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ABSTRACT 

 

Multiple recent neuroimaging studies have demonstrated 

that the human brain's function undergoes remarkable 

temporal dynamics. However, quantitative characterization 

and modeling of such functional dynamics have been rarely 

explored. To fill this gap, we presents a novel Bayesian 

connectivity change point model (BCCPM), to analyze the 

joint probabilities among the nodes of brain networks 

between different time periods and statistically determine 

the boundaries of temporal blocks to estimate the change 

points. Intuitively, the determined change points represent 

the transitions of functional interaction patterns within the 

brain networks and can be used to investigate temporal 

functional brain dynamics. The BCCPM has been evaluated 

and validated by synthesized data. Also, the BCCPM has 

been applied to a real block-design task-based fMRI dataset 

and interesting results were obtained. 

 

Index Terms— fMRI, graph model, change point detection 

 

1. INTRODUCTION 

 

Recent neuroscience research indicates that dynamic 

interactions between connections from higher to lower-order 

cortical areas and intrinsic cortical circuits involve moment-

by-moment functional switching in brain [1], and the brain 

may undergo a succession of states when performing a task, 

with each state serving as a source of top-down influences 

for subsequent states [1]. It has been reported that functional 

connectivities are under dynamic state changes at different 

time scales [2], and there have been accumulating studies 

analyzing brain functional dynamics, including statistical 

methods such as Hierarchical Exponentially Weighted 

Moving Average (HEWMA) method on fMRI signals to 

detect BOLD signal state change in response to stimulus [3], 

and sliding-time window based approaches to capture the 

dynamics of functional brain interactions [4]. 

Specifically, the estimation of functional brain state-

related change points without a prior timing information has 

been an important consideration, as in many cases 

psychological processes could not be specified in advance 

[3]. Also, as the onset time and the duration of the response 

may vary considerably across subjects [3], it would be 

reasonable and possibly advantageous to model the brain’s 

functional dynamics by the intrinsic changes in their 

functional interaction patterns. Previous studies have 

suggested that multivariate graphical causal models based 

on Bayesian networks are more robust and reliable in 

estimating functional interactions and less sensitive to noise 

in the fMRI signals [5]. Thus in this work, we have 

developed a novel Bayesian connectivity change point 

model (BCCPM) to analyze the dynamics of multivariate 

functional interactions and infer the boundaries of temporal 

blocks via a unified Bayesian framework. We have applied 

the proposed model on a working memory task-based fMRI 

dataset defined on common structural connectomes that are 

constructed from DTI data via the publicly available 

DICCCOL (Dense Individualized and Common 

Connectivity-Based Cortical Landmarks) system [6]. 

Compared with existing fMRI time series changes [11], 

pair-wise functional connectivity changes [12] or sliding-

window based framework [16], a key conceptual novelty in 

the BCCPM is that the change point in fMRI time series is 

defined as an abrupt change of multivariate functional 

interactions in brain networks. The major methodological 

novelty is that the proposed model is capable of capturing 

the changes of multivariate functional interactions via a 

Bayesian framework. Compared to the Dynamic 

Connectivity Regression (DCR) method in [14], our 

proposed model is able to handle a large number of 

variables efficiently. Therefore, quantitative investigation of 

multivariate functional interaction dynamics within whole 

brains will become possible and feasible, as shown in our 

later experiments results. 

 

2. METHOD 

2.1. Data acquisition 

 

In this study, we applied the BCCPM to a working 

memory task-based fMRI dataset for validation and in 

order to test its practical applicability. FMRI datasets of 

10 participants were acquired during a modified version 

of an operational span (OSPAN) task [7] on a 3T GE 
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Signa scanner. The total scan length was 540 seconds 

with TR of 2 seconds, resulting in a dataset consisting of 

270 volumes (i.e., time points). Preprocessing steps were 

based on FSL, and additional details could be found in 

our previous work [7]. We used 358 DICCCOL ROIs 

(Regions of Interest) of each subject's brain via the 

publicly available open-source tools in [6] and extracted 

the fMRI signals. It should be noted that the DICCCOLs 

have intrinsic correspondences across individuals [6], 

thus enabling us to compare results across different 

subjects. For each subject, the fMRI dataset is a 270*358 

time series matrix measuring the brain activity of 358 

ROIs over the whole 270-volume time period. 

 

2.2. Bayesian connectivity change point model 

 

Given a set of vectors 1 2, , , Tx x x i.i.d. (independent and 

identically distributed) from the m-dimensional 

multivariate normal distribution

~ ( , )     1,2,...,tx N t T   , where T denotes the number 

of vectors, m denotes the dimension of vector xt, µ 

denotes the m-dimensional mean vector, and ∑ denotes 

the m×m covariance matrix. The conjugate prior 

distribution of (µ, ∑) is the 

0 0 0 0 0( , / , , )N Inv Wishart       [8] and the posterior 

distribution of (µ, ∑) based on the data 1 2, , , Tx x x  is 

( , / , , )T T T T TN Inv Wishart       . Thus, we calculate 

the probability of 1 2, , , Tx x x as follows [8]: 
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Given an m T  ROI data matrix 1 2( , , , )Tx x xX  

(here T denotes the number of observations in the 

temporal order and m denotes the number of ROIs) as 

illustrated in the sample matrix (Fig. 1a), we are 

interested in the change points where there are 

underlying differences in the joint probabilities (defining 

functional interactions) among the m ROIs between 

different time periods. Fig. 1b illustrates the basic ideas 

of the proposed BCCPM, where one change point 

located at time point 101 partitioned three fMRI time 

series into two different functional interaction patterns.  

We define a block indicator vector 1( ,..., )TI I I , 

where It=1 if the t-th observation xt is a change point 

(defined as the starting point of a temporal block), It=0 

otherwise. Then the T temporal observations would be 

segmented into totally 1
T

tt I
 blocks, as the starting time 

point I1 is always considered as a change point. The 

likelihood of the data matrix 1 2( , , , )Tx x xX  is: 

1
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Xb is the temporal observations belonging to b-th block 

and p(Xb) could be calculated according to Eq. 1. The 

temporal blocks are independent from each other, therefore 

the posterior distribution of the configuration is: 

( | ) ( ) ( | )                                       (4)p I p I p I X X                         

where 
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t
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
 and ( )tp I ~Bern (0.5). 

 

 
Fig. 1 (a) Illustration of data matrix of X and block indicator 

vector I, where xt are the values of all ROIs at time t (the t-th 

column in the matrix), Xj are the values of the j-th ROI at all 

times (the j-th row in the matrix) and It is the block indicator 

(defining the change points) for time t; (b) Signals of three 

ROIs with one temporal change point at 101. The functional 

interaction pattern among 3 fMRI signals changes from 

signal1signal2signal3 to signal2signal1signal3. 

 
We use the Metropolis–Hastings scheme [9] to 

sample the posterior distribution ( | )p I X with a random 

initial block indicator vector 0I . For the n-th (n>0) 
iteration: 

1. Propose a new block indicator vector
*I by randomly 

choosing an indicator in 
1nI 
 and changing its value 

from 0 to 1 or from 1 to 0. 

2. Evaluate *( | )p I X  according to Eq. 4.  

3. Generate a uniformly distributed random number u 

from range (0, 1) and set: 
*

*

1

1

( | )
      if  u  min 1,  

        (5)( | )

                                otherwise
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4. Iterate until n reaches a given number N (in our 

simulation, N is set as 2000 to make sure that 

( | )np I X  converges). 

5. Finally, the burn-in is excluded from the actual 

MCMC sample of the posterior distribution and then 

the posterior probability for each time point to be a 

change point is calculated from MCMC samples. 

 

3. RESULTS 

3.1. Simulation results 
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In this section, simulation data were generated by two 

different models to evaluate and validate the proposed 

BCCPM. In the first model, six different networks with 

dynamic structures were generated, which are illustrated 

in the top panels in Fig. 2 and the posterior probabilities 

for each time point as the change point are illustrated in 

the bottom panels. 
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Fig. 2 Change point detection results of six dynamic networks.  

 

Taking the 5th network as an example (shown in Fig. 2e), 

we generated 10 ROIs (X1 to X10) and 200 time points 

comprising of two 100-volume blocks, where in the first 

block from time point 1 to 100, all 5 pairs of 10 ROIs are 

independent of each other. Within each pair, two ROIs 

are ~N(0, Σ), 1 0.8

0.8 1

 
   

 

. In the second block from time 

point 101 to 200, the network is a star-like structure, 

with X1 being the center and other ROIs (X2 to X10) 

dependent on it with correlation coefficient ρ=0.8. This 

star-like structure means given X1, all other ROIs (X2 to 

X10) are conditionally independent of each other. From 

the bottom panels in Figs. 2a-2f, it can be seen that the 

proposed BCCPM accurately detected all of the changes 

points from all of the models. In addition, we repeated 

the simulations 100 times and obtained very low average 

type I error rate (1.67%) and type II error rate (0.83%).  

 
(b)(a)

 

Fig. 3 Change point detection results of two dynamic networks. 

 

In the second simulation, two sets of time series on 

different nodes were generated based on a well-accepted 

network modeling method proposed by Smith et al. [10]. 

Fig. 3 visualizes the dynamic interaction patterns of 

these two time series, and the proposed BCCPM detected 

change points in both models accurately. Further, we 

repeated the simulation 50 times and the results further 

validated the good performance of BCCPM (the average 

Type I error rate is 4.5% and Type II error rate is 1%). 

 

3.2. Application on functional brain imaging data 

 

The application results on real fMRI data, which are the 

change points inferred for the functional network 

dynamics, are summarized in Table. 1. On average, over 

90% of the 11 expected change points (defined by 

paradigm blocks) were detected within ±5 time points. 

Those change points are defined as “aligned”, 

summarized in the 2nd row in Table 1. Change points 

that are near the paradigm boundaries but outside the ±5 

time points range are defined as “partially aligned”. The 

results indicate that the change points inferred by our 

model are largely in accordance with the block design, 

which validates its accuracy, as the functional dynamics 

is supposed to be responding to the changes of external 

stimulus. 

Table 1 Summary of the results on real brain functional data.  

Subject ID 1 2 3 4 5 6 7 8 9 10 

Total number of change 

points detected 

12 16 11 12 13 12 13 16 13 13 

Change points aligned 

with boundaries 

9 9 7 9 6 8 11 10 10 7 

Change points partially 

aligned with boundaries 

2 2 4 2 5 3 0 1 1 4 

Change points not aligned 

with any boundaries 

1 5 0 1 2 1 2 5 2 2 

 

  On the other hand, there were, on average, 2.2 

change points detected by our model that could not be 

aligned with any block boundaries, usually appearing in 

the middle of the blocks. These are defined as “not 

aligned”. Such change points are neither aligned nor 

partially aligned with any paradigm boundaries, and thus 

are different from the change points marked as red or 

grey in the previous discussion, yet could be meaningful 

and potentially to reflect the functional connectivity 

changes in the brain which happen within the temporal 

periods defined by the block design. In other words, 

although not frequent, functional connectivity dynamics 

might not always precisely follow the task design as 

reported in the literature [15]. By using data-driven 

methods like our model, one might detect such changes 

and utilize the change points to better infer more 

precisely the functional connectivity dynamics from the 

state-like fMRI temporal segments.  

To further illustrate the importance and neuroscience 

implication of the change points detected, we applied the 

Peter and Clarke (PC) algorithm [13] to infer the high-

order functional interactions between ROIs during the 

temporal segments defined by the change points. In this 
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preliminary study, we used the dataset from subject 4 as 

an example, as it has well-aligned change points with the 

task design as well as one change point that was detected 

in the middle of the 5th block (i.e., the 3rd activation 

block). The functional interaction patterns inferred from 

the five temporal segments as marked in the top row of 

Fig. 4 are visualized as the edges connecting ROIs on the 

cortical surface in Fig. 4. In the figure, the first two 

interaction patterns were inferred from the temporal 

segments 1 and 3, which were within the two activation 

blocks. The third interaction pattern was inferred from 

temporal segment 2, which was a baseline block. From 

Fig. 4, we could find that the interaction patterns from 

the activation periods are similar, while the baseline 

period has a different pattern. Interestingly, the fourth 

and fifth interaction patterns inferred from the temporal 

segment #4 and #5, where one single block was divided 

by the detected change point into two segments, show 

obvious different patterns. However, by applying the PC 

algorithm on the whole activation period, which is the 

combination of segments #4 and #5, we obtained the 

sixth pattern, which is totally different from the fourth 

pattern, indicating certain functional connectivity 

information was lost by analyzing a whole time period 

consisting of two intrinsically different temporal 

segments. Such differences demonstrate the importance 

of re-defining the brain state, not solely relying on the 

predefined paradigm design, but on the data-driven 

computational model that detects the abrupt change of 

the functional interaction, before performing further 

functional brain analysis. 

 

 

Fig. 4 Top: Change point detection results, shown as the red 

and blue bars of subject 4. The block designs of the OSPAN 

paradigm are overlaid as black dotted lines in the figure. 

Bottom: Visualizations of functional interaction patterns 

inferred from the five temporal segments defined by the 

change points in model results. The last (6th) pattern is the 

functional interaction from the whole activation period 

covering segment #4 and #5 in Fig. 4. 

4. DISCUSSION AND CONCLUSION 

 

In this study, we have presented a novel Bayesian inference 

model for change point detection in a multivariate time 

series dataset based on the interaction dynamics among 

variables. In this work, we mainly aim to apply this model 

on functional MRI imaging data to obtain a better 

understanding of the functional brain dynamics without any 

a prior knowledge. After extensive simulations which 

validated our proposed model, we have applied the model to 

real task-based fMRI data, and detected the change points 

largely corresponding to the brain dynamics in the block 

design. In the future, the preliminary study presented in this 

work could be further expanded to other fMRI datasets 

including resting-state data, as there remain unanswered 

questions regarding the boundaries between brain states and 

the functional dynamics varies across different subjects.   
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