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Illustration of preprocessing steps:
(a) raw Pap smear images.
(b) groundtruth with four regions.
(c) pre-processed groundtruth, bright area
represents small nucleus and lightgray area
represents large nucleus.

3

a b c

a b c



4



• Dense blocks improves information flow between neural network
layers and show better capability in feature extraction.

• Deformable convolutions captures detailed structures of nuclei since
the abnormal cervical nuclei may display irregular shape rather than
circular shape of normal nuclei.

• A multi-path fashion trains multiple networks simultaneously with
different settings and integrates the results using a majority voting
strategy to further improve segmentation result.
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• Parameter efficiency

• Implicit deep 
supervision

• Feature reuse
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• Enhance transformation
modeling capability for
adjusting receptive fields of
convolutional kernels.

• Optimizing FOV offsets for
subtle structure characterization
by augmenting spatial
sampling locations on feature
maps.

(a) normal convolution; (b) deformable convolution
with arbitary offsets; (c-d) learned deformable
convolution.
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• We found that: feature maps in contracting path are more related to
contextual information and in expansive path are more related to
positional and morphological information.

• Three networks are trained in a multi-path fashion:

1. Dense-Unet;

2. Dense-Unet with deformable convolutions in contracting path;

3. Dense-Unet with deformable convolutions in expansive path;
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Examples of segmentation results. (a) Pap smear images, (b) Manual annotations, (c) Segmentation
results of Unet, (d) Segmentation results of dense U-Net, (e) Segmentation results of D-Con
(deformable convolutions in contracting path), (f ) Segmentation results of D-Exp (deformable
convolutions in expansive path; (g) Segmentation results of D-MEM (multi-path ensemble).
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Quantitative comparison of state-of-the-art methods with our proposed
method in terms of mean(± standard deviation) of ZSI, precision and recall
rates.
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Comparison among different model settings.
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Effect of dense connection: Experiment on Herlev dataset shows that
performance of Dense-Unet (0.910) is better than U-Net (0.896).

(a) Input images. (b) Ground truth. (c) Segmentation results of U-Net. (d) Result of 
Dense-Unet. 13
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Effect of deformable convolution: deformable convolution layer is
providing extra spatial prior and improves the results.

(a)Dense U-Net.

(b)D-Con.

(c)D-Exp.
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Effect of number of parameter (i.e. network size): the more parameters
are used, the better segmentation performance is. If the number of
parameters is increased Further, we could extend the ensemble model to
more varieties (currently ensemble 3 models) to further improve
segmentation performance.
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