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ABSTRACT 

Dynamic functional interaction has received much 

attention recently in the field of neuroimaging. Past 

studies reveal that the dynamics of functional interactions 

only exists in part of brain. In this paper, a novel Bayesian 

inference model is developed to bi-partition the brain 

regions into dynamic/stable sub networks and to 

simultaneously segment the temporal sequence of dynamic 

network into several states based on the interaction 

dynamics among regions. The accuracy of the model has 

been verified by synthesized data. Also, the model has 

been applied to a working-memory task-based fMRI 

dataset and interesting results on both dynamic network 

and change points were obtained. 

 

Index Terms— fMRI, functional network partition, change 

point detection 

 

1. INTRODUCTION 

 

In the field of neuroimaging, there have been increasingly 

strong interests in the dynamic functional interaction study 

to understand the temporal dynamics of the brain's 

functional mechanism and organization, both in resting state 

[1, 2] and during task [3], in contrast to the traditional 

stationary connectivity analysis which are blind to the 

temporal dynamics of the brain [4]. From our previous study 

[5] and reports from literatures, it has been revealed that 

functional interactions within brain regions are locally 

clustered into small sub-networks [3, 6] and the dynamics of 

such clusters are heterogeneous. Such observations could be 

generalized as the hypothesis that at any certain time period, 

the functional interactions within only a specific, yet 

unknown part of brain are under dynamic process, while the 

interactions within most of the other brain regions remain 

stable. Such hypothesis, on one hand, is in accordance with 

the traditional functional localization theory that the 

response of brain to external stimulus is localized and 

observable in specific functionally meaningful regions. On 

the other hand, the hypothesis is supported by the growing 

evidence that additional activated regions could be 

identified by the changing of their functional interaction 

during tasks, namely the connectivity-based activation 

detection. Further and more importantly, by bi-partitioning 

the brain spatial regions into dynamic/stable sub networks 

and segmenting the temporal sequence into several states, 

we could have a simple, robust and intuitive way to study 

the hierarchical organization structure of the brain, bridging 

the concept of functional localization (by analyzing the bi-

partitioning) and functional integration (by analyzing the 

connectives within the dynamic network) together, and be 

able to look at the transition pattern of such organization 

both with and without external stimulus.  

Motivated by the importance of identifying such 

functional dichotomy of brain networks under a functional 

dynamics context, we developed a novel Bayesian 

connectivity bi-partition change point model (BCBCPM) to 

spatially characterize the localized dynamic functional 

network from the entire brain and temporally characterize 

the boundaries of temporal blocks within which the spatial 

distribution of the dynamic network is stable over time. In 

addition, to overcome the dilemma that the spatial and 

temporal partition result are mutually dependent and needed 

to be estimated simultaneously, we employ a hierarchical 

two-level MCMC to sample the posterior probability 

distribution for both results and find the optimal solution. 

 

2. METHOD 

2.1. Data acquisition 

 

In this study, the accuracy of proposed model is first 

verified by datasets generated by simulating method, which 

would be described in detail in section 3.1. Afterwards, 

working memory task fMRI data is used for validating and 

testing the practical applicability of the model. Multimodal 

DTI and fMRI datasets of 19 participants were acquired 

during a modified version of an operational span (OSPAN) 

task on a 3T GE Signa scanner [7]. The total scan length 

was 540 seconds with TR of 2 seconds (270 volumes) and 

the FSL-based preprocessing details could be found in [7]. 
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We then applied the publicly available open-source tools 

introduced in [8] on the structural connectome defined by 

each DTI dataset to obtain the 358 DICCCOL ROIs 

(Regions of Interest) of each individual brain and extracted 

the fMRI signals from those ROIs. It should be noted that 

the DICCCOL ROIs have intrinsic correspondences across 

individuals [8], thus enabling us to compare results across 

different subjects. Thus for each subject, the fMRI dataset is 

a 270*358 time series matrix and the 358 columns are in 

correspondence across different subjects. 

 

2.2. Bayesian connectivity bi-partition change point 

model 

 

Given the fMRI dataset obtained above, we aims to 

partition the DICCCOL ROIs within the whole brain of 

single subject into two parts: one dynamic sub network 

N1 that contains ROIs with temporal connectivity 

changes, and one stable sub network N0 that consists of 

the remaining ROIs without any change points. A sample 

case of the partitioning problem is illustrated in Fig. 1. 

To achieve this goal, we developed a spatial/temporal 

co-partitioning method separating the dynamic sub 

network from the entire brain, while at the same time 

temporally segmenting the time series to obtain the 

change points of the dynamic sub network. 

 
Figure 1. fMRI signals of five ROIs with one temporal change 

point at time point 101. The dynamic network N1 in this case 

consisted of 3 ROIs 1-3. In the first block, the functional 

interactions within the network is ROI1→ROI2→ROI3, while 

in the second block, the interaction pattern changes to 

ROI2→ROI1←ROI3; ROI4 and ROI5 are belonging to the 

stable sub network N0, where the functional interaction of 

those two ROIs are consistent over time. 

 

Specifically, for spatial partitioning, we define a 

group indicator vector S=[S1,…,Sm] where Si=1 if the i-th 

ROI belongs to the dynamic sub network N1; Si=0 if it is 

out of N1 and belonging to the stable sub network N0. 

For temporal partitioning, in sub network N0 we defined 

only one single temporal block characterizing the 

variation of functional interaction of the ROIs within N0. 

While in network N1, the time serials data will be 

segmented into multiple quasi-stable blocks by the 

indicator vector I=[I1,…,In]. Ii=1 if the functional 

interactions between the ROIs within N1 have an 

substantial change at the i-th time point, and Ii is defined 

as the starting point of a temporal block; Ii=0 otherwise. 

Thus there are totally iI blocks, as the starting time 

point I1 is always considered as a change point. Finally, 

given group indicator vector S and block indicator vector 

I, the marginal likelihood of the whole fMRI data matrix 

X=(X1,…,Xn) can be written as follows: 

1 0( | , ) ( | , ) ( | )N Np S I p S I p SX X X               (1) 

where XN1 denotes the time series data of all the ROIs 

within sub network N1 and XN0 denotes the data of all 

the ROIs belongs to N0, assuming the conditional 

independence between N1 and N0. The likelihood 

p(XN0|S) in Eq. 1 can be estimated by Eq. 2 below: 
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where X is a set of n vectors X1,…,Xn independent and 

identically distributed from m-dimensional multivariate 

normal distribution with mean of µ and covariance ∑. 

The conjugate prior distribution of (µ, ∑) (in numerator 

of Eq.2) is 0 0 0 0 0( , / , , )N Inv Wishart        [9]. The 

posterior distribution of (µ, ∑) (in denominator of Eq.2) 

is the similar ( , / , , )n n n n nN Inv Wishart       based 

on X. The details of the calculation could be referred in 

our previous work in [10]. The likelihood p(XN1|S,I) can 

be calculated by Eq. 3 for a given block indicator vector 

I: 

1

( | ) ( )
iI

b

p I p




  bX X                            (3) 

where bX  are the temporal observations belonging to bth 

block and ( )p bX could be calculated according to Eq. 2. 

Finally, using independent uniform priors for p(S) 

and p(I), the posterior distribution of the configuration, 

which is what we are interested in, could be estimated:  

( , | ) ( , ) ( | , ) ( ) ( ) ( | , )p S I p S I p S I p S p I p S I X X X  (4)
 

 

2.3. MCMC scheme 

 

Afterwards, we applied a hierarchical two-level 

Metropolis–Hastings scheme [11] to sample from the 

posterior distribution of different spatial/temporal 

partitioning configurations, as illustrated in Fig. 2. The 

lower level MCMC samples from the posterior 

distribution of block boundaries within the dynamic 

network N1 given group indicator vector S, while the 

higher level MCMC samples from the posterior 

distribution of the network structures S, i.e. the posterior 

probability of each node to be within N1. The proposed 

scheme is summarized as follows: 
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1. Given a random initial group indicator S
0
 and random 

initial block indicator vector I
0
, the posterior probability 

of the initial configuration could be obtained by Eq.4. 

2. After the initialization, we will run through a low-

level MCMC to sample the block boundaries within N1 

by iteratively switching the values in vector I from 0 to 1 

or 1 to 0 by random, thus generating a new I
*
. Calculate 

the posterior probability of I* by Eq. 4 and set:  
0 *

*

0 1

1

( , | )
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X             (5) 

where u is a random number from uniform (0,1). The 

iteration continues until the maximum step number has 

been reached. In our case, the number is set as 2000 to 

make sure that the final posterior probability of 

configuration S
0
/I

n
 converges. Record the final result as 

p(S
0
,I|X) i.e. the probability of S

0
. 

3. Propose a new group indicator vector S
*
 by iteratively 

switching the values in S by random. Given S
*
, we will 

run a low-level MCMC as described in step 2 to find the 

final probability of S
*
 p(S

*
,I|X), then set: 

*
*

1

1
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X                (6) 

where u is still a random number from uniform (0,1). 

Similarly, we will iterate the high-level MCMC 10000 

times to make sure that p(S
n
,I|X) converges. 

4. Finally, the burn-in is excluded from the actual 

MCMC sample of the posterior distribution and then the 

posterior probability for the spatial/temporal partitioning 

is calculated from MCMC samples. 

One specific spatial 

partition of all the 

ROIs: Sn

Next possible 

spatial  

partition 

... ...
Switching values

in Sn

One specific 

temporal partition 
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whole time series 

Next possible 

temporal 

partition 

...
Switching values

in In

Higher Level

Lower Level

(only for N1) 

Stable Sub Network N0: No change pointsDynamic Sub Network N1: Lower MCMC}
...

 
Figure 2. Diagram of two-level MCMC scheme. 

 

3. RESULTS 

3.1. Simulation results 

 
In this study, we generated the simulation data according 
to the method presented in [12], which is based on the 
dynamic causal modeling fMRI forward model. Two sets 
of signals corresponding to two network types, both with 
10 ROIs and time length of 400 were generated, as 
shown in Fig. 3a and 3b. In the first simulation, five 
ROIs (Y1-Y5) among all of the ten ROIs form a dynamic 
sub-network with a connectivity change point at time 

point 201. The structure of dynamic network changes 
from a star-like graph in the first block to an empty 
graph in the second block, illustrated in Fig. 3a. Each of 
the other five ROIs (Y6-Y10) is within the stable 
network independent with all of other ROIs. In the 
second simulation, the structure of the dynamic network 
changes from a ring-like graph to an empty graph at time 
point 201, illustrated in Fig. 3b. After running our 
method on the two simulation datasets, the first 5 nodes 
were successfully identified as within the dynamic 
network N1 while nodes 6-10 were grouped to N0 for 
both cases. The posterior probabilities for each time 
point being a change point within the dynamic network 
are depicted in Fig. 3c and 3d, showing that the change 
points in both simulations were accurately identified. We 
repeated the simulation 50 times; the error rate of the 
spatial/temporal partitioning results is summarized in 
Table 1. The low overall averaged error rates for both 
simulations verify the accuracy of the model.  
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Figure 3. (a, b): Two networks generated according to the 

simulation method. (c, d): Temporal partitioning results, showing 

the posterior probability for each time point being a change point. 

 
Table 1. Summary of Type I and Type II error rates from the 

model results on simulation datasets from 50 repeats. 

 
Type I 

(Spatial) 

Type II 

(Spatial) 

Type I 

(Temporal) 

Type II 

(Temporal) 

Simulation 1 0 0 0 0 

Simulation 2 0 0 9.26% 2% 

 

3.2. Results on real fMRI dataset 

 

In this section, we applied the proposed BCBCPM to the 

fMRI dataset described in 2.1. Across the 19 subjects, the 

average number of ROIs within the dynamic network N1 is 

319.58 and the standard variance is 6.61. More interestingly, 

there are 85 common ROIs involved in the dynamic 

networks of all subjects as visualized in Figure 4b. Based on 

these observations, we hypothesize that these 85 ROIs are 

the "engine of functional brain dynamics" during the 

working-memory task, as they are consistently involved in 

dynamic network, playing the central role of the functional 

interaction dynamics and transitions.  

In addition, the detected change points within the 

dynamic network N1 are shown in Figure 4a. There are 14 

change points detected for 17 subjects except subject #4 (12 

change points) and #12 (13 change points). As each of the 

17 subjects has a sequence of change points detected and the 

length of the sequence is the same, we obtained the mean 

position and its variance of each change point across 17 

subjects, and the values are shown in Table 2. We also listed 

547



the starting positions of each stimulus defined in the task 

design paradigm in Table 2. The result shows that the 

sequence of change points detected by the proposed method 

are well in correspondence with the boundaries between task 

and baseline, with very small variance across subjects. As 

various studies have shown that the activation pattern of 

different localized regions in the brain are responding to the 

external stimulus, the correspondence between the change 

points and the stimulus boundaries validates our method in 

the sense that the change points detected are reliable and 

neuroscientifically meaningful.  

 
Fig. 4 (a) Change points detected in N1 for all 19 subjects, the x-

axis is the temporal indices, the y-axis is the subject indices, cells 

highlighted by white are change points. (b) Visualization of the 85 

common ROIs as red spheres on cortical surface of all 19 subjects.  

 

Table 2 The mean position and variance for each change point 

Change Point Mean Position Standard Deviation Task Boundary 

#1 16.71 2.44 NA 

#2 31.65 1.06 31 

#3 51.41 1.00 51 

#4 71.41 0.71 71 

#5 91.12 0.86 91 

#6 105.88 1.58 NA 

#7 121.47 0.62  121 

#8 141.24 0.66 141 

#9 161.41 0.94 161 

#10 180.88 0.78 181 

#11 196.76 2.61 NA 

#12 211.76 1.35 211 

#13 231.47 0.80 231 

#14 251.35 0.70 251 

 

Furthermore, we detected 3 unexpected yet functional 

meaningful change points (#1, #6, and #11) which are not 

explicitly corresponding to the boundaries between task and 

baseline. All these three change points are located in the 

time period during task 1, which has two stages: in the first 

40 seconds participants were required to memorize a 

character, and after that they were asked to answer a 

question regarding the character. Therefore, these three 

change points are probably caused by the different stages in 

task 1 and the results show the potential of our model in 

detecting the extra change points of brain functional 

interaction in addition to the task design information.  

 

4. DISCUSSION AND CONCLUSION 

 

In this study, we have presented a novel Bayesian inference 

model for spatially localizing a dynamic network from the 

entire brain and temporally detecting the boundaries of 

temporal blocks which exhibit substantial differences of 

functional connectivity within the dynamic network. The 

concept of localized dynamic network could provide a new 

scope for analyzing brain functional interaction and its 

dynamics. In this work, we applied the proposed method on 

task-based fMRI dataset and obtained meaningful results 

which could be further investigated to reveal the hidden 

functional interaction dynamics during task. Also, as 

illustrated in 3.2, our method could do the temporal/spatial 

partition without any a priori information, thus it also could 

be to be applied on resting-state fMRI data in the future.  
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