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Abstract—For decades, it has been largely unknown to what ex-
tent multiple functional networks spatially overlap/interact with
each other and jointly realize the total cortical function. Here,
by developing novel sparse representation of whole-brain fMRI
signals and by using the recently publicly released large-scale Hu-
man Connectome Project high-quality fMRI data, we show that a
number of reproducible and robust functional networks, including
both task-evoked and resting state networks, are simultaneously
distributed in distant neuroanatomic areas and substantially spa-
tially overlapping with each other, thus forming an initial collection
of holistic atlases of functional networks and interactions (HAF-
NIs). More interestingly, the HAFNIs revealed two distinct patterns
of highly overlapped regions and highly specialized regions and ex-
hibited that these two patterns of areas are reciprocally localized,
revealing a novel organizational principle of cortical function.

Index Terms—Brain networks, cortical architecture, fMRI, in-
teraction.

I. INTRODUCTION

UNDERSTANDING the organizational architecture of cor-
tical function has been of intense interest since the
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inception of human neuroscience. After decades of active re-
search using in-vivo functional neuroimaging techniques such
as fMRI [1], there has been mounting evidence [2]–[6] that the
brain function emerges from and is realized by the interaction
of multiple concurrent neural processes or networks, each of
which is spatially distributed across specific structural substrate
of neuroanatomical areas [7], [8]. However, it is still challeng-
ing to robustly and faithfully reconstruct concurrent functional
networks from fMRI [either task fMRI (tfMRI) or resting state
fMRI (rsfMRI)] data and quantitatively measure their network-
level interactions. The critical lack of this key knowledge might
be the underlying fundamental barrier to rigorously answer-
ing this long-standing debate in human neuroscience [9]: is the
functional human brain architecture composed of a collection of
highly specialized components, each responsible for a dedicated
aspect of human function, or is the brain architecture more of a
general-purpose machinery, each component of which involved
in a wide range of functional processes?

Despite the remarkable successes and significant neurosci-
entific insights on fMRI analysis achieved by the traditional
general linear model (GLM)-based subtraction approach [10],
[11], it has been recognized and pointed out in the literature
that spatially overlapping networks subserving different func-
tions are possible to go unnoticed by the blocked subtraction
paradigms and the associated analysis methods such as GLM
[12], [13]. Meanwhile, from a human neuroscience perspec-
tive, it has been widely reported and argued that a variety
of cortical regions and networks exhibit strong functional di-
versity and heterogeneity [2], [5], [6], [9], [14], [15], that is,
a cortical region could participate in multiple functional do-
mains/processes and a functional network might recruit various
heterogeneous neuroanatomic areas. Therefore, it is unlikely
that current subtraction-based tfMRI data analysis methods are
sufficient to reconstruct concurrent spatially overlapping func-
tional networks and then to address the fundamental question of
whether the functional brain architecture is composed of highly
specialized components, or is a general-purpose machinery, or
is somewhere in-between.

Besides tfMRI for studying the task-evoked cortical func-
tion, rsfMRI has arguably been another major neuroimaging
technique to examine the intrinsic functional activities of the
human brain [16]–[18]. Recently, a variety of computational
methods, such as independent component analysis (ICA) [19],
[20], normalized cut [21], or other clustering algorithms [22],
have been employed to map resting state networks (RSNs) in
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healthy brains or neurological/psychiatric disorders, and many
interesting results have been reported [17], [18], [23] [24]. How-
ever, there has been limited knowledge about to what extent the
reconstructed RSNs spatially overlap with each other and jointly
realize resting state brain function. In addition, there has been
increasing interest in examining the relationship or interaction
between task-evoked networks and intrinsic RSNs in the litera-
ture [27].

In order to address the abovementioned fundamental ques-
tions, in this study, we developed a novel computational frame-
work of sparse representations of whole-brain fMRI signals and
applied it on the recently publicly released large-scale Human
Connectome Project (HCP) tfMRI data (Q1 release) [28]. The
basic idea of our computational framework is to aggregate all
of hundreds of thousands of tfMRI or rsfMRI signals within
the whole brain of one subject into a big data matrix, which is
subsequently factorized into an overcomplete dictionary basis
matrix (represented by the panel (I) of Fig. 1) and a reference
weight matrix (represented by the panel (II) of Fig. 1) via an ef-
fective online dictionary learning algorithm [29], [30]. Then, the
time series of each overcomplete basis dictionary represents the
functional BOLD (blood-oxygen-level dependent) activities of
a brain network (the white curves in the panel (II) of Fig. 1) and
its corresponding reference weight vector stands for the spatial
map of this brain network (the volume images in the panel (II)
of Fig. 1). A particularly important characteristic of this frame-
work is that the decomposed reference weight matrix naturally
reveals the spatial overlap/interaction patterns among recon-
structed brain networks (illustrated in Supplemental Fig. 1).
Experimental results on the HCP datasets have shown that
these well-characterized functional networks are reproducible
across different tasks and individual brains and exhibit sub-
stantial spatial overlaps with each other [see Supplemental
Fig. 1(i)–(o)], thus forming an initial collection of holistic at-
lases of functional networks and interactions (HAFNIs). More
interestingly, these HAFNIs revealed two distinct patterns of
highly heterogeneous (highly overlapped) regions and highly
specialized (task-evoked) regions in tfMRI data and showed
that these two patterns of areas are reciprocally localized.

II. MATERIALS AND METHODS

A. Dataset and Preprocessing

The primary goals of the HCP tfMRI datasets were to identify
as many core functional nodes in the brain as possible that can
be correlated with structural and functional connectomes and
behavior measurements [28]. To achieve this objective, a broad
battery of tasks were adopted or designed to identify core node
locations in as a wide range of neural systems as feasible within
realistic time constraints. Thus, the HCP tfMRI dataset can
be considered as a systematic and comprehensive mapping of
connectome-scale functional networks and core nodes over a
large population in the literature so far. The specifics of seven
tasks are briefed in supplemental materials.

In the first Q1 release of HCP fMRI dataset, 77 participants
are scanned. Specifically, 58 are female and 19 are male, 3 are
between the ages of 22–25, 27 are between the ages of 26–30,

Fig. 1. Decomposed dictionary components of the motor task fMRI data of
one single task (I) and the corresponding reference weight maps (14 maps
shown in (II)) by applying the HAFNI method to the whole-brain fMRI signals.
(a) and (b) visualize 14 selected dictionary components which are either mo-
tor task-evoked networks (M1-M5) or RSNs (RSN1-RSN9), respectively. The
green bars in (I) show 400 dictionary network components (indexed vertically)
and the spatial nonzero voxel numbers that each component’s reference weight
map contains (represented by the horizontal height). The panels in (II) visualize
the temporal time series (white curve) and spatial distribution map (eight rep-
resentative volume images) of each network. The red curves represent the task
contrast designs of the motor tfMRI data.

and 47 are between the ages of 31–35. In the publicly released
dataset, only 68 subjects are available. So our experiments are
based on the seven tasks and one resting state fMRI data of 68
subjects.

The acquisition parameters of tfMRI data are as follows:
90 × 104 matrix, 220 mm FOV, 72 slices, TR = 0.72 s,
TE = 33.1 ms, flipangle = 52, BW = 2290 Hz/Px, in-plane
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FOV = 208 × 180 mm, 2.0 mm isotropic voxels [28]. For tfMRI
images, the preprocessing pipelines included skull removal, mo-
tion correction, slice time correction, spatial smoothing, and
global drift removal (high-pass filtering). All of these steps are
implemented by FSL FEAT. For results comparison, the GLM-
based activation is also performed individually and group-wisely
using FSL FEAT. Task designs are convoluted with the Double
Gamma haemodynamic response function and set as regressors
of GLM. The contrast-based statistical parametric mapping was
carried out with T-test and p < 0.05 (with cluster correction) is
used to reject false positive. Multilevel z-scores are used to map
multiscale activations. In the group level, the statistical paramet-
ric mapping is carried out with mixed-effect model embedded in
the FSL FEAT tool. For the rsfMRI data, the acquisition param-
eters were as follows: 2 × 2 × 2 mm spatial resolution, 0.72 s
temporal resolution and 1200 time points. The preprocessing of
rsfMRI data also include skull removal, motion correction, slice
time correction, and spatial smoothing. More detailed about
rsfMRI data acquisition and preprocessing are referred to liter-
ature report [31].

B. Dictionary Learning and Sparse Coding

The computational framework of dictionary learning and
sparse coding of whole-brain fMRI signals is summarized in
Supplemental Fig. 10. Specifically, first, for each single sub-
ject’s brain in one task scan, we extract tfMRI signals on all
voxels of the whole brain. Then, after normalizing the signals
to zero mean and standard deviation of 1, they are arranged
into a big signal data matrix X ∈ Rt×n [see Supplemental
Fig. 10(a)], where n columns are fMRI signals from n voxels
and t is the fMRI volume number (or time points). By using a
publicly available effective online dictionary learning and sparse
coding method [30], each fMRI signal vector in X is modeled
as a linear combination of atoms of a learned basis dictionary
D [see Supplemental Fig. 10(b) and (c)], i.e., xi = D × αi and
X = D × a, where α is the coefficient weight matrix for sparse
representation and each column αi is the corresponding coeffi-
cient vector for xi .

At the same time, we map each row in the α matrix back to
the brain volume and examine their spatial distribution patterns,
through which functional network components are character-
ized on brain volumes, as shown by the red and yellow areas in
Supplemental Fig. 10(c). At the conceptual level, the sparse rep-
resentation framework in Supplemental Fig. 10 can achieve both
compact high-fidelity representation of the whole-brain fMRI
signals [see Supplemental Fig. 10(b)] and effective extraction
of meaningful patterns [see Supplemental Fig. 10(c)] [29], [30],
[32]–[35]. In comparison with previous works of sparse rep-
resentation of fMRI signals [36]–[39], the major novelty here
is that our framework holistically considers the whole-brain
tfMRI signals by using a big-data strategy and aims to infer a
comprehensive collection of functional networks concurrently,
based on which their spatial and temporal characteristics can be
quantitatively described and modeled.

In this framework, we aim to learn a meaningful and over-
complete dictionary of functional bases D ε Rt×m (m > t,

m << n) [30] for the sparse representation of X. For the task-
based fMRI signal set X = [x1 , x2 , . . . xn ]εRt×n , the empirical
cost function is summarized in (1) by considering the average
loss of regression of n signals

fn (D) Δ=
1
n

n∑

i=1

� (xi,D) . (1)

With the aim of sparse representation using D, the loss func-
tion is defined in (2) with a �1 regularization that yields a sparse
resolution of αi , and here, λ is a regularization parameter to
trade off the regression residual and sparsity level

� (xi,D) Δ= min
αi εRm

1
2
||xi − Dαi ||22 + λ||αi ||1 . (2)

As we mainly focus on the fluctuation shapes of basis fMRI
activities and aim to prevent D from arbitrarily large values, the
columns d1 , d2 , . . . dm are constrained by

C
Δ=

{
DεRt×m s.t. ∀j = 1, . . . m, dT

j dj ≤ 1
}

(3)

min
D∈C,α∈Rm ×n

1
2
||X − Dα||2F + λ||α||1,1 . (4)

In brief, the problem of dictionary learning can be rewritten
as a matrix factorization problem in (4) [40], and we use the
effective online dictionary learning method [30] to derive the
atomic basis dictionary for sparse representation of whole-brain
fMRI signals. Here, we employ the same assumption as previous
studies [25], [36]–[39] that the components of each voxel’s fMRI
signal are sparse and the neural integration of those components
is linear.

One common use of sparse representation of signals with
limited number of atoms from a learned dictionary is to denoise.
For our application, with the sparse representation, the relevant
basis components of fMRI activities will be selected and linearly
combined to represent the original fMRI signals. With the same
regularization in (4), we perform sparse coding of the signal
matrix using the fixed dictionary matrix D in order to learn an
optimized α matrix for spare representation as shown in the
following:

min
αi εRm

1
2
||xi − Dαi ||22 + λ||αi ||1 . (5)

Eventually, the fMRI signal matrix from a single subject’s
whole brain will be represented by a learned dictionary matrix
and a sparse coefficient matrix (see Supplemental Fig. 10). Here,
each column of the α matrix contains the sparse weights when
interpreting each fMRI signal with the atomic basis signals in
the dictionary. Meanwhile, each row of the α matrix repre-
sents the spatial volumetric distributions that have references
to certain dictionary atoms. With these decomposed dictionary
components and their weight coefficient parameters across the
whole brain for each subject, our major task is to characterize
and interpret them within a neuroscience context. In particular,
the sparse representation and dictionary learning of whole-brain
fMRI signals (see Supplemental Fig. 10) are performed for each
individual brain separately and thus the spatial and temporal cor-
respondences of those characterized dictionary components, or
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functional networks, across a group of subjects will be another
major objective, as detailed in the next section.

One major advantage of the sparse coding strategy is that
the sparsity or scale of spatial regions in each component can
be controlled and concentrated by the regularization of λ, but
based on current knowledge in machine learning field there is no
golden criteria about defining λ. So we empirically employed
the sparsity of λ = 1.5 based on the criterion of group-wise
consistency of derived HAFNI components. Our experimental
results show that based on the results in supplemental mate-
rial Section I-B, the spatial maps and temporal patterns are not
so sensitive to λ when it alternates in a certain level such as
1.0 to 2.0. Another critical parameter is the dictionary size.
After exploring the dictionary size from 100 to 600 in the sup-
plemental materials, it is clear that the meaningful networks
changes very slightly with alternation of dictionary size. Fi-
nally, the dictionary size in this paper is experimentally set
as 400.

C. HAFNI Network Identification

We have applied the above dictionary learning and sparse
representation methods on the publicly available HCP release
tfMRI datasets. Specifically, for each single individual, seven
scans of task fMRI data and one scan of resting state fMRI data
were acquired and preprocessed separately. The HAFNI pipeline
was applied to each scan of each subject independently. So all
analysis results in the following sections are based on the single
scan of each subject. Then, the following procedures of both
quantitative measurements and visual examination of the spa-
tial and temporal pattern of the obtained functional networks
(dictionary atoms) were applied to identify networks that can
be well characterized and interpreted by existing brain science
knowledge. Specifically, in tfMRI data, some of these networks
have similar spatial and temporal patterns as the activation de-
tection results (contrast maps) by using GLM, as shown in Sup-
plemental Fig. 2(a)–(j) (ten randomly selected subjects). As the
time series of each basis dictionary is considered as a functional
network component, we aim to characterize and model as many
network components as possible (as already illustrated in Fig. 1),
and to seek their correspondences across individual brains. To
achieve this goal, we not only compared each dictionary atom’s
temporal shape pattern [white curve in image (III) of each panel
in Fig. 2(a)] with the task paradigm curve [red curve in image
(III) of each panel in Fig. 2(a)], each red curve for one sep-
arate task contrast), but also examined the similarity between
the dictionary atom’s spatial reference weight map [image (I)
in each panel in Fig. 2(a)] and the activation map [image (II) in
each panel in Fig. 2(a)] obtained by the traditional GLM method.
Specifically, we defined the spatial overlap rate (OR) (6) to mea-
sure the similarity of the two maps. Our rationale here is that
each identified and characterized HAFNI component should ex-
hibit both high temporal similarity with the task paradigm and
high spatial similarity with the GLM-derived activation map. In
addition, we evaluated the group-wise consistency of the dictio-
nary atom’s spatial reference weight maps across all of the HCP
subjects, as shown in Fig. 2(b) as an example, and only those

most group-wise consistent dictionary atoms are considered as
HAFNI components.

In this study, we aim to construct an initial set of functional
atlases (called HAFNIs) characterizing consistent functional
brain networks across HCP subjects in all seven tfMRI datasets.
More specifically, in tfMRI data, for each single contrast map
of an individual subject obtained by GLM, we first applied
seven levels of z-score thresholds (1.0–4.0 stepped by 0.5) on
it. Note that selecting multilevel of threshold is because there
is no golden criterion for significance of activation detection,
and we need to find a suitable match between the activation
and the component network. Afterward, we picked up ten can-
didate networks with higher spatial similarity with that con-
trast map of specific threshold and temporal correlation with
task contrast design, as shown in our website:http://cobweb.
cs.uga.edu/∼hafni/HCPTask_ReportThresholded/HTML/. The
spatial similarity is defined by the overlap rate R between spa-
tial pattern of the network (A) and the spatial pattern of the
contrast maps serving as the template (T):

R(A, T ) =
|A ∩ T |
|T | . (6)

A team of experts then quantitatively and qualitatively
identified the best matches between HAFNI networks and GLM
contrast maps. Seven experts were involved in the network iden-
tification. They searched network candidates separately, while
the final results are based on the agreement reached by a voting
procedure. For example, for the contrast 5 of the motor task, the
GLM spatial maps and HAFNI candidate components are shown
in the link http://cobweb.cs.uga.edu/∼hafni/HCPTask_Report
Thresholded/HTML/Report_sub_11_MOTOR.html#MOTOR_
cope_05. The group-wise GLM activation and individual
activations with seven level thresholds are shown in the
first three rows. For each level of threshold, there are ten
candidate HAFNI components arranged in the same column.
Note that each candidate is visualized with the spatial map
and temporal curve overlaid with the contrast design. Our
experts first selected an appropriate level of threshold for the
GLM activation, and then, the final HAFNI component was
selected based on both the similarity with spatial activation
map and the correlation of temporal curve and task design.
Note that both spatial patterns and temporal time series shapes
are taken into consideration as they provide complementary
information regarding the neuroanatomic distributions and
temporal dynamics of functional activities. Both sources of
information can contribute to the identification and charac-
terization of those brain networks. In this example, the GLM
threshold is selected as 4.0 for reasonable patterns, and the
HAFNI network of the subject corresponding to the contrast
is selected as component #256 (out of 400 candidate ones)
with both high spatial similarity with activation pattern and
temporal correlation with contrast design. After summarizing
the identification results from all seven tasks across 68
subjects, there are totally 23 consistent task-evoked functional
networks identified, constituting the current initial version
of HAFNI. The complete list of the final HAFNI networks
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Fig. 2. Task-evoked HAFNI components in seven tfMRI datasets and the comparison with GLM-derived activation maps. Seven tasks are language network
(L), motor network (M), gambling network (G), emotion network (E), social network (S), relational network (R), and working memory network (WM).
(a) Examples of 23 task-evoked HAFNI components in seven tasks in one subject. Each panel includes one HAFNI component and has three subfigures (I-III).
(I) One representative slice from a HAFNI component’s spatial reference weight map. (II) Corresponding representative slice of the activation map by GLM. (III)
Comparison of task paradigm curve and the HAFNI component’s temporal time series. (b) Examples of group-wise consistency of the HAFNI component’s spatial
reference weight maps across different HCP subjects (ten subjects shown here). Two HAFNI components in the motor task are shown. The last two columns are
the group-wise averages of HAFNI components and the group-wise GLM activation maps. (c) Group-wise averages of 12 identified HAFNI components across
68 HCP subjects for the four tasks as well as the corresponding averaged GLM-derived activation maps (right column). Six representative volume slices were
selected for visualization for each component. (d) Group-wise averages of 11 other identified HAFNI components across HCP subjects for the three tasks, as well
as the corresponding averaged GLM-derived activation maps (right column). Similarly, six representative volume slices were selected for visualization for each
component.

versus GLM contrast maps can be accessed on our website at
http://hafni.cs.uga.edu/finalizednetworks_Task.html.

For RSNs identification in seven tfMRI datasets and one
rsfMRI dataset across all 68 HCP subjects, since the tempo-
ral characteristics of RSNs have not been fully understood or
quantitatively described, we adopted the spatial similarity mea-
surement defined in (6) to identify meaningful RSNs. In this
study, we adopted the ten well-defined RSN templates pro-
vided in the literature [41]. For each tfMRI/rsfMRI data of
each subject, we identified the component (dictionary atom)
with the highest spatial similarity with each specific RSN tem-
plate. Then, a team of six experts quantitatively and qualitatively
compared each identified component’s spatial reference weight
map with the corresponding RSN template in each task/resting

state fMRI data of each subject. If the mean spatial similar-
ity value of the identified component with the corresponding
RSN template across all 68 subjects is less than 0.2 in any
of the tfMRI/rsfMRI data, this RSN component will be dis-
carded. For example, in the emotion task data of subject 1, the
identified components with the corresponding RSN templates
are shown in http://hafni.cs.uga.edu/HCPResting_Report/
Report_Resting_State_01.html#EMOTION. After quantitative
and qualitative inspection by the experts, RSN #5 represent-
ing the cerebellum was discarded for all 68 subjects in the
tfMRI/rsfMRI data. Finally, nine meaningful RSNs were suc-
cessfully identified in all of the seven tfMRI datasets and
one rsfMRI dataset of all subjects. Supplemental Fig. 4(a)–(j)
shows the nine identified RSNs via HAFNI in all seven tfMRI
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datasets and one rsfMRI dataset of ten randomly selected
subjects. The complete list of the final HAFNI RSNs is at
http://hafni.cs.uga.edu/finalizednetworks_Resting.html.

We further examined the possible functional identities/roles
of these HAFNI RSNs based on existing brain science knowl-
edge and literature reports. Specifically, RSNs #1, #2, and #3 are
all located in the visual cortex, and contain medial occipital pole
(BA 17) and lateral visual areas (BAs 18/19), respectively. RSN
#4, widely known as the “default mode network” (DMN) [42]
includes the medial prefrontal gyrus (BAs 9/10/11), anterior
(BAs 12/32)/posterior (BA 29) cingulate cortex, and bilateral
supramarginal gyrus (BA 39). RSN #5 mainly includes pre- and
postcentral gyrus (BAs 1/2/3/4), and the supplementary motor
area (BA 6) and is known as the sensorimotor network. RSN
#6 is known as the auditory network, including the Heschl’s
gyrus, posterior insular cortex, and lateral superior temporal
gyrus. RSN #7 is considered as the executive control network,
including anterior cingulate and paracingulate regions. Finally,
RSNs #8 and #9 have strong lateralization in the right (RSN #9)
and left (RSN #10) hemispheres, containing the middle frontal
and orbital (BAs 6/9/10) and superior parietal areas (BAs 7/40).

Moreover, for comparison purpose, we performed ICA on the
whole-brain rsfMRI data of each single HCP subject using FSL
MELODIC tool [19] as an independent source to evaluate the
identified HAFNI RSNs from tfMRI data. Specifically, we set
ICA dimensionality as 100, which has been proven appropriate
and effective in the literature. We adopted the same spatial OR
metric for identifying corresponding ICA components. The ICA
component with the highest spatial OR with a specific RSN
template [41] was determined as the specific RSN in the rsfMRI
data of a specific subject.

It is essential to mention that our HAFNI framework is in-
dependent from the GLM-based fMRI activation detection and
ICA-based RSN identification. Without effective interpretation
of the hundreds of networks generated by HAFNI, the GLM
activation and ICA results are employed to identify meaning-
ful networks in HAFNI. On the other hand, further compari-
son of spatial patterns and temporal characteristics across these
methods is a reasonable verification of the effectiveness of our
HAFNI method.

D. Spatial Overlap Patterns Among Task-Evoked and Resting
State Functional Networks

To quantitatively measure the overlap patterns, we adopted
the following scheme to define the spatial OR:

ORi =
Ri

Rinvolved
. (7)

In the above formula, i represents the number of overlap com-
ponents in a specific situation and it is variable under different
conditions (task contrast, HAFNI RSNs or their combination).
For instance, in motor task, there are five contrasts with which
we can identify the corresponding HAFNI components. We cal-
culated the percentage of the voxels simultaneously recruited in
i components to those voxels involved in at least one component.
In this case, i changes from 2 to 5. Similarly, in the calculation

of OR in HAFNI RSNs, i changes from 2 to 9. It should be
noted that when we estimate OR between task-evoked HAFNI
components and HAFNI RSNs, Ri are the voxels belonging
to both of them at the same time, and Rinvolved represents the
voxels involved at least one task contrast or one HAFNI RSN.

The highly heterogeneous region (HHR) is defined by the
number of networks/components involved within the region.
Specifically, an HHR region is composed of a collection of
voxels that:

HHR = ∀ voxel vi s.t. ‖αi0 ‖ > Threshold. (8)

Thus, any voxel on the cerebral cortex with the number of
nonzero elements (i.e., the number of involved networks) in its
corresponding column in coefficient matrix αi0 greater than a
predefined threshold would be included in the HHR. As in this
study the dictionary size was experimentally set as 400 (please
see the below section for more details), αi0 is in the range of 0 to
400. The threshold is defined by the number of nonzero elements
in the top 20% percentile across all voxels, so that we would
obtain similarly sized HHR for different fMRI datasets. The ra-
tionale for using a single uniform threshold in defining the HHR
is based on our observation that the values of α0 across vox-
els are typically normally distributed in all tfMRI datasets with
similar mean and standard deviation (please see Supplemental
Fig. 5). We have examined the effect of threshold by performing
the same analysis using different thresholds and have obtained
similar conclusions (please see Supplemental Table VIII). Also,
we define the highly-specialized regions (HSR) as voxels that
are involved in task-related networks.

III. RESULTS

A. Group-Wise Consistent Task-Evoked Functional Networks

In total, we identified and confirmed 5, 3, 2, 2, 2, 3 and 6
group-wise consistent task-evoked networks, or called HAFNI
components here, for motor [M1–M5 in Fig. 2(a)], emotion
[E1–E3 in Fig. 2(a)], gambling [G1–G2 in Fig. 2(a)], language
[L1–L2 in Fig. 2(a)], relational [R1–R2 in Fig. 2(a)], social
[S1–S3 in Fig. 2(a)], and working memory (WM) [W1–W6 in
Fig. 2(a)] networks, respectively. These networks are correlated
to specific task performance, e.g., M1 is for right hand move-
ment, M2 is for tongue movement, M3 is for global motion task,
M4 is for left hand movement, E1 is for emotional faces stimu-
lus, E2 is for simple shape stimulus, W1 is for 2-back memory
task, and W2 is for 0-back memory task. Additional details about
the network description are referred to Supplemental Table XIII.
In particular, these 23 HAFNI components are reproducible and
consistent across all of the HCP subjects we examined, as shown
in Supplemental Fig. 2(a)–(j) and in the visualizations on our
website: http://hafni.cs.uga.edu/finalizednetworks_Task.html.
In Fig. 2(b)–(d) and Supplemental Fig. 3(a)–(g), the averaged
spatial map of each HAFNI component across all subjects is
shown and compared with the corresponding group-wise GLM-
derived activation map. It is evident that the averaged HAFNI
components are similar to the group-wise GLM-derived maps.
Quantitatively, Supplemental Table I provides the spatial ORs
of HAFNI components and GLM-derived activation maps for
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20 randomly selected individuals, and the average of spatial OR
is 0.47. In addition, Supplemental Table II shows the Pearson’s
correlations of the HAFNI component’s temporal time series
and the task paradigm curves for the same 20 subjects, and the
average correlation is 0.39. These results demonstrated that the
dictionary learning method and the HAFNI identification pro-
cedure can effectively uncover meaningful task-evoked func-
tional networks, and can serve as a novel, alternative approach
to detecting traditionally conceived task-based activations. In
Supplemental Table I, the individual variation between HAFNI
and GLM is substantial, the reason of which is attributed to the
following two aspects. 1) The regression strategy in GLM that
only employ limited regressors might not be sufficient in dealing
with the diversity of hemodynamic behaviors and the heteroge-
neous brain regions, so that the results from the GLM is fragile
and is different from the HAFNI results. 2) The GLM method
might not be capable of determining task related activations in
the areas with complicated signals, while the HAFNI method
can decompose task related components in these areas.

Importantly, a fundamental difference between the HAFNIs
and GLM-based activation maps is that the HAFNI components
are simultaneously derived from the optimally decomposed
fMRI signals based on the sparse representation of whole-brain
data (as illustrated in Fig. 1), while the GLM-based maps were
obtained from individual fMRI signals based on separate model-
driven subtraction procedures. For instance, the five HAFNI
components [M1–M5 in Fig. 2(a)] in the motor tfMRI data can
be effectively and robustly derived by characterizing the most
relevant atoms from a library of candidate dictionaries (the panel
(I) of Fig. 1), which can maximally account for the whole-brain
fMRI signals. In contrast, the model-driven GLM procedure is
applied on individual fMRI signals whose compositions could
be contributed from multiple functional processes or networks.
As a consequence, the GLM has difficulty in reconstructing con-
current, interacting functional networks, and thus other spatially
overlapping networks with different temporal curves (such as
the RSNs in the panel (II) of Fig. 1) other than the task paradigm
will be essentially unnoticed [12] [13]. Also, the experimental
comparison between HAFNI method and GLM method based
on synthesized data in Supplemental Section I-C (Performance
on Synthetic Data) provides additional sound evidence that the
HAFNI method performs better in reconstructing concurrent in-
teracting function networks. In the synthetic experiments, the
HAFNI method exhibits clear advantages in reconstructing tem-
poral response of networks and is superior in the sensitivity,
precision, and false discovery rate of reconstructed spatial maps
of concurrent brain networks. Therefore, it is appropriate and
feasible to employ the HAFNI components, instead of the GLM-
derived maps, to explore the question of how the total cortical
function is realized by the interaction of multiple concurrent
neural processes or networks [2]–[8].

B. Group-Wise Consistent Resting-State Functional Networks

We went through all of the decomposed dictionary compo-
nents (e.g., the panel (I) of Fig. 1) and identified nine repro-
ducible and consistent RSNs in all of the seven tfMRI datasets
across all of the HCP subjects. Fig. 3(a) shows the nine RSNs

(nine rows) in these seven tasks (the first seven columns) for
one exemplar subject. Meanwhile, for comparison purpose, the
corresponding RSNs identified by both of the dictionary learn-
ing method and the ICA [19] method from rsfMRI data are
shown in the eighth and ninth columns in Fig. 3(a). It is ev-
ident that all of the nine RSNs derived from either tfMRI or
rsfMRI data are consistent with the template [41], and thus are
called HAFNI RSNs here. Particularly, the nine HAFNI RSNs
can be robustly reconstructed across individuals, as shown in
Fig. 3(c), in Supplemental Fig. 4(a)–(j), and on our website:
http://hafni.cs.uga.edu/finalizednetworks_Resting.html. In ad-
dition, the averaged HAFNI RSNs maps across all HCP subjects
are shown in Fig. 3(b), and quantitatively the mean spatial OR of
nine HAFNI RSNs is as high as 0.59, as detailed in Supplemental
Table III. Supplemental Table IV shows the spatial ORs of nine
HAFNI RSNs across all HCP subjects. These results demon-
strated that no matter what the task is, the nine RSNs can be
robustly reconstructed and reproduced by the sparse representa-
tion and HAFNI identification method. Thus, the identification
of these HAFNI RSNs lays out a solid foundation to explore
the question of to what extent the RSNs spatially overlap and
interact with task-evoked functional networks obtained in the
above section.

For comparison purpose, Fig. 3(a) (the ninth column) shows
the identified RSNs via ICA in the rsfMRI data of the same
subject. Supplemental Table V details the mean ORs of nine
HAFNI RSNs in rsfMRI data and those by ICA across all sub-
jects. The mean OR is 0.56 ± 0.07 for HAFNI RSNs, and is
0.55 ± 0.09 for ICA. Both qualitative [Fig. 3(a) and Supplemen-
tal Fig. 4(a)–(j)] and quantitative (see Supplemental Table V)
results indicate that the HAFNI method can consistently and
reliably identify RSNs in rsfMRI data too, compared with the
widely used ICA method. However, a critical difference be-
tween the dictionary learning/sparse representation method and
the ICA method is that ICA explicitly assumes the indepen-
dence of fMRI signals among different components, while the
sparse representation does not. Essentially, multiple functional
processes or network components (illustrated in Supplemental
Fig. 1) could be spatially overlapping and interacting with each
other in resting state or under task performance [2], [5], [6], [9],
[14], [15], and it has been pointed out in the literature that fMRI
signals are not necessarily independent [25], [26]. Therefore, it
is more appropriate and feasible to employ the HAFNI RSNs,
instead of the ICA-derived components, to explore the question
of how the total cortical function is realized by the interaction of
multiple concurrent neural processes or networks [2]–[8]. In this
work, the nine HAFNI RSNs and other 23 task-evoked HAFNI
components (in the above section) are simultaneously derived
from the same procedure of matrix factorization of whole-brain
fMRI signals (see Fig. 1), which naturally represents the spa-
tial overlap and functional interaction patterns among the initial
collection of holistic brain networks and provides an enabling
platform to explore functional cortical architectures.

C. Spatial Overlap Patterns Among HAFNI Components

Based on the above task-evoked HAFNIs and HAFNI RSNs,
we examined their spatial overlaps with each other, including
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Fig. 3. Nine HAFNI RSNs identified from seven tfMRI datasets and one rsfMRI dataset and their comparisons with corresponding ICA-derived components.
(a) Examples of nine HAFNI RSNs (nine rows) in seven tfMRI datasets (the first seven columns) in one subject. The eighth column shows the HAFNI RSNs
derived from rsfMRI data and the ninth columns show the corresponding ICA-derived components. The last column shows the corresponding RSN templates. For
each RSN template, the representative slice, which is superimposed on the MNI152 template image and thresholded at z = 3, is shown as the spatial pattern of the
specific RSN. For the spatial maps of identified RSNs via HAFNI or ICA, the most informative slice superimposed on the mean fMRI image of each subject is
shown. The color scale of spatial maps of HAFNI RSNs ranges from 0.1 to 10. The ICA spatial maps were converted to and shown as the Z-transformed statistic
maps using the default threshold value of 0.5. (b) Group-wise averaged HAFNI RSNs in all seven tfMRI and one rsfMRI datasets. In each subfigure, the most
informative slice, which is superimposed on the MNI152 template image, is shown as the spatial pattern of a specific RSN. The color scale of the spatial maps of
identified RSNs ranges from 0.5 to 10 in rsfMRI data, and is 0.2 to 10 in other seven tfMRI data. (c) Examples of HAFNI RSN #4 (DMN) in seven tfMRI and one
rsfMRI datasets of ten randomly selected HCP subjects.

overlaps among multiple contrast-evoked HAFNIss within the
same task and overlaps between task-evoked HAFNIs and
HAFNI RSNs. Specifically, Fig. 4(a) visualized the overlap
patterns in all seven tasks for one randomly selected subject.
From Fig. 4(a), we can clearly see the substantial overlaps not
only among different contrast-evoked components but also be-
tween task-evoked HAFNIs and HAFNI RSNs. For example,
for the motor task [the first column of Fig. 4(a)], there exist
multiple regions that are simultaneously recruited by multiple
task contrasts and motor/auditory RSNs. In addition, the extent
of spatial overlaps is quantitatively measured by the number
of HAFNI components that each brain region is involved in
and is color-coded in Fig. 4(b). The widespread red regions in
Fig. 4(b) depict those highly overlapped cortical areas, reveal-
ing the functional interaction patterns of the well-characterized
HAFNI components in seven tasks.

Quantitatively, the overall spatial OR (defined in (7)) result is
summarized in Supplemental Table VI, which is interpreted as
follows. First, spatial overlap between/among different contrast-
evoked components is quite common and widespread. For
instance, the average spatial OR for two contrast-evoked compo-
nents in motor, emotion, gambling, relational, social and work-
ing memory tasks are 20.6%, 17.7%, 23.3%, 29.4%, 25.3%, and
20.6%, respectively. These results demonstrated that contrast-
evoked network components within the same task are sub-
stantially overlapped in the spatial domain, suggesting their
functional interactions. Notably, the ORs among different con-
trasts have considerable variation across seven tasks. For exam-
ple, the ORs for language and relational tasks are of 0.8% and
29.4%, respectively. For comparison, we have also calculated
the OR between the activation detection (activated-baseline) re-
sults obtained by the GLM in each task, which are summarized in



1128 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 62, NO. 4, APRIL 2015

Fig. 4. Illustration of the spatial overlap patterns among task-evoked HAFNIs
and HAFNI RSNs. (a) showed the overlaps of task-evoked HAFNI components
and HAFNI RSNs of the same subject. The first row displayed the overlaps
of multiple contrast-evoked components within seven tasks. The second row
showed the overlaps of nine HAFNI RSNs. The third row overlapped different
contrast-evoked HAFNI components (the first row) and three HAFNI RSNs
(DMN, motor and auditory networks) together. Networks are represented with
different colors as noted in the bottom color tables in (a). (b) Maps of the
numbers of HAFNI components that each cortical region is involved in for
the corresponding brains in (a). Each row and each column are in correspon-
dences with (a). The numbers of involved HAFNI components are color-coded
according to the color bar in each row.

Supplemental Table XII. As shown in the table, the OR be-
tween the activation detection results from GLM follows the
same trend as in the contrast-evoked components from HAFNI,
yet with a substantially lower value. The explanation for the
higher spatial overlapping rate of HAFNI results is the fact that
the data-driven automatically identified components obtained
by HAFNI are able to include regions with more complicated
functional characteristics, while those regions would more fre-
quently serve for the functional interaction thus tend to be re-
cruited in multiple contrasts.

Second, spatial overlap between/among different HAFNI
RSNs is also quite common and widespread, as shown in Fig. 4
and Supplemental Table VI. Notably, compared to task con-
trasts, HAFNI RSNs have relatively more consistent overlap
patterns. As shown in Supplemental Table VI, the ORs of two
HAFNI RSNs in seven tasks range from 9.3% to 15.4%, and the
ORs of three HAFNI RSNs range from 0.7% to 2.2%. The spa-
tial distributions of these overlaps in one subject are visualized
on the cortical surface in the second rows of Fig. 4(a) and (b).
It is interesting that these RSNs overlap patterns are reasonably
stable and reproducible across a variety of tasks, suggesting the
reliability of RSNs-related organizational architecture of the
human brain.

Third, there are considerable spatial overlaps between task-
evoked HAFNIs and HAFNI RSNs, as shown in the third rows of
Fig. 4(a) and (b) and Supplemental Table VI. The average OR
between task contrast-evoked components and HAFNI RSNs
is 9.7%, and in particular, this OR value in working memory
even reaches 20.0%. More quantitative details for each task
are in the last row of Supplemental Table VI. In general, these

Fig. 5. Illustration of the spatial and temporal characteristics of the HHR and
HSR of a randomly selected subject. In (a1)–(a6), we visualized HHR (red) and
HSR (blue) on the inflated cortical surface in six tasks. In addition, we have
provided three views of the HHR (red) and HSR (blue) in (b) obtained from
the motor task. The lateral view is zoomed to show more details. It should be
noted that in each task, regions visualized as HSR are the union of multiple
HSRs corresponding to each task contrast map from that task. For example,
the visualization of the “Emotion” HSR on the surface is the union of the
GLM-derived activation maps from both of the “Faces-Baseline” and “Shapes-
Baseline” contrasts. The temporal characteristics of a specific HSR picked from
multiple contrast maps of the motor task are summarized in (c) by the overall
component composition (histogram) of that region. The mean fMRI time series
of the same HSR is shown in (d1), and mean fMRI time series of the two HAFNI
component M1 and M3 in the motor task are shown in d2 and d3. It should be
noted that M1 and M3 are two dominant components in the overall composition
histogram. Similarly, the component histogram of HHR in the motor task is
shown in (e), with the mean fMRI time series of HHR shown in (f1). The mean
fMRI time series of two HAFNI RSNs: RSN3 and RSN7, which have relatively
high percentages in the component histogram of HHR, are also shown here.

results quantitatively demonstrated an interesting phenomenon:
RSNs exhibited substantial spatial overlaps/interactions with
task-evoked networks during task performance.

D. Reciprocal Localization of HHR and HSR

The previous sections have revealed the common and
widespread spatial overlaps among 32 well-characterized
HAFNI components. In this section, we aim to investigate other
uncharacterized network components and their composition pat-
terns over the cerebral cortex. Our extensive observations of such
network composition patterns suggest that there are two distinct
patterns for cortical regions: one is involved in multiple func-
tional networks and is thus named “HHR,” and another is mainly
responding to the task and therefore is named “HSR.” A visual
illustration of the HHR along with HSR obtained by GLM-
based activation detection is shown in Fig. 5. It can be seen that
HHR regions (red) are spatially distributed around the whole
cortex, with very small overlaps with the HSR regions (blue).
Such observation is quite consistent throughout all of the seven
tasks and across all subjects, as shown in the additional cases
in Supplemental Figs. 6 and 7. Quantitatively, the ORs between
the HHR and HSR regions of 20 randomly selected subjects are
summarized in Supplemental Table VII. It is evident that the
ORs are quite small (mostly <5%). In addition, the difference
between HHRs and HSRs can be revealed by their temporal
characteristics. For instance, while the mean tfMRI time series
across all the voxels of the HSR region [see Fig. 5(d1)] is highly
correlated with the task paradigm, as expected, the mean tfMRI



LV et al.: HOLISTIC ATLASES OF FUNCTIONAL NETWORKS AND INTERACTIONS REVEAL RECIPROCAL ORGANIZATIONAL ARCHITECTURE 1129

time series of HHR region [see Fig. 5(f1)] is much more com-
plex. Moreover, we have examined the component histogram of
the HSR region and the HHR region by summing up the number
of nonzero elements of each component in each voxel within
the given region, and then normalized them to the sum of 1. The
histograms of the HSR region and HHR region of a randomly
selected subject during motor task are shown in Fig. 5(c) and (e).
It can be seen that the component histogram of HSR region is
highly concentrated on certain components. Interestingly, the
top two components in the histogram are exactly the compo-
nents that had been identified as task-evoked HAFNI networks
(M1 and M3), indicating the component-wise correspondence
between GLM activation detections and HAFNI results.

On the contrary, the component histogram of HHR is more
evenly distributed and composed of various types of compo-
nents. In particular, there are RSNs highly involved in the HHR,
including RSN 3 and RSN 7 (highlighted in the figure), with
RSN 7 being among the highest active networks in the region.
As expected, task-evoked HAFNI components like M1 and M3
also have a relatively high percentage in the histogram, showing
that certain parts of HHR participate in those tasks as well. In
addition, such heterogeneities in the component histograms in
HHRs are confirmed and illustrated at the individual voxel level
in Supplemental Fig. 8, which shows much more complexity
and heterogeneity in the component composition of the voxels
in HHR than those in the voxels of HSR. Further, we have inves-
tigated the overlap of the activation detection results obtained by
GLM across multiple tasks, by obtaining the intersections of the
contrast maps (task-baseline). It was found that there exist cer-
tain regions in the brain that would be involved in the contrast
maps from different tasks using GLM. A spatial comparison
of those cross-task GLM result regions with the frequent-HSR
shows that they are largely in accordance (average similarity of
65%), which is reasonable as HSR is mainly composed of the
task-evoked HAFNI networks as shown in the analysis above.

Therefore, due to the complex network composition, those
HHR regions could not be identified solely by their temporal
time series pattern and could only be characterized by their
network compositions like Fig. 5(e). Quantitatively, we used the
histogram entropy to quantify the difference in the complexity of
the component histogram between HSR and HHR. The results
shows that there is a significant difference between those two
regions regarding the histogram entropy (p < 0.01), and the
detailed quantifications are shown in Supplemental Table IX. In
addition, we have defined the histogram concentration as

Concentration (H) =
5∑

i=1

max(H)i (9)

which is the summed percentage of the top five components in
the histogram. A higher summed percentage value indicates that
the distribution of the histogram is more concentrated on sev-
eral dominant components. The concentration values of 20 ran-
domly selected subjects are shown in Supplemental Table VII.
Again, there is a significant difference between HSR and HHR
(p < 0.01), quantitatively verifying the histogram difference be-
tween HSR and HHR observed in Fig. 5. The above results

Fig. 6. Visualization of the F-HHR and F-HSR for one individual brain (the
same subject in Fig. 5) across seven tasks. Here, if an HHR or HSR region
appears at least four times across seven tasks (any possible combination from
seven tasks), it is considered as an F-HHR or F-HSR. (a) and (b) Joint dis-
tributions of F-HHRs and F-HSRs on the inflated cortical surface color-coded
according to the color bar at the bottom. For example, the red color indicates
that the corresponding cortical area has been identified as F-HHR in at least four
tasks. Meanwhile, the F-HSRs that appear at least four times across seven tasks
are visualized as blue regions on the surface. (a) and (b) show two perspective
views of the same subject. (c) and (d) Joint distributions of F-HHRs and F-HSRs
that are common across four, five, six, and seven tasks (any possible combina-
tion from seven tasks), respectively, on the inflated cortical surface color-coded
according to the color bar at the bottom. For example, the red color indicates
that the corresponding cortical area has been identified as F-HHR in all seven
tasks. Meanwhile, the F-HSRs that appear across all seven tasks are visualized
as blue regions on the surface. (c) and (d) show two perspective views of the
same subject.

demonstrated that HHRs and HSRs are reciprocally located on
the cerebral cortex within a specific cognitive or functional task.

Moreover, we examined frequent HHRs (F-HHR) and fre-
quent HSRs (F-HSR) across all of the seven tasks for each
individual brain. Specifically, if an HHR or HSR region appears
at least four times across seven tasks (any possible combina-
tion from seven tasks), it is considered as an F-HHR or F-HSR.
Thus, to some extent, an F-HHR region can be considered as
the multiple-demand area of the brain [2], [4], while an F-HSR
region can be considered as a demand-specific area [2]. It is
interesting that those two types of F-HHR and F-HSR areas are
also reciprocally distributed and widespread across the cerebral
cortex, as shown in Fig. 6 and Supplemental Fig. 9. In short, our
results suggest that the functional cortical architecture is com-
posed of a reciprocal combination of frequent HSR and frequent
HHR across different types of cognitive or functional tasks.

IV. DISCUSSION AND CONCLUSION

In this study, we decomposed fMRI signals into linear combi-
nations of multiple components based on sparse representation
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of whole-brain fMRI signals. This novel data-driven strategy
naturally accounts for that a brain region might be involved in
multiple functional processes [2], [5], [6], [9], [14], [15] and thus
its fMRI signal is composed of various components. Experimen-
tal results have demonstrated that this novel strategy can effec-
tively and robustly reconstruct concurrent functional networks,
including both task-evoked HAFNIs and HAFNI RSNs, which
can be reproduced across individuals. However, despite that we
have characterized and interpreted 32 HAFNI components in
spatial and/or temporal domains, there are still many other com-
ponents remaining to be characterized and interpreted. These
networks could be unknown networks or just noise networks,
which need effective methodology to explore in the future. The
32 HAFNI components reported here is just a start point toward
holistic atlases of functional networks in the future. Notably, the
identification of HAFNI components heavily relied on experts’
visual inspection in this study. In the future, novel methods
should be developed to automatically identify consistent and
reproducible HAFNI components across individuals and popu-
lations, as well as characterizing artefacts components.

GLM-based activation detection and ICA-based clustering
have been arguably the dominant methods in tfMRI and rsfMRI
data analyses, respectively. In this study, an alternative novel
sparse representation and dictionary learning methodology is
proposed to effectively infer the spatial overlap/interaction pat-
terns among those brain networks. Experimental results have
revealed the common and widespread spatial overlaps within
and among both task-evoked and RSNs, and particularly dis-
covered the reciprocal localization of HHRs and HSRs. In the
future, the regularity and variability of such reciprocal local-
ization patterns of HHRs and HSRs should be examined across
individual brains and be correlated with structural neuroimag-
ing data. In addition, extensive quantitative studies should be
performed to compare the sparse representation method with
the GLM and ICA methods [19], [24] in mapping concurrent
networks and spatial overlaps in the future.

In summary, our work has inferred and characterized 32 re-
producible and meaningful functional networks and their spatial
overlap patterns for each subject in the HCP data, forming an
initial version of HAFNIs. These HAFNIs revealed a new and
reproducible functional architecture principle of the human cor-
tex, that is, reciprocal localizations of HHRs and HSRs. In the
future, it will be invaluable to further assess possible alterations
of HAFNI components and interactions in brain disorders such
as Alzheimer’s disease and Schizophrenia.
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