that in GCA. This result suggests that the functional interac-
tions inferred by PC, GES and IMaGES can achieve more structural
connectivity support from independent DTI data. Considering that
structural connection is closely correlated with functional connectivity
(Honey et al., 2009), our results here indicate the superiority of the
proposed Bayesian methods for functional interaction inference in nat-
ural stimulus fMRI. This experiment of validation using structural
connectivity was repeated for other 3 subjects and similar results
were obtained.

Consistency of inferred functional interaction patterns across three video
categories

To showcase the consistency of the inferred functional interac-
tion patterns across different videos and different subjects, we ex-
Fig. 8. Quantitative comparison of GES, PC, and GCA methods. (a)–(c): histograms o
significances of consistency of the interaction connections obtained by three method
of GES (green bars), PC (blue bars) and GCA (pink bars) for three video categories, re
spectively. It is noted that the three histograms have different scales on the y-axis.
f
s
-
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Fig. 9. (a) Joint visualization of the cortical surface and the probability map resulted from stochastic fiber tracking. (b) The structural connectivity matrix for one subject. (c)–(d): Com-
parison of the structural connectivities of the consistent functional interactions identified by different inference methods. The x axis is the index of methods. The y-axis is the ratio of the
identified consistent interaction connections with direct structural connection against all the identified consistent functional connections. (c) Threshold of 50. (d) Threshold of 70.
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amined the distributions of a few consistent functional interaction
patterns. The consistent interaction means that it is inferred in
most of the subjects when watching videos of the same semantic
category, including weather report, sports and commercial adver-
tisement. For instance, in the top subplot in Fig. 10a for weather
report video, the title “right Heschl's gyrus to right Wernicke's
area prob=0.72, pc=0.01” means that the interaction connection
from the right Heschl's gyrus to right Wernicke's area is detected in
72% of the 72 samples by the PC algorithm. It is noted that one
subject watching one video is considered as one sample, and total-
ly we had 72 samples. In more details, for the same top subplot in
Fig. 10a, all 4 subjects exhibited the same functional interaction
connection when watching weather report video #5, #7, #9, and
#12, which is 21% out of the total 19 videos. As an example, the
video #5 can be viewed online at: http://www.cs.uga.edu/~tliu/
TRECVID/positive_weather_5.mpg. Also, 3 out of 4 subjects showed
the same functional interaction connection when watching video
#1, #2, #3, #8, #10, #14, #15, #17, #18 and #19, which is 53%
of the 19 videos. There is only one video (video #16) that activat-
ed functional interaction in only one subject. The video #16 is put
online for viewing: http://www.cs.uga.edu/~tliu/TRECVID/
negative_weather_16.mpg. It can be seen that this negative exam-
ple of video shot (video #16) in the category of weather report is
not a typical one as that in video #5 in the sense that there are
more heterogeneous contents and it has much less interactive
weather reports by the meteorologist. We reason that this might
be the reason that video #16 induced less consistent responses
by the four subjects.

A summary of the consistent patterns in Fig. 10a for other video
categories is as follows. In the sports video category by PC algo-
rithm, all four subjects exhibited the same functional interaction
connection from the right Wernicke's area to the right Heschl's
gyrus in 20% (#7, #9, #11, #12) of the 20 videos. As an example,
the video #9 can be viewed online at: http://www.cs.uga.edu/
~tliu/TRECVID/positive_sport_9.mpg. Also, 3 out of 4 subjects
showed the same functional interaction connection in 40% of the
20 videos. Only one subject showed one interaction pattern in 10%
of the 20 videos. For the commercial category by the PC algorithm,
in 25% (#7, #10, #12) of the 12 videos, all subjects exhibited the
same interaction pattern from the left occipital pole to the right pri-
mary visual cortex. The video #7 can be viewed online at: http://
www.cs.uga.edu/~tliu/TRECVID/positive_commercial_7.mpg. 2 out
of 3 subjects showed the same functional interaction connection in
58% of the 12 videos. In 17% of the 12 videos, only one subject has
one interaction connection.

The results for GES algorithm are provided in Fig. 10b. Specifi-
cally, in 16% of the 19 weather report videos, all four subjects
exhibited the same functional interaction from the left medial tem-
poral to the left medial superior temporal. In 20% of the 20 sports
videos, all subjects exhibited the same interaction from the right
precuneus to the left precuneus. The sport video #15 induced
only one subject to have the interaction pattern by the GES algo-
rithm, and it is put online for reviewing: http://www.cs.uga.edu/
~tliu/TRECVID/negative_sport_15.mpg. For GES results of commer-
cial videos, in 33% of the 12 advertisement videos, all four subjects
had the interaction from the left occipital pole to the left primary
visual cortex.

In general, results obtained from both the PC and GES algorithms
are consistent to some extent, as shown in Figs. 10a–b. In comparison,
the results from PC are slightly more consistent than those from GES.
These results further demonstrate that consistent and meaningful
functional interaction patterns can be inferred from natural stimulus
fMRI data when subject watched videos, despite the complexity and
variability in fMRI scans and video stimuli.

http://www.cs.uga.edu/~tliu/TRECVID/positive_weather_5.mpg
http://www.cs.uga.edu/~tliu/TRECVID/positive_weather_5.mpg
http://www.cs.uga.edu/~tliu/TRECVID/negative_weather_16.mpg
http://www.cs.uga.edu/~tliu/TRECVID/negative_weather_16.mpg
http://www.cs.uga.edu/~tliu/TRECVID/positive_sport_9.mpg
http://www.cs.uga.edu/~tliu/TRECVID/positive_sport_9.mpg
http://www.cs.uga.edu/~tliu/TRECVID/positive_commercial_7.mpg
http://www.cs.uga.edu/~tliu/TRECVID/positive_commercial_7.mpg
http://www.cs.uga.edu/~tliu/TRECVID/negative_sport_15.mpg
http://www.cs.uga.edu/~tliu/TRECVID/negative_sport_15.mpg
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Fig. 10. The distributions of the most consistent interaction connections in each video category from the results of both PC (a) and GES (b) algorithms. For each subplot, the hor-
izontal axis represents the index of video shots for each semantic category. The name of video category is at the bottom of each subplot, The ROIs' names for the interaction pair,
probability of the occurrence of the interaction patter, and threshold used are at the top of the subplot. The black arrows represent the interaction directionality. Four subjects are
represented by the colors of red, blue, green and orange, respectively. The horizontal axis stands for binary decision of existence (1) or non-existence (0). It is noted that for the
video category of commercial advertisement, we only have datasets from three subjects. The label pc=0.01 means that the PC algorithm is run under the type one error 0.01 and
the label GES=1 means that we used the penalty parameter c=1.

997J. Sun et al. / NeuroImage 61 (2012) 987–999
Discussion and conclusion

Inferring meaningful information from natural stimulus fMRI data
has been a challenging problem due to the complexity and variability
during fMRI designs and scans and in natural video stimuli. In this
work, we demonstrated that consistent and meaningful functional in-
teraction patterns can be identified among relevant brain regions
from different brains when they watched different videos shots of
the same semantic category. These reproducible and consistent func-
tional interaction patterns are consistent with current neuroscience
knowledge, and might suggest the possible existence of a common
functional brain mechanism that is responsible for video message
comprehension. For example, the results in Figs. 4–7 demonstrated
that the working memory system plays a key role in online information
processing for the perception and cognition of movie watching. This re-
sult is in agreement with the existing working memory theory of movie
watching proposed in Dudai (2008). As another example, the inferred
functional interaction patterns among the visual regions are reasonable,
e.g., the interactions are stronger in advertisement and sports videos
than those in weather report videos. Our structural connectivity analysis
results from independent DTI data (Fig. 9) suggest the possible structural
underpinnings of such consistent functional interaction patterns, as it
has been reported that there is close relationship between structural
and functional connectivities (Honey et al., 2009). Our extensive quan-
titative comparison results demonstrated that the PC and GES algo-
rithms outperform the traditionally used GCA method. Our
interpretation is that Bayesian network methods consider all the
ROIs for inference simultaneously and do not rely on the temporal in-
formation of noisy fMRI signals.

It should be noted that the directed graphs in Bayesian networks
methods used here are confined to acyclic graphs. Our rationale is
that this constraint could satisfy the causal condition (Glymour,
2003; Spirtes et al., 2000) such that Markov factorization of the dis-
tribution works, i.e., the joint distribution of the nodes in an acyclic
graphs is equal to the product of probability of individual node
conditional on their parent nodes. Though this constraint facilitated
the identification of the consistent functional interaction patterns in
this paper, its possible limitations should be examined in the future,
e.g., on complete sub-graphs of structurally-connected brain regions.
Also, acyclic Bayes nets are a special case of graphical causal models,
which include cyclic graphs, the linear versions of which satisfy a
generalization of the Markov property, and for which there are search
algorithms (Richardson et al., 1997), e.g., algorithms that were ap-
plied to fMRI data recently (Ramsey et al., 2011).

In the future, we plan to perform larger scale natural stimulus
fMRI scans with more subjects and more categories of video
shots so that we can test and potentially replicated the findings
in this paper in larger samples. Also, additional brain regions
such as attention and emotion systems that might have important
roles in video perception and cognition will be added into the
functional interaction pattern analysis. Certainly, these additional
functional networks have to be mapped via task-based fMRI to en-
sure accurate localization of the relevant brain regions. Also, more
methods for inferring functional network structures (Smith et al.,
2011) will be compared in the future, and controls for multiple com-
parisons (Li and Wang, 2009) should be considered. In the long-run,
it would be very helpful to look into the functional interaction pat-
terns among large-scale brain regions that cover the whole brain
including both cortical and subcortical regions. However, accom-
plishment of such a goal entails quantitative representation of a
common structural and functional human brain architecture in
the future. We envision that large-scale inference of consistent
functional interaction patterns from natural stimulus fMRI can pro-
vide fundamental insight into the functional architecture and
working mechanism of the brain, because the brain is naturally en-
gaged in the perception and cognition of the video streams under
an uncontrolled environment.

At the same time, the inferred consistent functional interaction
patterns from fMRI data reflect the brain's responses to natural
stimuli of video to a certain extent. In the future, it might be useful
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to apply those consistent functional interaction patterns to guide
the selection of low-level video features (Hu et al., 2010; Ji et al.,
2011; Hu et al., 2012) and the construction of computational
models that are predictive of brain's responses. This fMRI-guided
video content representation could potentially significantly bridge
the semantic gaps in video analysis and retrieval field for years
(Ji et al., 2012). Therefore, in summary, inference of consistent
and meaningful functional interaction patterns from natural stimu-
lus fMRI of video watching can only not contribute to the under-
standing of human brain function, but also advance digital video
representation and analysis for human-centered video manage-
ment and retrieval in the future.
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