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ABSTRACT 

Natural stimulus fMRI has been increasingly used in the 

brain imaging and brain mapping fields thanks to its more 

realistic stimulation of the brain’s perceptive and cognitive 

systems. However, identifying consistent functional net-

works across different brains in natural stimulus fMRI data 

has been challenging due to the intrinsic variability of indi-

vidual brain’s responses and a variety of sources of noises. 

Inspired by recent promising results of sparse representation 

of whole-brain fMRI data, in this paper, we present a novel 

hybrid temporal and spatial sparse representation of whole-

brain natural stimulus fMRI data for the inference of com-

mon functional networks across fMRI sessions and individ-

ual brains. Experimental results on natural stimulus fMRI 

dataset demonstrated the effectiveness of this framework. 

 

Index Terms—consistent brain network, natural stimulus, 

sparse coding, fMRI . 

 

1. INTRODUCTION 

In neuroimaging studies, block-based task experiments have 

been widely used in mapping functional brain locations [1]. 

However, recently, researchers more and more utilize real-

life stimuli such as images (e.g. [2]), video streams (e.g. [3]) 

or audio excerpts (e.g. [4]) for natural stimulus fMRI. In 

general, natural stimulus contains more complex and 

dynamic content than simply-repeated task-based 

experiments, and it is considered as more reliable to 

stimulate functional responses of the human brain to real-

world situation [5]. 

However, despite the increasingly wider applications of 

natural stimulus fMRI in the brain mapping field, data 

modeling and analysis methods have mainly relied on 

traditional methods such as independent component analysis 

(ICA) [6], general linear model (GLM) [7], inter-subject 

correlation (ISC) [8]. Recent relatively novel methods such 

as brain network modeling have been largely underexplored 

in natural stimulus fMRI data, though they have been 

extensively studied in task-based fMRI and resting state 

fMRI data. In our perspective, the main difficulty might lie 

in the complex and multiple concurrent brain networks that 

interact with each other during natural stimulus fMRI scans 

[9].   

Recently, Lv et al., [10, 11] presented a novel framework 

of sparse representation of whole-brain fMRI signals for 

inference of concurrent task-evoked and resting state brain 

networks and demonstrated promising results. The basic 

idea is to represent functional network activities by the 

learned time-series dictionary atoms that can well 

reconstruct whole-brain fMRI signals under a sparsity 

constraint. One of the prominent advantages of this 

framework is that many meaningful networks and their 

interactions can be simultaneously inferred. Inspired by the 

success of sparse representation of whole-brain fMRI 

signals [10, 11], in this paper, we present a novel hybrid 

temporal and spatial sparse representation framework to 

infer consistent networks across fMRI scan sessions and 

across different brains. In comparison with prior sparse 

representation methods, the key new methodological 

contribution here is that the first stage of temporal sparse 

representation will generate variable temporal dictionaries, 

but their coefficients’ spatial patterns are relatively more 

regularly distributed. Then, we apply the second stage of 

spatial sparse representation to infer those spatially common 

and consistent brain networks. The application of this hybrid 

temporal and spatial sparse representation framework in a 

natural stimulus fMRI dataset achieved promising results.  

      

 

2. MATERIALS AND METHODS 

2.1. Overview 

The overview of our framework is illustrated in Fig.1. In the 

first stage, the whole-brain fMRI signals of each individual 

brain (the first and second rows in Fig.1a) is sparsely 

represented, as similarly performed in [10, 11]. This step 

results in a collection of atomic temporal signal components 

(the third row in Fig.1a) and their associated spatial 

distributions (the fourth row in Fig.1a). It is particularly 

noted that the atomic dictionary components across 

individual brains are significantly different due to the 

intrinsic variability and a variety of possible noise sources, 

even though the subjects watched the same set of video 

streams. In comparison, the atomic dictionary components 

in sparse representation of task-based fMRI data are much 

more consistent as reported in [10, 11]. Actually, this is the 

major difference between natural stimulus fMRI data and 



task-based fMRI data when the whole-brain sparse 

representation method is employed, which motivated us to 

apply the second stage of spatial sparse representation of the 

coefficient maps associated with those atomic temporal 

components across different brains, as illustrated in Fig.1b. 

Specifically, all of the spatial maps are aggregated into the 

same template brain space as a big data matrix and then 

sparsely represented (first row of Fig.1b). This step results 

in the atomic spatial components, as shown in the second 

row of Fig.1b, which essentially stand for the most common 

and prominent spatially-referenced networks in the brain. In 

this paper, these networks are considered as the consistent 

spatial networks across different brains in natural stimulus 

fMRI dataset.  

 
Fig.1. The flowchart of our hybrid sparse representation 

framework. (a) Temporal sparse representation. Each 

individual’s whole-brain fMRI signals are sparsely 

represented. (b) Spatial sparse representation. Spatial 

coefficient distribution maps of temporal components across 

different brains are sparsely represented.  

     

2.2. Data and Preprocessing  

For fMRI natural stimuli, we randomly selected 32 video 

shots from the TRECVID [12], which is a standard video 

collection in the multimedia analysis field. Three semantic 

categories are covered these video shots including sports, 

advertisement and weather reports. We made the video shots 

into 4 clips, each of which is around 11 minutes. The video 

clips were then presented to 4 healthy university students for 

fMRI brain imaging at the Bioimaging Research Center 

(BIRC) of The University of Georgia. Details of fMRI scan 

and data preprocessing are referred to our prior study [13]. 

  

2.3. Hybrid Temporal and Spatial Sparse Representation   

As outlined in Fig.1, our study contains two parts: the first is 

temporal sparse representation (Fig.1 (a)), and the second 

part is spatial sparse representation (Fig.1 (b)). Sparse 

representation theory is widely used nowadays [15]. 

Specifically, the temporal sparse representation in this work 

can be written as: 

𝐲 = ∑ 𝛼𝑖 ∗ 𝐷𝑖

𝐤

𝑖=1

= 𝛼 ∗ 𝐷 𝐷𝜖ℝ𝐭×𝐤,𝛼𝜖ℝ𝐤×𝐧 
 

(1) 

where y is the t×n fMRI signal matrix in (t is the signal 

length, n is the number of whole-brain voxels) for each 

individual, as shown in the first and the second row of Fig.1 

(a). α is the coefficient matrix, in which αk indicates the 

contribution of the k-th atom in the reconstruction of 

original signal y. D denotes the dictionary, where each 

column of it is presumably the dominate hidden functional 

activity time series that constitute the whole-brain fMRI 

data. 

We project each coefficient vector in the coefficient 

matrix back to the fMRI image space [10, 11], which results 

in a spatial map. The classic t-statistics is applied to convert 

a spatial map to a T-statistics map. For the purpose of group 

analysis, the T-statistics maps are aligned to the MNI brain 

template using the nonlinear registration tool FNIRT in FSL 

[16]. These steps are akin to the methods in [13, 14]. 

In comparison with our prior works that performed 

temporal sparse coding [10, 11], the major methodological 

innovation in this paper is the spatial sparse representation 

(Fig.1(b)), which is applied after the temporal sparse 

representation. This step aims to infer spatially common and 

consistent brain networks. Here, the collection of spatial 

maps from each individual obtained in the first step of 

temporal sparse coding (the first row of Fig.2) will be put 

together to form another data matrix to perform sparse 

representation: 

spa spa
S D      (2) 

where S stands for spatial maps from all the brains. ε is the 

residual. αspa is the coefficient matrix, Dspa is the collection 

of spatial dictionary. In this way, common spatial patterns 

will be learned. Each column of Dspa is a common spatial 

distribution. We empirically set the size of the spatial 

dictionary to 100 in our study with the consideration of the 

total number of networks in the human brain. We infer inter-

subject correspondence between the temporal dictionaries 

by looking up the coefficient matrix in the spatial sparse 

representation. Briefly, for each atom in the spatial 

dictionary, the maximal coefficient from each part in the 

row of spatial coefficient matrix (the third row of Fig.2) is 

considered as the individual's best-fitted distribution of the 

atom. With the established correspondences, we 



quantitatively measure the spatial consistency and temporal 

consistency of the atoms in the spatial dictionary.  

 
Fig.2. Steps for establishing correspondence across spatial 

patterns in different individuals.  The maximum in the 

coefficient vector is highlighted by red rectangle, whose 

corresponding spatial patterns (shown to the bottom) are 

considered as group-wise consistent sub-networks. 

 

Specifically, the spatial consistency is calculated as the 

spatial overlap rate over each individual’s common spatial 

map: 

/
overlap all

overlap S S   (3) 

where Soverlap denotes the area of overlap for all common 

spatial distribution and Sall stands for the union area of 

common spatial maps.       

The temporal consistency is calculated as equation: 

                   𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑖𝑠𝑖𝑡𝑒𝑛𝑐𝑦 =  𝜆1 / 𝑆𝜆              (4) 

Here, 𝜆1  denotes the first eigenvalue in principal component 

analysis (PCA) applied on the collected atoms, which are 

based on the same spatial distribution, in each individual’s 

temporal dictionary and 𝑆𝜆  denotes the sum of all the 

eigenvalues. 

 

3. RESULTS 

The application of the methods in section 2.3 on the dataset 

in section 2.2 obtained 100 spatial dictionary atoms. The 

spatial consistency of the atoms in the spatial dictionary is 

shown in Fig.3 in descending order. The top six most 

spatially consistent networks are shown in Fig.4. It can be 

seen that the visual (Fig.4#4, #6), motor (Fig.4#3), auditory 

(Fig.4#5) networks are commonly involved in the 

comprehension of natural stimuli, which are quite 

reasonable. These results show that spatially consistent 

networks can be inferred across subjects and fMRI sessions 

regardless of intrinsic variability and noises sources, 

suggesting the effectiveness of our hybrid sparse 

representation framework. 

The temporal consistency of dictionary atoms is shown in 

Fig.5 in descending order of spatial consistency. It is not a 

surprise that there are temporally consistent and inconsistent 

atoms, as highlighted by the color arrows respectively. 

Fig.6(a) and shows an exemplar brain network with low 

temporal consistency (as highlighted by the green arrow in 

Fig.5). Fig.6(b) shows a brain network with low spatial 

consistency but high temporal consistency (as highlighted 

by the red arrow in Fig.5). However, there are networks 

with both spatial and temporal consistencies, as shown in 

Fig.6(c) for an example (as highlighted by the orange arrow 

in Fig.5). It turns out that this spatial map is the right Broca's 

area (Brodmann area 45). 

 
Fig.3. Overlap ratios of the 100 learned spatial dictionary 

atoms in descending order. 

 

 
Fig.4. Top six spatially consistent networks (each row). 
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Fig.5. Temporal consistency of the sorted dictionary atoms 

in descending order of spatial consistency. 

 

 
Fig.6. (a) Temporally inconsistent network (atom #9, as 

highlighted by the green arrow in Fig.5). (b) Temporally 

consistent but spatially inconsistent network (atom #36, as 

highlighted the red arrow in Fig.5). (c) Both temporally and 

spatially consistent network (atom #10, as highlighted the 

orange arrow in Fig.5) 

 

 

4. DISCUSSION AND CONCLUSION 

Our work demonstrated that hybrid temporal and spatial 

sparse representation can be used to decompose whole-brain 

natural stimulus fMRI signals into meaningful network 

activities. Importantly, consistent spatial distributions of 

such networks across different subjects can be discovered, 

suggesting the existence of common networks that are 

frequently involved in various situations and across 

individual brains. This result from natural stimulus fMRI 

dataset, instead of task-based fMRI dataset, might indicate 

the common functional brain architecture for natural 

stimulus comprehension as previously revealed by our 

HAFNI (holistic atlases of functional networks and 

interactions) system [11]. Therefore, our pilot work in this 

paper could serve as a start point for future exploration of 

the interactions between external multimedia stimuli and 

functional brain response in the future, as outlined in [17]. 
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