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ABSTRACT 

Accurate detection of abnormal myocardium regions is 

essential for differential diagnosis of cardiovascular disease. 

However, to achieve this goal by image analysis will 

significantly increase the burden on radiologists who is 

already overwhelmed. To ease the time and energy-

demanding process and enhance the reproducibility, we 

proposed a novel framework for automatic abnormal shape 

detection on left ventricular (LV) using MR images. Our 

proposed approach utilizes the features obtained by large 

deformation diffeomorphic metric mapping (LDDMM). To 

take advantage of 3D structural information, we introduce 

multilinear principal component analysis (MPCA) in the 

framework to reduce feature dimensions. Then we combine 

MPCA with linear discriminant analysis (LDA) to perform 

differential diagnosis. The performance of proposed 

framework is evaluated on patients’ images. In the 

classification of three common cardiovascular diseases, our 

proposed method outperformed traditional classifiers (Global 

point signature, Random Forest and XGBoost) with an 

accuracy of 94%. To further automatically detect the 

dysfunctional heart regions, we did a comparison on 3D 

morphology between the diseased subjects and healthy 

controls and performed an automatic visualization of the 

abnormal myocadiac regions. In conclusion, our proposed 

framework reserves the spatial information of the features 

generated through LDDMM registration and enables the 3D 

visualization of abnormal regions of LV. With the advance 

of our method, differential diagnosis is successfully 

performed on patients with different cardiovascular diseases.   

 

Index Terms— Left ventricle, regional shape analysis, 3D, 

classification, registration.  

1. INTRODUCTION 

As an estimation, 92.1 million US adults have at least 1 type 

of Cardiovascular disease (CVD) and the number is still 

increasing. The relative cost is predicted to be $818 billion 

annually by 2030 [1]. The recent advances in image-based 

computational analysis has achieved promising performance 

in various applications, particularly individual estimation of 

left ventricular (LV) geometry [2-4]. As a noninvasive 

imaging modality, cardiac magnetic resonance (CMR) 

imaging has been widely used and provides details of LV 

structure in 3-dimension (3D). Combining these advanced 

tools with regional metrics of LV facilitates automatic 

detection of abnormal myocardial regions. And it certainly 

assists to identify patients with high risk of CVD or poor 

prognosis.  

       In image analysis, the optimal index to detect abnormal 

myocardium remains unclear. Previous studies have indicated 

that several indices describing regional morphology, such as 

wall thickness, strain and curvature. On one hand, these 

indices are usually correlated to the AHA 17-segment model 

and only suitable for ischemic heart disease. Thus, the 

variance among the standard template and individual heart 

shape limits the application in clinical diagnosis and disease 

evaluation [5-6]. On the other hand, given the deformation 

could be heterogeneous even within one segment of 

myocardium, using one index to represent  a segment seems 

arbitrary. Thus, the shape changes presented in 17-segment 

model is incapable to describe accurate myocardium 

deformation, and sometimes even results in misunderstanding. 

Therefore, adopting more elaborated pixel-level shape 

analysis is reasonable for precised diagnosis, risk 

stratification and therapeutic management.  

To study the 3D shape variance among diseased groups, 

registration has to be completed as first step and determined 

the validity of further model evaluation. Large deformation 

diffeomorphic metric mapping (LDDMM), a comprehensive 

framework for 3D shape registration, has demonstrated its 

effectiveness in the context of computational anatomy, such 

as brain, heart, and fiber bundles [7-8]. The features yielded 

by registration are useful since they decode pixel-wised shape 

deformation. Previous work has employed linear discriminant 

analysis (LDA) and other machine learning classifiers with 

flattened LDDMM features to classify multiple cardiac 

dysfunctional groups [9]. However, the original features 

produced by LDDMM containing spatial information is 

eliminated by flattening. Thus, developing a classification 

method that preserves 3D geometric information resided in 

features becomes of great significance. 

The primary goal of this study is to propose a novel 

framework that helps to automatically extract regional 3D 

indices representing abnormal LV morphology. Multilinear 

principal component analysis (MPCA) and linear 

discriminant analysis (LDA) were used together to complete 

this task. Hence, 3D spatial structural information derived 

from shape features can be successfully preserved. In this 

study, we evaluate the performance of proposed framework 

in disease classification among myocardial infarction, 

hypertrophic cardiomyopathy and heart failure and further 

detect patient-specific abnormal myocardium regions. 

 



2. METHOD 

2.1. Data Acquisition 

Our study included 24 subjects from Sunnybrook Cardiac 

Data. Three different types of common heart diseases are 

included in the dataset, such as heart failure with myocardial 

infarction (HFI), heart failure without infarction (HFNI) and 

hypertrophy (HYP) patients. The characteristics of 24 

patients are summarized in Table 1. There are 8 subjects on 

each group who has underwent CMR test. The cine MR 

images on standard Steady-state free precession (SSFP) 

sequence for each patient were obtained. Short and long axis 

(SAX and LAX) contours at end-of-systolic phase were 

manually labeled by radiologists. For each subject, there are 

2 to 3 ground-truth LAX contours and 8 to 10 SAX contours.  

Table 1. Characteristics of patient cohort 

 HYP HFNI HFI 

Male Cases 5 4 5 

Age(year) 61(13) 72(12) 55.5(13) 

LVEDV (ml) 130 (51) 238(56) 190(41) 

LVESV (ml) 37(21) 144(43) 162(52) 

HYP: Hypertrophy; HFNI: heart failure without infarction; HFI: heart failure 

with myocardial infarction; LVEDV: Left ventricular end-diastolic volume; 

LVESV: Left ventricular end-systolic volume. There are 8 cases in each 
group. Age, LVEDV, LVESV are reported as mean (standard deviation). 

 

2.2 Reconstruction of 3D Morphology Model  

To correct the heart motion due to respiration, SAX contours 

on MR images were aligned as the first step of 3D cardiac 

shape construction. The incompressible part referring to 

interventricular septum of SAX images were matched with 

the one of the LAX images, as suggested in [10].  

Triple-spline interpolation were then conducted to build 

3D surface from LAX (vertical, horizontal and three chamber 

view) and SAX contours. The built surface was convoluted 

with 3D Gaussian kernel for smoothing. Hausdorff Distance 

[11] was used as a measurement of the total reconstruction 

error, which was defined as the sum of Euclidean distance 

between the ground-truth contours and the newly built 3D 

surface over all the pixel points on the ground truth contours. 

The squared errors for each point on the constructed surface 

is about 0.4mm for epicardium, and 0.25mm for endocardium. 

2.3. Registration 

Before conducting group-wise comparison, affine 

registration was performed on constructed surfaces and 

followed with non-rigid registration using LDDMM. In the 

affine registration step, central line of LV was defined as the 

line from endocardial apex to the mitral annular center, which 

was visually checked with better accuracy in the dataset. 

Landmarks at the junction of left and right ventricles were 

used to rotate SAX images into standard orientation. After 

this, LDDMM-ot method [12] was used to construct a normal 

template from 8 healthy controls provided by Sunnybrook 

dataset while multi-kernel LDDMM [13] was used to register 

all individual 3D models. 

2.4. Abnormal Regions Visualization on 3D Surfaces 

Multilinear principal component analysis (MPCA) was 

applied to extract features that mostly contributed to the group 

differentiation. Those principle features (top 5) were retrieved 

and projected to the original 3D models for visualization. 

MPCA is a multilinear extension of PCA on n-way arrays. 

MPCA performs normal PCA on each of the three axes 

separately, iterates the process till converge on all the 

dimensions. For simplicity, we formulated the feature 

extraction steps on one axis as follows.  

Decomposition:   𝑣𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑋𝑣)𝑇(𝑋𝑣), 
where ||v|| = 1, 𝑣𝑇𝑣𝑗 = 0, 𝑗 = 1 … 𝑘 − 1 

Reconstruction from the first k features: 

𝑋′ =  𝑋𝑣1…𝑘𝑣1…𝑘
𝑇  

2.5 Disease Classification 

 After registration, the total length of deformation routine 

(amplitude of deformation, AOD), as well as the 

displacement field between the target surface and the points 

on contours can be calculated. They were viewed as two 

direct measurements of shape change from source to target 

during the registration [14]. Using normal template as the 

deformation source, the displacement field quantify the 

difference of surface region between template and diseased 

cases. Therefore, abnormally large changes in shape point to 

dysfunctional regions. The initial step of the whole 

deformation process (initial momentum) and the Jacobian 

matrix (direction controller) between the template and target 

were also included as features in our classification. These 

features captured shape changes from different perspectives.  

       Previous works have reported the use of LDA, random 

forest and logistic regression in classifying subjects base on 

LDDMM features [15]. To improve the performance, MPCA 

was introduced in our classification. In this step, labels were 

not provided, and the outputs are a set of 3D features which 

contribute mostly to the group variance. Therefore, the spatial 

information is preserved and leads to a higher accuracy in the 

classification. 

       Features screened by MPCA may not be the ones that 

best separate different groups since only those features mostly 

 
Figure 1. Flow charts of proposed framework. 



contributed to group variance were picked. Further selection 

by LDA was needed. In pair-wise comparison between each 

two groups, features that minimized the distance within 

group as well as maximize the distance between groups were 

chosen. Eventually, these concatenated 3D features construct 

a vector that served as input in the classification. We used 

features that could contribute to 30% of the group variance in 

MPCA. In LDA, the most powerful ten features were selected 

to differentiate the subjects of each pair of groups. To denote 

abnormal regions, we used first five components with the 

same methods as in classification. All steps were illustrated 

in Figure 1.   

3. RESULTS  

3.1 Visualization of the Abnormal Regions 

The regions that indicate potential abnormal myocardium 

were visualized in a 3D surface model. In Figure 2, one case 

in each HYP, HFNI and HFI group were illustrated as 

examples. In Figure 2 left column, the abnormal regions were 

highlighted (light blue) on the 3D LV model by projecting 

the first 5 components mentioned in 2.4. In the bulls-eye 

diagrams (Figure 2 middle column), the point-level shape 

changes based on displacement field were summarized and 

presented according to AHA 17-segment model. Few 

segments on the endocardium of left ventricle were 

highlighted with yellow and blue color, referring that these 

segments were closer or farther to the central line comparing 

to normal cases, which could also be seen in SAX and LAX 

images accordingly (right two columns in Figure 2). 

Meanwhile, the neighbor segments of enlarged areas (in blue) 

showed a general tendency of more exerted contraction, 

consisting with morphology compensation in LV remodeling.  

      The visualization results demonstrated a high 

concordance between abnormal regions in 3D LV model and 

abnormal segments. For example, in the HYP case (first row 

in Figure 2), basal inferior wall (region 4), mid-inferior wall 

(region 10) and mid-inferolateral wall (region 11) were 

highlighted on the 3D surface. Moreover, the proposed pixel-

wise visualization framework depicted the dysfunctional 

myocardium in a more elaborated fashion than the bulls-eye 

diagram. Despite the heterogeneity of the regional variations 

expected for different patients with given conditions, the 

major abnormal regions were still reliably indicated.  

3.2 Classification Results  

The classification results are summarized in table 2. 

Correlation among features were analyzed within epicardium 

or endocardium, and between them as well. Results showed 

that: the correlation between AOD and Jacobian on both 

epicardium and endocardium were 0.9; the correlation 

between Initial Momentum and Jacobian on epicardium was 

0.41; the correlation between all the other features were lower 

than 0.20.  

      The performance of classification for three different heart 

diseases were summarized in Table 2. Comparing with other 

common methods, our platform yielded highest accuracy of 

94% for all three classification tasks, which significantly 

outperformed the reference methods including random forest 

and XGBoost. The improvement on the accuracy of random 

forest solely was achieved by integrating additional structural 

information. Whereas adopting a stronger classifier-XGBoost 

didn’t improve the performance of random forest.  

       To examine the effectiveness of LDDMM-based 

registration, Global Point Signature, a pipeline completes 

auto shape registration and classification, was included into 

comparison as a sensitive analysis [16]. Results suggested 

that LDDMM-based registration generally yielded a higher 

accuracy on our dataset. 

 
Figure 2. Visualization of abnormal regions on endocardium of left ventricle 



 

4. CONCLUSION 

In this study, a new CMR image-based framework are 

proposed to classify heart diseases with different etiologies. 

For leveraging more 3D structural information, the approach 

combining MPCA and LDA significantly improves 

classification accuracy, which enables the individual 

abnormal myocardium to be detected and visualized 

automatically. Although analysis was conducted within a 

small dataset at ES, our work showed great potential in 

disease differential diagnosis, treatment planning, and patient 

follow-up. Further validation and investigation in larger 

population with more temporal information should be 

considered to helping ease the burden of radiologists and 

improve the effectiveness in clinical setting. 
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Table 2. Classification Results 
Task Methods Leave-one-out Accuracy (%) Sensitivity (Specificity) (%) 

HFNI vs. HFI Global Points Signature 68.75 87.50 (50.00) 
Random Forest 62.50 75.00 (50.00) 

XGBoost 75.00 87.50 (62.50) 

MPCA + LDA + Random Forest 94.00 100 (89.00) 

HFI vs. HYP Global Points Signature 62.50 75.00 (50.00) 

Random Forest 62.50 50.00 (75.00) 

XGBoost 62.50 62.50 (62.50) 

MPCA + LDA + Random Forest 94.00 100 (89.00) 

HFNI vs. HYP Global Points Signature 62.50 87.50 (37.50) 

Random Forest 68.75 75.00 (62.50) 

XGBoost 68.75 62.50 (75.00) 

MPCA + LDA + Random Forest 94.00 89.00 (100) 

HYP: Hypertrophy; HFNI: heart failure without infarction; HFI: heart failure with myocardial infarction; MPCA: Multilinear principal component 

analysis; LDA: linear discriminant analysis. 


