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Abstract An important application of resting state fMRI

data has been to identify resting state networks (RSN). The

conventional RSN studies attempted to discover consistent

networks through functional connectivity analysis over the

whole scan time, which implicitly assumes that RSNs are static.

However, the brain undergoes dynamic functional state chan-

ges and the functional connectome patterns vary along with

time, even in resting state. Hence, this study aims to charac-

terize temporal brain dynamics in resting state. It utilizes the

temporally dynamic functional connectome patterns to extract

a set of resting state clusters and their corresponding RSNs

based on the large-scale consistent, reproducible and

predictable whole-brain reference system of dense individual-

ized and common connectivity-based cortical landmarks

(DICCCOL). Especially, an effective multi-view spectral

clustering method was performed by treating each dynamic

functional connectome pattern as one view, and this procedure

was also applied on static multi-subject functional connecto-

mes to obtain the static clusters for comparison. It turns out that

some dynamic clusters exhibit high similarity with static

clusters, suggesting the stability of those RSNs including the

visual network and the default mode network. Moreover, two

motor-related dynamic clusters show correspondence with one

static cluster, which implies substantially more temporal vari-

ability of the motor resting network. Particularly, four dynamic

clusters exhibited large differences in comparison with their

corresponding static networks. Thus it is suggested that these

four networks might play critically important roles in func-

tional brain dynamics and interactions during resting state,

offering novel insights into the brain function and its dynamics.

Keywords Resting state network (RSN) � Brain

dynamics � DICCCOL � Structural connectome �
Functional connectome

Introduction

The human brain can be considered as a complex integrative

network, constituted by a set of spatially distributed but

functionally related brain regions that communicate with each

other. In recent years, the application of resting state fMRI (R-

fMRI) technique has generated a great deal of research interest

in investigating the characteristics of the human brain in a

baseline state, among which an interesting topic is to discover

the functional resting state networks (RSN) (e.g., Lowe et al.

1998; De Luca et al. 2005; Van den Heuvel et al. 2008).
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Towards this goal, the low-frequency fluctuations

(0.01–0.1 Hz) in the blood oxygenation level-dependent

(BOLD) signal of resting state fMRI (R-fMRI) data (Dam-

oiseaux et al. 2006; De Luca et al. 2006) received intense

attention. It is commonly believed to date that the resting state

fluctuations can reflect the spontaneous neuronal activity and

the correlation of the fluctuations is a manifestation of the

ongoing functional connectivity during rest (e.g., Biswal et al.

1995; Lowe et al. 1998; Cordes et al. 2000). Consequently, a

set of functional brain regions involved in visual, motor,

language and auditory functions were identified as distinct

resting state networks (RSNs) by looking into the coherent

low frequency fluctuations among different brain areas (e.g.,

Hampson et al. 2004; Beckman et al. 2005; De Luca et al.

2006; Damoiseaux et al. 2006; Van den Heuvel et al. 2008;

Smith et al. 2012). Especially, a cohesive baseline network

termed default mode network (DMN) (Raichle et al. 2001;

Greicius et al. 2003) was discovered and reproduced, corre-

sponding to task-independent introspection, i.e., it is active

during rest but deactivated during specific goal-directed

behaviors. This network may represent the underlying phys-

iological processing of the brain unrelated to any particular

thought (Raichle and Snyder 2007) and has been hypothesized

to be associated with some neural disorders such as Alzhei-

mer’s disease, autism and schizophrenia (e.g., Greicius et al.

2004; Buckner et al. 2008; Assal et al. 2010).

The current resting state network analysis methods mainly

employed the conception of functional connectivity to

describe the temporal dependency of neural activation pat-

terns or co-activation levels of R-fMRI time series between

distinct brain regions (e.g., Aertsen et al. 1989; Friston et al.

1993; Biswal et al. 1995; Lowe et al. 1998; Cordes et al. 2000;

Calhoun et al. 2001; Cordes et al. 2012; Greicius et al. 2003;

Jiang et al. 2004; Beckman et al. 2005; De Luca et al. 2006;

Damoiseaux et al. 2006; Thirion et al. 2006; Van den Heuvel

et al. 2008; Larson-Prior et al. 2009). Basically, this definition

of functional connectivity is assumed to be temporally static,

i.e., the calculation of connectivity is performed over the

entire fMRI scan period. Whereas one recent study proposed

and demonstrated that the function of each brain area is not

fixed or stereotyped (Gilbert and Sigman 2007). Instead, each

area works as an adaptive information processor; they attempt

to execute different programs or algorithms according to the

behavioral context and the perceptual requirements (Gilbert

and Sigman 2007). Therefore this kind of dynamic processing

will result in a whole-brain moment-to-moment functional

switching mode, and furthermore the brain will be very likely

to exhibit various function connectome patterns at different

time periods. Encouragingly, it has been evidenced that the

human brain indeed undergoes dynamic function connectivity

changes within the scan period, even in resting state (e.g.,

Chang and Glover 2010; Zhang et al. 2012; Smith et al. 2012;

Li et al. 2013; Zhang et al. 2013). In the literature, several

methodologies have also been developed to investigate con-

nectivity dynamics, including sliding-time window correla-

tion analysis with reference vector (Gembris et al. 2000),

dynamic spatial independent component analysis (ICA)

(Sakoğlu et al. 2010), and analysis using sliding-time window

correlation between connectivity networks obtained from

spatial ICA (Allen et al. 2014). In particular, our own prior

studies suggested that the dynamic brain states can be

expressed by a set of whole-brain functional connectome

patterns in resting state or task-performance for normal sub-

jects or diseased brains at different time periods (Zhang et al.

2012, 2013; Li et al. 2013). The abovementioned series of

studies have demonstrated that computational modeling of

functional brain dynamics has revealed important novel

insights that cannot be seen by conventional static functional

connectivity analysis methods. However, an important and yet

unanswered question is: among the commonly reported RSNs,

which ones exhibit more temporal dynamics than others? In

other words, which RSNs exhibit more temporal dynamics, or

less temporal stationarity, than others?

Motivated by the above question, this paper presents a

novel computational framework to identify RSNs in tempo-

rally dynamic functional connectomes and to characterize

their temporal dynamics specifically. Compared to the pre-

vious analysis methods (e.g., Gembris et al. 2000; Sakoğlu

et al. 2010; Allen et al. 2014; Chang and Glover 2010; Zhang

et al. 2012; Smith et al. 2012), it mainly has the following

novelties. (1) It adopted a whole-brain functional connectivity

map based on a recently developed and validated brain ref-

erence system of 358 dense individualized and common

connectivity-based cortical landmarks (DICCCOLs) (Zhu

et al. 2012; Yuan et al. 2012; Li et al. 2013; Zhang et al. 2013).

It has been shown that the 358 DICCCOLs have structural and

functional correspondences across individuals and popula-

tions. Importantly, they can be reproduced and predicted

across different brains through an effective predicting method

(Zhu et al. 2012). This system has been successfully used to

characterize dynamic brain states for both resting state and

task-performance brains in our previous works (Zhang et al.

2012, 2013). (2) Based on the dynamic whole-brain functional

connectivity change curves obtained by the sliding time

window approach, this framework employed a sparse coding

based classification method to refine and extract a set of

Table 1 The numbers of clusters according to different N-cut

thresholds

N-cut threshold 0.05 0.1 0.2 0.3 0.4 0.5

Number of dynamic clusters

(multi-pattern)

9 9 10 10 10 10

Number of static clusters

(multi-subject)

6 8 8 8 8 9
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representative temporally dynamic functional connectome

patterns of the brain (Zhang et al. 2012, 2013; Li et al. 2013).

Each pattern can be finally represented here by a corre-

sponding 358 9 358 connectivity matrix, which can be seen

as one similarity matrix of 358 nodes in the spectral clustering

methodology. (3) In comparison with our previous studies (Li

et al. 2013; Zhang et al. 2013), an up-to-date effective spectral

graph based multi-view clustering method is performed on

these dynamic connectome patterns to group the 358 DICC-

COLs into several sub-clusters, i.e., spatial networks (Bickel

and Scheffer 2004; Chaudhuri et al. 2009; Kumar and Daumé,

2011). In this case, each cluster constitutes a RSN represented

by a group of consistent DICCCOL landmarks. The multi-

view co-training procedure attempts to achieve the most of the

agreement across different ‘views’ (i.e. ‘patterns’) and

achieve a more comprehensive and meaningful clustering

result than traditional one-view clustering methods. In this

study, after co-training on multiple temporally dynamic

functional connectome patterns, a group composed of ten

spatially distributed and relatively stable resting state DICC-

COL clusters was formed. Moreover, for comparison, the

static functional connectivity matrix for each subject was

calculated based on the whole brain R-fMRI time series and a

similar multi-view co-training procedure was applied to

obtain another group of eight DICCCOL clusters. Experi-

mental results have shown that some dynamic clusters exhibit

high similarity with static clusters, indicating the stability of

those RSNs including the visual and default mode networks.

Interestingly, two motor-related dynamic clusters show cor-

respondence with one static cluster, which suggests substan-

tially more temporal dynamics of the motor resting network.

Importantly, other four dynamic clusters exhibited substantial

differences in comparison with their corresponding static

networks, implying that these four networks might play crit-

ically important roles in functional brain dynamics and

interactions during resting state. In general, our work in this

study offers novel insights into the brain function and its

dynamics.

Materials and Methods

Overview

The pipeline of our novel computational framework is

summarized in Fig. 1. First, 358 large-scale DICCCOL

landmarks (red bubbles in the left panel of Fig. 1) were

predicted and located based on the DTI data through an

effective functional landmark prediction approach (Zhu

et al. 2012). Using the FSL FLIRT tool, each resting state

fMRI data was co-registered to the corresponding DTI

space and the R-fMRI time series in each DICCCOL were

extracted (step � in Fig. 1). Then, for each subject, a tra-

ditional static functional connectivity matrix can be mea-

sured by calculating the Pearson correlation coefficients

between the corresponding R-fMRI time series of each pair

of DICCCOLs over the entire scan period (step ˜ in

Fig. 1). However this matrix does not contain the vital

information of temporal dynamics in resting state. Thus,

we applied a sliding time window approach to measuring

the dynamic functional connectivity matrices of each

subject (step ` in Fig. 1). Subsequently, these matrices

were segmented into smaller quasi-static time segments,

called whole-brain quasi-stable connectome patterns

(WQCP) in our prior paper (Zhang et al. 2012). Then a set

of WQCP samples were collected as the input of the sparse

representation based Fisher discriminative dictionary

learning (FDDL) method (step ´ in Fig. 1). The FDDL

classification results were finally represented by several

averaged DICCCOL-based functional connectivity matri-

ces associated with each class, i.e., the final expression of

the temporally dynamic functional connectome patterns for

resting state (step ˆ in Fig. 1). Each pattern is a 358 9 358

functional connectivity matrix, which can be regarded as

one view of the similarity matrix of the 358 DICCCOL

nodes. Thus, an effective multi-view spectral clustering

method was performed on these patterns (called multi-

pattern clustering in this paper) to obtain a group of rela-

tively consistent and spatially distributed clusters (step Þ
in Fig. 1), i.e., resting state functional networks. Besides,

the multi-view spectral clustering method can be similarly

applied on the static functional connectivity matrix for each

subject (step ˜ in Fig. 1) by treating each static matrix as

one view of the similarity matrix of 358 nodes (called

Table 2 The cluster similarity (Eq. 9) between dynamic multi-pat-

tern clusters (D1, D2,…, D10) and static multi-subject clusters (S1,

S2,…, S10)

S1 S2 S3 S4 S5 S6 S7 S8

D1 0.937 0.000 0.047 0.000 0.018 0.000 0.000 0.000

D2 0.000 0.895 0.000 0.028 0.000 0.000 0.000 0.000

D3 0.022 0.077 0.888 0.000 0.000 0.055 0.000 0.023

D4 0.024 0.000 0.000 0.787 0.017 0.116 0.000 0.024

D5 0.000 0.000 0.000 0.088 0.691 0.000 0.000 0.000

D6 0.000 0.000 0.000 0.000 0.000 0.660 0.070 0.030

D7 0.000 0.030 0.000 0.000 0.000 0.237 0.645 0.135

D8 0.000 0.000 0.000 0.000 0.615 0.000 0.000 0.000

D9 0.000 0.035 0.000 0.055 0.044 0.025 0.148 0.559

D10 0.000 0.000 0.028 0.109 0.066 0.223 0.000 0.342

For each dynamic cluster, the static cluster with the highest similarity

(highlighted in bold) is considered as the corresponding cluster of this

dynamic cluster

Brain Topogr (2014) 27:747–765 749

123



multi-subject clustering in this paper) to achieve the static

resting state clusters (Þ in Fig. 1) for comparison.

Brief Introduction of DICCCOL

As indicated in our previous research, the structural

connectome of each brain can be constructed by the dense

map of 358 DICCCOL landmarks based on the DTI data

(Zhu et al. 2012). One basic premise in the development

of DICCCOL is that functional location can be predicted

by group-wise consistent structural connectivity patterns

(Zhu et al. 2012). Therefore, each DICCCOL landmark is

defined and discriminated by different group-wise con-

sistent white fiber streamline patterns, which were quan-

titatively described by the trace-map model (Zhu et al.

2012). Briefly, three steps were conducted to form the

cortical DICCCOL map: the initial landmarks selection,

the optimization of landmark locations and the determi-

nation of group-wise consistent DICCCOL landmarks.

First, 2056 grid points/landmarks distributed among major

functional brain regions were initially selected on one

template subject, and then warped to other nine template

subjects through a linear registration procedure. Subse-

quently, landmark locations were optimized to gain

maximal group-wise consistent fiber connection patterns

via the maximization of similarities of ‘trace-map’ models

(Zhu et al. 2011). This model can capture the global

shape patterns of fiber connections in each fiber bundle,

based on which we can then measure and compare the

similarities across fiber bundles. Essentially, the trace-

map is a statistical accumulation of the projection points

of the principal directions along the fiber trajectories in a

fiber bundle onto a standard sphere space. The

accumulation map is then normalized and mapped to a

histogram that retains the global fiber shape to represent

structural connectivity (Zhu et al. 2011). For each land-

mark of each subject, about 30 neighboring locations with

corresponding emanating fiber bundles were selected as

candidate landmark combinations and represented via

trace-maps respectively. Then, each landmark is optimally

selected through minimizing the energy function in Eq. 1,

aiming to maximize the consistency of structural con-

nection patterns across a group of template subjects.

EðS1; S2; . . .; SmÞ ¼
PPn

i¼1 ðTki � TliÞ2

n
; k 6¼ l and k; l

¼ 1; 2; . . .;m 1ð Þ and k; l ¼ 1; 2; . . .;m

ð1Þ

where S1,…, Sm are m subjects; Tki and Tli are the i-th

element of trace-maps Tk and Tl respectively (Zhu et al.

2012). Furthermore, another group of subjects were ana-

lyzed using the same steps and the most consistent land-

mark locations were finally determined to form a dense

map of 358 DICCCOL landmarks on each template cortical

surface. The prediction procedure of DICCCOLs in other

individual brains is also to solve an optimization problem

like in Eq. (1). Specifically, first, this subject brain is

mapped to the template brain to have an initial DICCCOL

location map. Then, for each initialized landmark, the

corresponding white matter fiber bundles of its candidate

landmarks can be extracted and measured by trace-map.

Subsequently, the prediction procedure is accomplished by

selecting the optimal landmark from the candidates that has

the least group-wise fiber connection variance compared to

the corresponding DICCCOL landmarks in the template

brains. Finally, a dense map of structural connectome of

Fig. 1 The flowchart of our computational framework. �: Extraction

of DICCCOL R-fMRI signals. `: Measurement of temporally

dynamic functional connectivity matrices. ´: Acquisition and

collection of WQCP samples. ˆ: FDDL classification and output of

temporally dynamic functional connectome patterns. ˜: Measurement

of static functional connectivity matrix for each subject. Þ: Multi-

view spectral clustering for multiple patterns (dynamic) and multiple

subjects (static) independently
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the new brain will be constructed and the fiber connection

strength between each pair of DICCCOLs can be used as

the connectome edge (Zhu et al. 2012). Figure 2 shows an

example of the 358 DICCCOLs on a cortical surface.

Functional Connectomes

Temporally Static Functional Connectome Matrix

According to ‘‘Brief introduction of DICCCOL’’ section,

the 358 DICCCOLs have structural and functional corre-

spondences across individual brains, and especially, they

can be reproduced and predicted on different brains. It

provides a common and individualized brain reference

system that serves as the structural substrate for functional

connectome analysis. Based on this system, the functional

connectome can be expressed by a graph composed of 358

DICCCOL nodes and the corresponding edges are weigh-

ted by the functional connectivity strengths between each

pair of DICCCOLs.

Generally, the functional connectivity can be measured by

the Pearson correlation coefficient between each pair of the

R-fMRI time series extracted from the corresponding land-

marks. In previous studies, researchers use the temporally

static methods, i.e., obtain the time series correlation over the

whole scan time period. In that case, the whole-brain func-

tional connectome of each subject at rest can be represented

by a 2D 358 9 358 functional connectivity matrix (Fig. 3a).

In this matrix, the value of each element shows the intensity

of the functional connection between the corresponding pair

of DICCCOLs and the magnitude of the connectivity

strength ranges from 0 to 1. Figure 3a shows an example of

static functional connectivity matrix from a resting state

brain. The horizontal axis and the vertical axis both indicate

358 DICCCOLs, as the matrix is symmetric. The functional

connectivity strengths between each pair of DICCCOLs are

color-coded according to the color bar on the right. Besides,

the absolute values of Pearson correlation coefficients were

adopted in correspondence with the subsequent temporally

dynamic functional connectome analysis.

Fig. 2 358DICCCOL

landmarks on the cortical

surface. a, b are two different

views

Fig. 3 a The DICCCOL-based

static functional connectivity

matrix of one resting state brain;

b The DICCCOL-based

temporally dynamic functional

connectivity matrix of the same

brain and its WQCPs
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Temporally Dynamic Functional Connectomes

The above-mentioned static whole-brain functional con-

nectivity matrix is limited due to the lack of consideration

of the temporal dynamics of the brain function. In fact, the

brain undergoes remarkable dynamic functional processes

at rest. Thus, this paper adopted a temporally dynamic

whole-brain functional connectome pattern representation

based on the DICCCOL reference system as follows.

Whole-Brain Quasi-Stable Connectome Patterns

(WQCPs) As introduced in our previous work (Zhang

et al. 2012), a set of whole-brain quasi-stable connectome

patterns (WQCPs) were firstly extracted and collected from

all of the participating subjects. First, a sliding time win-

dow was applied to obtain a series of windowed resting

state fMRI time series for each DICCCOL at different time

points as shown in Fig. 4. The window length was set to 14

in this work. The windowed R-fMRI signals for each

landmark at each time point were then used to measure the

functional connectivity between each pair of DICCCOLs

within each corresponding time window using the Pearson

correlation coefficient. Therefore, for each brain, a 3D

358 9 358 9 (time windows) temporally dynamic func-

tional connectivity matrix will be obtained. To obtain a

more compact and intuitive representation of the brain

functional connectome, the cumulative connectivity

strength of each DICCCOL landmark is further measured

by summing all the absolute values of functional connec-

tivities between this landmark and all the other landmarks

(Zhang et al. 2012), resulting in a corresponding 2D 3589

(time windows) whole-brain temporally dynamic func-

tional connectivity strength matrix. One example of this 2D

strength matrix is given in Fig. 3b. The horizontal axis

represents the time points and the vertical axis represents

the 358 DICCCOL landmarks. It can be observed from this

cumulative connectivity matrix that the connectivity

strength keeps relatively stable in a continuous time period

and we can segment WQCPs accordingly (illustrated by the

black dash lines in Fig. 3b). For each WQCP segment, a

WQCP vector (358 9 1) and its corresponding 2D con-

nectivity matrix (358 9 358) can be obtained by time

averaging. Subsequently, WQCPs from all of the resting

state brains were pooled together and analyzed using the

following classification method in order to achieve the

representative whole-brain temporally dynamic functional

connectome patterns in resting state.

Representative Whole-Brain Temporally Dynamic Func-

tional Connectome Patterns The advantages of sparse

representation approaches have been commonly recognized

in a variety of image analysis applications including image

classification (e.g., Yang et al. 2009, 2011; Wright et al.

2010; Zhang and Li 2010), image restoration (Mairal et al.

2008, 2009), image denoising (Elad and Aharon 2006) and

image decomposition (Starck et al. 2005). Inspired by these

successful applications, this paper adopts an effective

sparse representation method called Fisher discriminative

dictionary learning (FDDL) (Yang et al. 2011) to analyze

the WQCP vector samples and extract the representative

temporally dynamic functional connectome patterns.

Briefly, the FDDL method employs a Fisher discrimination

criterion to learn a structured dictionary. The learned dic-

tionary is denoted by D = [D1, D2,…, Dc], where Diis the

sub-dictionary associated with class i, and c is the total

number of learned classes. For each sample that has been

determined to be belonging to class i, it would be repre-

sented by Di. A = [A1, A2,…, Ac] represents the training

samples and Aiis the sub-set of the training samples

belonging to class i. X = [X1, X2, …, Xc]represents the

coding coefficient matrix of A over D (i.e. loadings of

dictionary atoms). This methodology tries to achieve an

optimal dictionary and a combination of optimal coding

coefficients through independently updating the dictionary

and the coding coefficients by solving the following

equation during each iteration step in the learning

procedure:

JðD;XÞ ¼ arg min
ðD;XÞ
frðA;D;XÞ þ k1 Xk k1þk2f ðXÞg ð2Þ

The minimization function contains three items: r(A, D,

X)is the discriminative fidelity term, making the dictionary

D able to represent the data with minimum residual, while

at the same time only using the correct sub-dictionary;

kXk1is the sparsity constraint; and the last term f(X)is a

Fisher discrimination constraint imposed on the coefficient

matrix. Detailed description of the dictionary learning

algorithm could be found in Yang et al. 2009 and Li et al.

2013. k1 and k2 are scalar parameters for the trade-off

between sparsity and discrimination capability. For our

data, k1 was set to 0.005 and k2 was 0.05, which was

experimentally determined to minimize the overall error

Fig. 4 The sliding time window approach to calculating the tempo-

rally dynamic functional connectivity matrices
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variance during training. The final classification procedure

based on the learned dictionary is performed by finding the

optimized a
_

(coefficient) minimizing the representation

error:

ei ¼ y� Dia
_

i

�
�
�

�
�
�

2

2
þw � a

_� mi

�
�
�

�
�
�

2

2
ð3Þ

where a
_ ¼ ½a_1; a

_

2; . . .; a
_

c� is the resulting sparse coding

coefficient of the input test sample y using trained dic-

tionary D obtained in Eq. (2), and a
_

iis the coefficient

vector associate with Di; mi is the learned mean vector

of class i and w is a constant, which is set to 0.1 in this

study.

The normalization procedure was performed on each

WQCP vector sample to avoid the influence of individual

connectivity strength differences. After FDDL classification,

each WQCP vector sample was designed into one class in

correspondence with one sub-dictionary. Specially, each

WQCP vector is associated with a 358 9 358 DICCCOL-

based functional connectivity matrix. Hence, the representa-

tive dynamic functional connectome pattern corresponding to

each class can be represented by one 358 9 358 functional

connectivity matrix through averaging all the WQCP matrices

belonging to this class (Zhang et al. 2012, 2013; Li et al. 2013).

The magnitude of each element in each matrix represents the

functional connectivity strength between each DICCCOL pair

in each pattern. As shown in Fig. 6, totally 8 temporal patterns

were extracted from our resting state data. Deeper investiga-

tions into the dynamic resting-state temporal pattern will be of

great significance, among which this study emphasizes on the

spatial distribution of the resting state networks based on

DICCCOL landmarks.

Identification of DICCCOL-Based Resting State Brain

Networks

The concept of multi-view clustering has been recently

employed in brain connectome analysis in our previous

work, e.g., Chen et al. attempted to achieve group-wise

structural and functional consistence of brain networks

(Chen et al. 2013). In this study, a similar multi-view

spectral clustering method was applied to the 8 tempo-

rally dynamic patterns obtained from the method

described above to group the 358 spatially distributed

DICCCOL landmarks into several spatial clusters, i.e.,

multi-pattern clustering, trying to identify consistent and

stable dynamic resting state networks (Bickel and

Scheffer 2004; Chaudhuri et al. 2009; Chen et al. 2013).

In that case, DICCCOLs within each cluster may con-

stitute a specific RSN and play a particular role in the

resting-state functional activities.

Spectral Clustering

In this work, the 358 DICCCOL landmarks can be

regarded as 358 input data points. The 358 9 358 func-

tional connectome matrix from each temporal pattern or

each subject can thus be seen as the similarity matrix of

the data points, which is symmetric and non-negative. In

general, spectral clustering is an effective way to cluster

the 358 DICCCOLs into several sub-groups (Chen et al.

2013).

Generally we denote a weighted undirected similarity

graph as G = (V, E) with node set V = {v1,…, vn}and

edges set E connecting different nodes. The weight on each

edge wij is a function of the similarity between nodes vi and

vj, and the similarity matrix of the graph is denoted by

W = (wij)i,j=1,…,n, which is symmetric (wij = wji) and non-

negative (wij C 0). The degree of a node vi is defined as

di =
P

j=1
n wij. Then, the spectral clustering aims to seek

the optimal partition of the graph into some node sub-

groups V1, V2,…, Vk, where by some measurement the

similarity in the same sub-group is high enough, but

between different sub-groups it is relatively low. To

achieve this goal, a graph-theoretic criterion named nor-

malized cut (N-cut) is introduced to measure the goodness

of the partition criterion (Shi and Malik 2000; Chen et al.

2013). The definition of N-cut is as follows:

NcutðA;BÞ ¼ cutðA;BÞ
assocðA;VÞ þ

cutðA;BÞ
assocðB;VÞ ð4Þ

where A and B are sub-groups of V:A [ B ¼ V , A \ B ¼ ;;
cutðA;BÞ ¼

P

u2A;v2B

wðu; vÞ is the total weight of edges

between A and B; assocðA;VÞ ¼
P

u2A;t2V

wðu; tÞ is the total

weight of edges within A and assoc(B, V) is the similarly

total weight of edges within B.

In practice, spectral clustering can be accomplished by

solving a relaxation of the normalized min-cut problem on

the graph by using graph Laplacian (Von Luxburg 2007).

In this study, we used a normalized graph Laplacian

matrix, i.e., L = I - D-1W, where the degree matrix Dis

the diagonal matrix with node degrees d1,…, dnon the

diagonal (Shi and Malik 2000). In this case, the first

k smallest eigenvectors of L approximates the optimal

normalized cut solution to partition the graph into k sub-

sets. In this paper, the second smallest eigenvector of

L based clustering method is used to bi-partition the graph

into k optimal clusters. By recursively partitioning the

sub-graph into two parts according to the second eigen-

vector and the N-cut value, the optimal graph partition

results are achieved. This recursive two-way N-cut algo-

rithm applied in our paper is summarized below (Shi and

Malik 2000; Chen et al. 2013).
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Input: Functional connectivity matrix W, the threshold of N-cut: T

Output: Cluster index of each data point. 

1. Compute the normalized graph Laplacian L.

2. Obtain eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bi-partition the graph.

4. Compare N-cut value with T to decide if the current partition need be subdivided. 

5. Recursively repartition the segment part until all the partitions cannot be subdivided.

Multi-view Co-training

According to ‘‘Temporally dynamic functional connecto-

mes’’ section, by using the DTI and R-fMRI data, a group

of resting-state temporally dynamic functional connectome

patterns represented by the corresponding 358 9 358

functional connectivity matrices can be obtained. We

applied a spectral graph based multi-view co-training

approach here, trying to maximize the functional connec-

tome agreement across temporal patterns (Blum and

Mitchell 1998; Kumar and Daumé 2011; Chen et al. 2013).

Each pattern/matrix is considered as one view/source of the

whole-brain functional connectome and the multi-view co-

training procedure tries to obtain more consistent and sta-

ble clusters (networks) of the resting state brain.

As described in ‘‘Spectral clustering’’ section, the

spectral clustering solves a relaxed version of the min-cut

problem and the graph Laplacian matrix is used for its

solution. In that case, the first k eigenvectors of the graph

Laplacian contain important discriminative information

about the clusters, which is utilized in the multi-view

spectral clustering in the same way, i.e., we can appro-

priately employ the eigenvectors from one view to label

or constraint the points in other views. An effective

indirect approach is introduced here to achieve this goal.

Briefly, for the n 9 n similarity matrix W, each column

wi can be considered as an n-dimensional vector indi-

cating the similarities between the i-th data point and all

n number data points. Besides, the eigenvectors of the

generalized graph Laplacian obtained from W are also

vectors in the n-dimensional space and the first k

eigenvectors have adequate clustering discrimination

information as mentioned above. Thus, we can project all

the similarity vectors along the k directions (eigenvec-

tors), aiming to retain the inter-cluster discrimination

information and ignore the information of within-cluster

details. If the projection matrix is orthogonal, an inverse-

project operation can be easily implemented to get back

the modified similarity matrix. By utilizing this, the

similarity graph from each view can be trained and

improved by the eigenvectors of the graph Laplacian

from the other views based on the projection and

inverse-projection procedure. Simply, the projection

operation could be defined as:

Pr oj ðW ;UÞ ¼ ðUUT W þ ðUUT WÞTÞ=2 ð5Þ

where U 2 Rn9k is the first k eigenvectors of the graph

Laplacian of W. Noted that there is a symmetrization

operator to guarantee the symmetry of the modified simi-

larity matrix. Then, for m-number views clustering, the

multi-view co-training procedure can be accomplished by

recursively executing the following group projection

operation based on Eq. 5:

GprojðWiÞ ¼
Xm

j¼1;j6¼i

ProjðWi;UjÞ

¼
Xm

j¼1;j6¼i

UjU
T
j

 !

Wiþ
Xm

j¼1;j 6¼i

UjU
T
j

 !

Wi

 !T !

=2

ð6Þ

where Wi is the similarity matrix of view i; Uj 2 Rn9k is the

first k eigenvector matrix of view j. In Eq. 6, the similarity

matrix Wi in each view will be updated and improved by

the first k eigenvectors of the rest views. After the group

projection procedure, the intra-cluster connections in each

view will be increased and the inter-cluster connections

will be decreased conversely (Chen et al. 2013). The above

transformation implies that clustering in each view will be

constrained by all of other views. Details of the multi-view

co-training procedure were described in Chen et al. 2013.

After an appropriate number of multi-view co-training

iteration steps, the final similarity matrix representing the

optimal functional connectome between DICCCOLs will

be generated by averaging all the m number of revised

similarity matrices. With that, using the two-way normal-

ized cut algorithm in ‘‘Spectral clustering’’ section, a set of

DICCCOL clusters can be acquired, based on which sev-

eral dynamic RSNs will be identified and investigated.

Importantly, to compare the difference between the con-

ventional static analysis method and our temporally dynamic

analysis method, the multi-view clustering approach was

performed on whole-brain temporally dynamic patterns
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(‘‘Temporally dynamic functional connectomes’’ section) and

static whole-brain functional connectivity matrices from each

resting state subject (‘‘Temporally static functional connec-

tome matrix’’ section) respectively, by treating each temporal

pattern or each static connectivity matrix of single brain as one

view of the brain functional connectomes, to obtain two cor-

responding groups of resting state networks: dynamic multi-

pattern clusters and static multi-subject clusters.

Results

Data Acquisition and Pre-processing

Twenty-six healthy adolescents (ages from 11 to 17) par-

ticipated in this study, under the IRB approvals of the

Second Xiangya Hospital and the Central South University,

China. Multimodal DTI and resting state fMRI datasets

were acquired on a 3T MRI scanner in the West China

Hospital, Huaxi MR Research Center, Department of

Radiology, Chengdu, China. The acquisition parameters

for both scans were as follows. DTI: 256 9 256 matrix,

3 mm slice thickness, 240 mm FOV, 50 slices, 15 DWI

volumes, b-value = 1000; R-fMRI: 64 9 64 matrix, 4 mm

slice thickness, 220 mm FOV, 30 slices, TR = 2 s. The

total scan time of the resting state fMRI dataset is 200 s,

i.e. 100 time points. The preprocessing steps can be found

in our recent publications (Zhu et al. 2012; Zhang et al.

2012, 2013).

Resting-State Temporally Dynamic Functional

Connectome Patterns

By using the methods in ‘‘Temporally dynamic functional

connectomes’’ section, totally 474 resting state WQCP

samples from 26 adolescents subjects were pooled together

for the FDDL learning after a series of processing steps:

R-fMRI signal extraction of DICCCOLs, temporally

dynamic functional connectivity strength calculation, and

segmentation of quasi-stable time periods for each single

brain. To determine the optimal number of the potential

classes of the training WQCP samples, the Bayesian

Information Criterion (BIC) (Schwarz 1978) theory was

used. The BIC is defined as:

BIC ¼ n � lnðr2
eÞ þ k � lnðnÞ ð7Þ

where re
2 is the error variance, and in this study it is esti-

mated by the summed variance of each WQCP sample

within its corresponding class. Here n is the total number of

WQCP training samples, and k is the number of learned

classes or sub-dictionaries. Generally, given any two esti-

mated models, the model with the lower BIC value is the
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one to be preferred. This study tried to calculate the BIC

values of the FDDL model using different class numbers

(from 5 to 20 in Fig. 5) and determined the number that has

the lowest BIC value as the optimal number. For our

resting state data, the minimize BIC is acquired when

k equals to 8 (Fig. 5).

Thus, totally eight classes emerged after the FDDL clas-

sification and the 8 corresponding resting-state temporally

dynamic functional connectome patterns were subsequently

represented by eight corresponding 358 9 358 DICCCOL-

based functional connectivity matrices (Fig. 6). In Fig. 6,

each temporal pattern is color-coded based on the same color

bar on the right of the figure, ranging from 0 to 1. The

magnitude of each element represents the functional con-

nectivity strength between each pair of DICCCOLs. The

diagonal elements of each matrix represent the self-con-

nectivity of each DICCCOL, thus equal to 0. It is obvious that

this matrix is symmetric and non-negative and can be used as

the similarity matrix of DICCCOLs required in the spectral

clustering.

From Fig. 6, it can be observed that each temporal

pattern has a different functional connectivity strength

distribution across different DICCCOL pairs, i.e., differ-

ent spatial distributions on the brain. This kind of con-

nectivity strength discrimination information across

different DICCCOL landmarks in each pattern will have

important implications on the true underlying resting-state

dynamic functional information interaction of the brain.

By deeper investigations into the dynamic functional

connection changes among different DICCCOL regions, a

group of consistent dynamic resting state networks can be

acquired.

Further, to validate the dictionary learning results

obtained from WQCP, we resampled 355 (75 %) number

of samples out of the total 474 WQCPs for 100 times. In

each sampling dataset consisting 355 connectivity strength

vectors, we performed the FDDL learning on the dataset in

similar steps as described above using the same model

parameters (i.e. number of classes and regularization

coefficients) to obtain the similar eight functional con-

nectome patterns. Then we compared the connectome

patterns obtained from the reduced dataset with connec-

tome patterns from the original full dataset in each of the

100 samplings to see whether each pair of them is similar.

The results show that averagely 6 out of 8 connectome

patterns obtained from reduced dataset are largely in

accordance (relative difference \10 %) with the patterns

from the original full dataset. Considering the fact that we

were ‘‘forcing’’ the FDDL to learn eight classes from much

fewer WQCPs, the comparison result is reasonably good

and shows that the functional connectome patterns were

not obtained by chance nor artifacts from specific subjects,

Fig. 6 Eight DICCCOL-based temporally dynamic functional connectome patterns

Fig. 5 The corresponding BIC values for different class numbers in

the FDDL learning. The minimum of BIC occurs at 8, indicating that

the optimal number of classes is 8
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and that the dictionary learning results are statistically

valid.

DICCCOL-Based Resting State Networks

According to ‘‘Identification of DICCCOL-based resting

state brain networks’’, we first applied the multi-view

spectral clustering method on eight resting-state temporally

dynamic functional connectome patterns to obtain the

dynamic resting-state multi-pattern clusters (Fig. 9a, c).

Similarly, static multi-subject clusters were also acquired

through multi-view spectral co-training on all the static

functional connectivity matrices from twenty-six subjects

(Fig. 9b, d).

Parameters in Multi-view Co-training

There are two important parameters to be determined

during the multi-view co-training, that is, the number of the

first k eigenvectors and the number of iterations. As indi-

cated in ‘‘Identification of DICCCOL-based resting state

brain networks’’, during the multi-view co-training proce-

dure, the similarity matrix in each view will be modified by

projecting to the first k eigenvectors of the graph Laplacian

matrix of other views. In general, the value of k should not

be less than the true cluster number; otherwise the first

k eigenvectors will not contain enough discrimination

information for clustering. In other words, some useful

information will be removed, resulting in a possible over-

training result if we use small k values. On the other hand,

if the k is set to be a large number, too much information

including the within-cluster details will be retained and an

under-training result would be achieved (Chen et al. 2013).

In this study, considering the number of our data points,

i.e., DICCCOL landmarks, is 358, the first 30 eigenvectors

were empirically used in the co-training (the red curve in

Fig. 7).

One normalized mutual information measurement

called Entropy Correlation Coefficient (ECC) was

employed in this study to determine the number of co-

training iterations by measuring the agreement between

the similarity matrices after each iteration of training

(Maes et al. 1997; Chen et al. 2013). The definition of

ECC is:

ECCðA;BÞ ¼ 2IðA;BÞ
HðAÞ þ HðBÞ ð8Þ

where H(A) and H(B) are the entropy of matrix Aand

matrix Brespectively and I(A, B)is the mutual information

between matrices Aand B. The value of ECC ranges from 0

to 1 and the higher the ECC value is, the more agreement

the multi-view training will achieve. Figure 7 shows the

ECC value variation curves using different numbers of the

first k eigenvectors (15, 20, 25, 30, 35, and 40) for multi-

pattern clustering. The horizontal axis is the iteration

number from 0 to 50, and 0 means the original untrained

status. From this figure, it can be noted that as the number

of iteration increased, the ECC value first quickly increased

and subsequently increased at a reduced speed, then began

to oscillate. It means that if too many iteration steps were

performed, the multi-view co-training result may become

unreliable, e.g., some useful group-wise information may

be smoothed. Therefore, an optimal iteration number

should be selected more carefully and better to hold a high

enough ECC value, while avoiding running into the

oscillation part (Chen et al. 2013). For multi-pattern clus-

tering, when the first 30 eigenvectors were selected for co-

training (the red curve in Fig. 7), the optimal iteration

number is determined to be 35 (pointed by the red arrow in

Fig. 7), at which the highest ECC value was obtained and

the oscillation appeared after that. Similarly, for multi-

subject clustering, the optimal iteration number is deter-

mined to be 36.

After multi-view co-training, the final co-trained func-

tional connectivity matrix (similarity matrix) was shown in

Fig. 8. The left is from temporally dynamic multi-pattern

co-training and the right is from temporally static multi-

subject co-training. It can be found that after co-training,

the agreement between different views will be substantially

increased (e.g., the yellow circles in Fig. 8) and the dis-

agreement will be substantially decreased (e.g., the green

circles in Fig. 8). In general, the co-trained matrix is more

Fig. 7 The Entropy Correlation Coefficient (ECC) values at each

multi-pattern co-training iteration step (0–50). Here 0 represents the

original similarity matrices. The corresponding ECC curves were

drawn in different colors respectively for using the first 15, 20, 25, 30,

35, and 40 eigenvectors. When the first 30 eigenvectors were used,

the optimal iteration number is determined to be 35 where the highest

ECC was obtained and the oscillation occurred after that
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effective and efficient for further clustering than the ori-

ginal single functional connectivity matrix.

The Number of Clusters

During the two-way normalized-cut spectral clustering

procedure, the allowed maximum N-cut threshold is

adopted to determine whether the sub-graph should be

further divided. Generally, the bigger the N-cut threshold

is, the more sub-graphs will be considered to be sub-divi-

ded and the more clusters will be obtained. In that case,

more within-cluster details may be overused. On the other

hand, spectral clustering attempts to minimize the N-cut

value to achieve the optimal clustering groups. Thus, the

N-cut threshold cannot be too large or too small (Chen

et al. 2013). Table 1 gives the corresponding cluster

numbers when different N-cut thresholds were selected,

namely, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. For

multi-pattern clustering, the cluster numbers would be nine

for 0.05 and 0.1, and ten for 0.2, 0.3, 0.4 and 0.5. For multi-

subject clustering, the numbers of clusters would be six for

0.05, eight for 0.1, 0.2, 0.3 and 0.4, and nine for 0.5. In this

paper, we selected 0.2 as the final N-cut threshold.

Accordingly, totally ten dynamic resting state clusters were

obtained from multi-pattern clustering (Fig. 9a) and eight

static clusters emerged from multi-subject clustering

(Fig. 9b). Furthermore, the DICCCOL groups corre-

sponding to each cluster are visualized on the cortical

surface using different color spheres (Fig. 9c, d).

Especially, we also show the functional connectivity

strength distributions of the ten DICCCOL clusters in each

dynamic temporal pattern by reordering the temporally

dynamic functional connectivity matrices in Fig. 6

according to the clustering results shown in Fig. 9a. It can

be concluded that the ten clusters are the group-wise

optimal clustering results of the eight patterns. The intra-

cluster connectivity strengths between DICCCOLs are

relatively high and the inter-cluster connectivity strengths

are relatively low, especially in the first two patterns

(Fig. 10a, b), which hold a higher proportion compared to

other patterns, i.e., the most common patterns in resting

state. There exist some high inter-cluster functional con-

nectivities in some patterns which may be caused by the

influence of the dynamic information interaction changes

among spatial regions during certain time periods.

Since each cluster is composed of several DICCCOL

landmarks, corresponding to different brain spatial regions,

a new measurement was defined based on DICCCOLs to

compare the two types of clusters, i.e., the cluster

similarity:

Sðp; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

pq

Np � Nq

s

ðp ¼ 1; 2; . . .; 10; q ¼ 1; 2; . . .; 8Þ ð9Þ

where Mpq represents the number of overlapped DICC-

COLs between dynamic multi-pattern cluster p and static

multi-subject cluster q. Np and Nq are the total numbers of

DICCCOLs in dynamic cluster p and static cluster

q respectively. Thus, the cluster similarity will range from

0 to 1, and the higher the cluster similarity is, the more

similar the two clusters are. The cluster similarity between

each pair of dynamic cluster and static cluster was calcu-

lated using the above equation and the result is summarized

in Table 2. For each dynamic cluster, the static cluster with

the highest similarity (e.g. close to 1) has the highest

possibility to be the same brain network or play a similar

Fig. 8 Modified similarity/connectivity matrix after multi-view co-

training for multi-pattern clustering and multi-subject clustering

respectively a The co-trained multi-pattern clustering matrix, b the

co-trained multi-subject clustering matrix. After co-training, the

agreement between different views will be substantially increased

(the yellow dash circles in a and b) and the disagreement will be

substantially decreased (the green dash circles in a and b) (Color

figure online)
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role in resting-state functional interaction. Thus, it is con-

sidered as the corresponding cluster of this dynamic cluster

(highlighted in bold in Table 2). In Table 2, the dynamic

clusters were ranked by the cluster similarity between their

corresponding static clusters from high to low and denoted

by D1, D2,…, D10, respectively. The corresponding static

clusters were denoted by S1, S2,…, S8. In the following

part, the clusters, i.e. spatial networks will be analyzed one

by one according to their cluster similarities.

Analysis of Resting State Networks

To further understand the spatial distributions of each

network on the brain and make our identified networks

comparable with reported RSNs in the literature, each

DICCCOL landmark’s location on a normalized brain was

acquired for reference by transforming the corresponding

investigated brains into the normalized space, e.g., the

MNI space or Talairach space (Yuan et al. 2012).

According to Table 2, for each dynamic cluster, the static

cluster with the highest cluster similarity with it was

selected as its corresponding or associated static cluster,

and the detailed comparison of their DICCCOLs or spatial

locations were depicted in Fig. 11 and discussed in as

follows.

D1 Versus S1 These two clusters (D1 and S1 in Fig. 11a)

were the most similar networks among all the dynamic and

static clusters with a high similarity of 0.937. By investi-

gations of the spatial locations of the DICCCOLs in this

cluster (D1) and previous resting state network studies, it

can be inferred that this network is a vision-related resting

state network, since it has a large area on the visual cortex

regions and shows large overlapping areas with the visual

RSNs reported in literature (BAs 17/18/19) (De Luca et al.

2006; Damoiseaux et al. 2006; Sorg et al. 2007; Van den

Heuvel et al. 2008). It suggests that the visual resting state

network is likely to be the most stable and consistent

resting state network of the brain because it exhibits very

little temporal dynamic changes.

D2 Versus S2 With a high cluster similarity of approx-

imately 0.9, these two clusters (D2 and S2 in Fig. 11b)

may indicate a similar network of the resting state brain.

This network (D2) mainly contains the parahippocampal

gyrus (BAs 30/36) and the hippocampus regions in the

Fig. 9 The DICCCOL clusters/

networks derived from the

multi-view spectral clustering.

a, c Multi-pattern clustering

results; b, d multi-subject

clustering results. In (a/b), each

cluster is represented by a group

of color spheres located on the

cortical surface in (c/d) (Color

figure online)
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temporal lobe and limbic lobe and some sub-lobar regions

including caudate nucleus, lentiform nucleus and thala-

mus. Previous research studies have shown that both

parahippocampal gyrus and hippocampus played an

important role in the brain’s memory function, such as

memory encoding, memory retrieval, episodic memory

and spatial memory (Buzsáki et al. 1990; Köhler et al.

2002; Squire and Schacter 2002). Besides, the caudate

nucleus has also been demonstrated to participate in the

brain’s learning and memory system (Packard and

Knowlton 2002). Thus, this network may be involved in

the memory-related brain activities during resting state,

and is likely to be the second most stable and consistent

RSNs of the brain that exhibits very minor temporal

dynamic changes.

D3 Versus S3 The similarity between D3 and S3 clusters

(Fig. 11c) is also nearly 0.9. From the locations of

DICCCOL points, it is obvious that this network looks

quite similar to the generally recognized default mode

network (DMN) (Raichle et al. 2001; De Luca et al. 2006;

Damoiseaux et al. 2006; Van den Heuvel et al. 2008). This

network (D3) was found to have large overlapping regions

with the DMN reported in literature, mainly including part

of the superior parietal cortex (BA 7) and inferior parietal

cortex (BAs 39/40), part of the cingulate cortex including

posterior cingulate cortex (BAs 29/30/31), part of the

prefrontal cortex (BAs 8/9) and the temporal lobe (BAs

20/21/22/37). Additionally, the stability of DMN at rest can

also be confirmed here by the support of high overlapping

regions, i.e. high similarity between the temporal dynamics

Fig. 10 a–h The functional connectivity strength of each dynamic multi-pattern cluster in each temporally dynamic functional connectome

pattern corresponding to Fig. 6a–h. i multi-patterns clustering results including ten clusters (Fig. 9a)
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based analysis and the static whole-scan analysis. This

result suggests that the DMN is among the most stable and

consistent RSNs with only minor temporal dynamic

changes. This result also partly explains why the DMN is

one of the most reproducible networks in many previous

studies.

D4 Versus S4 The similarity between cluster D4 and

cluster S4 is also relatively high (0.787). Thus, the large

overlapping regions may be a more stable resting state net-

works but some small areas may exhibit dynamics or vari-

ability during the resting state activities of the brain

(Fig. 11d). In that case, the dynamic clusters tend to be more

accurate to describe the functional interaction between brain

networks. This network (D4) mainly includes brain regions

such as the bilateral amygdala in the limbic lobe, the lenti-

form nucleus area composed of the putamen and the globus

pallidus, the claustrum and part of insular cortex, part of the

frontal lobe containing the precentral gyrus, the inferior and

the medial frontal gyrus (BAs 44/45/47) and the superior

temporal lobe (BAs 21/22). Regions belonging to this cluster

have been verified through task-based fMRI experiments to

correspondingly play roles in different kinds of tasks, mostly

in memory, movement, semantic and emotional tasks. The

specific functions of this cluster, as well as its connectivity to

other clusters, in resting state need to be further investigated

in the future.

D5, D8 Versus S5 Both cluster D5 and cluster D8 have

the highest similarity with cluster S5 (Fig. 11e, f). Despite

the relatively lower similarities (\0.7), these two dynamic

clusters hold most regions of cluster S5 (up to 90 %). For

the first network D5, it mainly contains DICCCOLs located

in the following regions: superior temporal gyrus (BAs

22/42), postcentral gyrus (BAs 2/3/43) in the parietal lobe,

precentral gyrus and medial frontal gyrus (BAs 4/6). The

Fig. 11 DICCCOL distributions of the dynamic multi-pattern clus-

ters (D1, D2,…, D10) and the corresponding static multi-subject

clusters (S1, S2,…, S8) ranked by the cluster similarity (from high to

low). In (a–d), the dynamic multi-pattern cluster and its correspond-

ing static cluster have a relatively high cluster similarity, thus we use

the same color spheres for each pair of them. In (e) and (f), both D5

and D8 correspond to S5, thus we use two types of blue color spheres.

For (g–j), the dynamic clusters D6/D7/D9/D10 have relatively low

similarity, i.e. many differences exist between them and their

corresponding static clusters, thus we use different color spheres

(Color figure online)
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superior temporal gyrus is so far considered to be higher-

order auditory cortex and involved in hearing, speech and

etc. As to the other network D8, it is mainly composed of

two regions: the precuneus in the superior parietal lobe

(BA7) and the precentral gyrus and superior/medial frontal

gyrus (BA6) in the frontal lobe. Thus, cluster D6 is likely

to be a motor-related RSN. Cluster D5 is also involved in

some motor-related activities in some certain degree since

it contains part of the motor cortex. The division of D5 and

D6 into two different clusters from dynamic multi-pattern

clustering indicates that these two networks may partici-

pate in different or related functional information pro-

cesses. The dynamic functional interaction along with time

leads to the result that these two dynamic networks cor-

respond to one static network from the view of the whole

fMRI scan. However, the accurate functions of these two

networks still need to be further investigated in future

work.

D6 Versus S6, D7 Versus S7, and D9/D10 Versus S8 The

rest of other four dynamic clusters (D6/D7/D9/D10) and

their corresponding static clusters (S6/S7/S8) have

relatively low similarities (Fig. 11g–j). That is, the differ-

ences between each pair of clusters are large. It suggests

that clusters D6/D7/D9/D10, as scan time varies, are

dynamically interacting with each other during the resting

state scan, finally presenting three different resting clusters

for the whole time period. Cluster D6 exists in the temporal

lobe and covers large parts of the superior, medial and

inferior temporal gyrus and the fusiform gyrus (BAs 20/21/

22/38). Clusters D7, D9 and D10 cover the majority

regions of the frontal lobe. Cluster D7 covers part of the

superior, medial and inferior frontal gyrus (BAs 9/10/11);

cluster D9 covers part of superior and medial frontal gyrus

(BAs 8/9/10) and cingulate cortex (BA 32); cluster D10

covers part of the superior, medial and inferior frontal

gyrus and precentral gyrus (BAs 6/9/45/46/47). These

results suggest much more temporal function brain

dynamics in the frontal lobes. Given the current neurosci-

ence knowledge that the frontal lobes are the major brain

regions for higher brain functions such as attention,

working memory and decision making, our results in this

work suggest that there are more temporal dynamics in

higher brain functions.

Fig. 11 continued
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In summary, the dynamic multi-pattern clustering that

makes use of the temporally dynamic information of the

brain achieve more clusters (the total cluster number is 10),

while the static multi-subject clustering achieve 8 clusters.

Interestingly, some of the two types of clusters or networks

show high overlapping areas, suggesting these networks

are the more stable networks during rest, such as the visual

network (D1/S1), the default mode network (D3/S3), and

other two networks (D2/S2, D4/S4). The cluster D5 and

cluster D8 from multi-pattern method correspond to one

static multi-subject cluster S5; D8 covers two important

motor cortex regions, the precuneus and the precentral

gyrus and appears more relevant to motor RSN; D5 also

involves some somatosensory and primary motor regions

but with some other regions. Thus it appears that these two

clusters might play a different motor-related role in resting

state brain activities, but show a similar function in static

resting state representation for the whole scan time. Based

on further analysis of other four dynamic multi-pattern

clusters (D6/D7/D9/D10) in comparison with the other

three static multi-subject clusters, it can be inferred that

these four networks exhibit much more dynamics and

variability. They might play a dynamic coordination role as

time varies and present three different static resting state

Fig. 11 continued
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connectome patterns for the whole time period. In general,

our experimental results offer novel insights into the

functioning mechanisms of the brain in resting state.

Discussion and Conclusion

This paper presented a novel framework to characterize the

temporally dynamics of the brain in resting state. We first

utilize the spatial and functional consistence and reproduc-

ibility among individual brains based on the large-scale

DICCCOL representation system. Then we extract the

temporally dynamic functional connectome patterns based

on the functional connectivity strength among different

DICCCOLs. Subsequently we perform a robust multi-view

spectral clustering on these dynamic patterns to obtain a

group of relatively stable and consistent dynamic resting

state clusters for different temporal patterns. Our work

identified a series of resting state networks including the

visual RSN, the commonly recognized default mode net-

work, the motor-related RSN and other networks. To com-

pare with the commonly used static methods, a similar multi-

view clustering procedure was conducted, and a set of static

resting state clusters were obtained. Through the cluster

similarity analysis between the dynamic and static clusters,

some networks including visual network and default mode

network were demonstrated to be the stable RSNs through

the whole resting scan time. While some other networks

show stronger dynamics and variability during the rest scans.

Our result suggests that the temporal dynamics of the brain

should be carefully investigated in resting state network

studies and more studies should be performed in the future to

understand the nature of functional brain dynamics.
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