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Abstract: Functional connectomes (FCs) have been recently shown to be powerful in characterizing
brain conditions. However, many previous studies assumed temporal stationarity of FCs, while their
temporal dynamics are rarely explored. Here, based on the structural connectomes constructed from
diffusion tensor imaging data, FCs are derived from resting-state fMRI (R-fMRI) data and are then
temporally divided into quasi-stable segments via a sliding time window approach. After integrating
and pooling over a large number of those temporally quasi-stable FC segments from 44 post-traumatic
stress disorder (PTSD) patients and 51 healthy controls, common FC (CFC) patterns are derived via
effective dictionary learning and sparse coding algorithms. It is found that there are 16 CFC patterns
that are reproducible across healthy controls, and interestingly, two additional CFC patterns with
altered connectivity patterns [termed signature FC (SFC) here] exist dominantly in PTSD subjects.
These two SFC patterns alone can successfully differentiate 80% of PTSD subjects from healthy controls
with only 2% false positive. Furthermore, the temporal transition dynamics of CFC patterns in PTSD
subjects are substantially different from those in healthy controls. These results have been replicated in
separate testing datasets, suggesting that dynamic functional connectomics signatures can effectively
characterize and differentiate PTSD patients. Hum Brain Mapp 00:000–000, 2013. VC 2013 Wiley-Periodicals,

Inc.
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INTRODUCTION

Connectomes constructed via neuroimaging data offer a
complete description of the macroscale structural connec-
tivity within the brain [e.g., Sporns et al., 2005; Van et al.,
2010; Hagmann et al., 2010; Williams, 2010; Kennedy, 2010;
Zhu et al., 2012b] and functional connectomics signature
have been shown to be powerful in characterizing and dif-
ferentiating brain conditions [e.g., Lynall et al., 2010; Li
et al., 2012a]. A typical assumption used in previous func-
tional connectivity and connectomics studies [e.g.,
Dickerson and Sperling, 2009; Lynall et al., 2010; Li et al.,
in press] is the temporal stationarity, that is, functional con-
nectivity and functional connectome (FC) are measured
over the entire fMRI scan. However, neuroscience research
has suggested that the function of the brain is dynamic,
and each brain area runs different ‘‘programs’’ according to
the context and to the current perceptual requirements
[Gilbert and Sigman, 2007]. The dynamically changing
functional interactions between structural connections from
higher- to lower-order brain areas and intrinsic cortical cir-
cuits mediate the moment-by-moment functional switching
in the brain [Gilbert and Sigman, 2007]. Therefore, quanti-
tative modeling and characterization of functional brain
dynamics has been of general interest in the neuroimaging
community for years. For instance, functional microstates
have been well-established in EEG data modeling and anal-
ysis [Lehmann et al., 1998, 1994, Pascual-Marqui et al.,
1995, Koenig et al., 1999, 2002]. Recently, there have been
increasing reports on the functional brain dynamics
revealed by resting state fMRI (R-fMRI) data. For instance,
it has been shown that the brain undergoes dynamical
changes of functional connectivity, even in the resting state
[e.g., Chang and Glover, 2010; Majeed et al., 2011; Li et al.,
2012; Smith et al., 2012; Zhang et al., 2012]. More impor-
tantly, quantitative characterization of these time-depend-
ent functional connectivity/connectome dynamics and
representative patterns can elucidate fundamentally impor-
tant temporal attributes of functional connections that can-
not be seen by traditional static pairwise functional
connectivity analysis [e.g., Smith et al., 2012; Li et al., 2012].

From a technical perspective, the discovery, cross-vali-
dation and application of EEG-based microstates have
been fundamentally enabled and facilitated by a standar-
dized electrode reference system such as the International
10/20 System [Niedermeyer and Silva, 2004]. As a result,
the measured EEG signals and the identified dynamic
microstates in different brains can be readily mapped into
a standard reference system, and thereby effectively inte-
grated and compared. However, for R-fMRI data, it has
been challenging to integrate and compared fMRI signals
and their derived measurements across different brains
due to the lack of a reliable and accurate brain localization
and reference system. Because of the remarkable variabili-

ty of the structural and functional architecture of the cere-
bral cortex [e.g., Zilles and Amunts, 2010; Liu, 2011],
defining a common and consistent set of cortical land-
marks across different brains remains as one of the major
barriers in human brain mapping [Derrfuss and Mar, 2009;
Poldrack, 2012]. Recently, we have developed and vali-
dated a large set of consistent and correspondent cortical
landmarks (named Dense Individualized and Common
Connectivity-based Cortical Landmarks, or DICCCOL)
[Zhu, et al., 2012b], each of which was optimized to pos-
sess maximal group-wise consistency of diffusion tensor
imaging (DTI)-derived fiber shape patterns [Zhu, et al.,
2011, Zhu, et al., 2012a,b]. The neuroscience basis is that
each brain’s cytoarchitectonic area possesses a unique set
of intrinsic inputs and outputs, namely the ‘‘connectional
fingerprint’’ [Passingham et al., 2002], which largely deter-
mines the functions that each brain area performs. This
close relationship between consistent structural connection
pattern and brain function has been replicated in a series
of our recent studies [Zhu et al., 2011, Zhu et al., 2012a,b;
Li et al., 2010, Zhang et al., 2011]. This set of 358 DICC-
COL landmarks has been reproduced in over 240 brains of
four separate healthy populations [Zhu et al., 2012b].
Importantly, this set of 358 DICCCOL landmarks can be
accurately predicted in an individual subject based only
on DTI data [Zhu et al., 2011, Zhu et al., 2012a, Zhang
et al., 2011]. The collection of 358 DICCCOL landmarks
and their prediction source codes are publicly available at:
http://dicccol.cs.uga.edu.

As these DICCCOLs possess intrinsically established
structural and functional correspondences across individu-
als, they provide a natural general brain reference system
across individuals and populations [Zhu et al., 2012,b]. In
addition, it has been shown that functional connectomics
signatures derived from the DICCCOL system can effec-
tively characterize and differentiate brain conditions from
healthy controls [Li et al., in press]. Therefore, in this arti-
cle, we used DICCCOL to construct structural and FCs to
define and characterize functional microstates based on R-
fMRI data with the hypothesis that functional connectom-
ics signatures can effective characterize and differentiate
post-traumatic stress disorder (PTSD) patients. In particu-
lar, we used the large-scale functional connectivity among
DICCCOLs as FC, and divided the temporally varying FCs
into quasi-stable segments via the approaches in Zhang
et al. [2012] and Li et al. [2012]. For instance, a typical R-
fMRI scan with time length of 10 min can be segmented
into 10–20 quasi-stable FC segments, within which the FCs
are averaged into one vector. Given that the averaged FCs
possess intrinsically established correspondences across
individuals, all of the averaged FCs from 95 brains are
pooled and clustered into 16 common FCs (CFCs) via the
Fisher Discriminative Dictionary Learning (FDDL) algo-
rithm [Yang et al., 2011; Zhang et al., 2012]. Our
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experimental results showed that these 16 CFC patterns
are remarkably reproducible across healthy controls and
PTSD patients, and interestingly, two additional CFC pat-
terns with altered connectivity patterns [termed signature
FC (SFC)] exist dominantly in PTSD subjects. More impor-
tantly, these two SFC patterns alone can successfully dif-
ferentiate 80% of PTSD subjects from healthy controls with
only 2% false positive. These results suggest that SFC pat-
terns could be potentially used as the biomarkers of PTSD
in the future.

Furthermore, based on the clustered CFCs, the time se-
ries R-fMRI data was projected into a series of temporally
concatenated CFCs and their temporal transitions patterns
were modeled by a finite state machine (FSM) [Black,
2008]. Essentially, the graph structure and the edge con-
nection strength of the FSM characterize the probability of
transition from one CFC pattern to another. Our experi-
mental results revealed that meaningful and reproducible
FSMs can be learned from separate groups of brains. In
particular, it was found that the FSM learned from PTSD
subjects exhibits a substantially altered pattern of CFCs
and transition patterns, in comparison with the healthy
controls. These results suggest that not only the CFCs pat-
terns themselves but also their temporal transition pat-
terns, can contribute to the characterization and
differentiation of PTSD subjects from healthy controls.

In general, the DICCCOL-based universal brain refer-
ence system enabled the integration, comparison and
cross-validation of the CFCs in R-fMRI data. Otherwise,
the functional brain states represented by large-scale FCs
in different brains are not readily comparable, and thus
cannot be pooled and integrated for group-level or indi-
vidual level analysis. In this sense, the DICCCOL land-
marks are equivalent to the standardized reference
electrodes in EEG recordings. With the availability of the
well-characterized CFCs as the basic building blocks, the
functional status of the brain revealed by R-fMRI data can
be decomposed into a series of temporally concatenated
CFCs. Essentially, the work in this article has demon-
strated that PTSD, as a psychiatric brain condition, can be
robustly characterized and differentiated by abnormal
CFCs and their altered temporal transition patterns. The
remaining three sections will provide details on data ac-
quisition and algorithmic methods, experimental results
and their interpretation, as well as discussions and
conclusions.

MATERIALS AND METHODS

Data Acquisition and Preprocessing

PTSD patients and healthy controls were recruited after
the 2008 Wenchuan earthquake, Sichuan, China, under
IRB approvals. Informed consent was obtained from all
subjects after explaining or reviewing detailed written in-
formation about the study protocol. Adult PTSD subjects
who lived in temporary housing after the Wenchuan

earthquake were diagnosed based on the Structured Clini-
cal Interview for DSM-IV (SCID-I/P) and the Clinician-
Administered PTSD Scale (CAPS) by experienced psychia-
trists (co-authors in this article). The exclusion criteria for
the PTSD group included any other current psychiatric
disorders, any lifetime psychiatric disorders based on
SCID or MINI-KID, a history of head trauma or loss of
consciousness, any significant medical, neurological condi-
tions, any endocrine disease, taking any anti-psychotic
drugs, taking any antidepressant drugs, taking any benzo-
diazepines 1 month before scan, drinking alcohol 1 week
before scan, using any other psychoactive substances such
as cocaine or ketamine, pregnancy, and nonright handed.
Gender and age (within 2 years), as well as education
(within 5 years), matched controls were recruited from
temporary houses in the same Wenchuan earthquake area.
Matched subjects had been equally exposed to the severity
of the earthquake at the same time, but did not have
PTSD. They had the same interview as PTSD patients and
were subjected to the same exclusion criteria. PTSD and
healthy controls participated in brain scans at 9 months to
15 months after the earthquake. They were re-interviewed
by SCID or MINI-KID and CAPS or (CAPS-CA) on the
day of scanning for confirmation of their diagnosis.

DTI and R-fMRI datasets of 95 adult subjects, including
51 healthy control subjects, and 44 PTSD patients were
acquired on a 3T MRI scanner in West China Hospital,
Huaxi MR Research Center, Department of Radiology,
Chengdu, China, under IRB approvals. Acquisition param-
eters for the scans were as follows. R-fMRI: 64� 64 matrix,
4-mm slice thickness, 220 mm FOV, 30 slices, TR¼ 2 s, total
scan length¼ 400 s; DTI: 256� 256 matrix, 3-mm slice
thickness, 240 mm FOV, 50 slices, 15 DWI volumes,
b-value¼ 1000. Preprocessing steps of the multimodal
DTI/R-fMRI datasets can be found in our recent publica-
tions [Zhu et al., 2012b; Zhang et al., 2011; Li et al., 2012;
Zhang et al., 2012].

Construction of Structural Connectomes

In this work, the 358 consistent DICCCOL landmarks
that have been discovered and validated in our recent
study [Zhu et al., 2012b] are localized in the DTI data of
each individual subject, based on the cortical landmark
prediction approach described earlier [Zhang et al., 2011;
Zhu et al., 2012b]. In short, the prediction utilized the fact
that there exists consistency in structural connection pat-
terns across human brain [Zhu et al., 2011, Zhu et al.,
2012a], and each DICCCOL is defined by the group-wise
consistent white-matter fiber connection patterns derived
from DTI data. The prediction process includes three
major steps: initial landmarks selection, optimization of
landmark locations, and determination of group-wise con-
sistent DICCCOLs [Zhu et al., 2012b], and has been proven
to be very consistent and reproducible through replication
experiments across over 240 brains [Zhu et al., 2012b]. The
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visualizations of 358 DICCCOLs have been released online
at: http://dicccol.cs.uga.edu, and an illustration of the pre-
dicted DICCCOLs in this dataset is shown in Supporting
Information Figure S1. Based on the predicted 358 DICC-
COLs in each subject with DTI data, the structural connec-
tomes were constructed via published methods [Zhu et al.,
2012b], which provide the structural substrates for the def-
inition of FCs in the next section.

FCs and Temporal Segmentation

As mentioned earlier, the functional brain connectivity
undergoes temporal dynamic changes even in resting state
[e.g., Chang and Glover, 2010; Majeed et al., 2011; Li et al.,
2012; Smith et al., 2012; Zhang et al., 2012]. Therefore, we
applied a sliding time window approach [Li et al., 2012;
Zhang et al., 2012] to divide the extracted R-fMRI signal Xi

from the ith DICCCOL into temporal segments TFi,t at
time point t, with the duration of window length l:

TFi;t ¼ fXi;pjt � p < tþ lg (1)

where Xi,p is the value of time series Xi at time point p. In
this work, the sliding time window length l was deter-
mined experimentally. In the experiments, we tried the
length range of 10–50, in which the range of 10–20 would
not change the result significantly. We empirically used
the length of 14 that achieved stable and relatively good
classification result. For every pair of temporal segments
TFi,t and TFj,t of the time series Xi and Xj from two DICC-
COLs, we calculated the Pearson correlation Ri,j,t between
them:

Ri;j;t ¼ corrðTFi;t;TFj;tÞ; Ri;j;t ¼ 0; if i ¼ j;

FCt ¼ fRi;j;tji; j 2 ð1; 358Þgð2Þ(2)

where FCt is the FC at time t, which is a set of correlations
from the congregation of all Ri,j,t over every combination
of i and j, to characterize the whole-brain functional con-
nectivity. It is a 3583 358 symmetric matrix. For visualiza-
tion and dimension reduction, we defined the FC strength
(FCS) as:

FCSt

X358

j¼1

Ri;j;t; FCS ¼ fFCS1; FCS2; : : : ;FCST�lg (3)

where FCSt is the summation of correlations of each DICC-
COL region of interest (ROI) with all the other ROIs at
time t, which is an I3 1 vector. Thus, the ith value in the
vector is the strength of connectivity of the ith ROI. FCS is
the aggregation of FCSt, representing the dynamics of con-
nectome strength through the entire time course. An
example of calculating FCS for a randomly selected subject

is illustrated in Figure 1. It can be clearly observed from
Figure 1 that FCS has clear state-like dynamics pattern, for
example, functional connectivity undergoes abrupt
changes, although the FCS remains quasi-constant during
certain length of time. For visualization purpose, each
quasi-stable time period is marked by blue lines as a FC
segment in Figure 1. Such temporal pattern has been repli-
cated in all of the 95 cases with R-fMRI datasets. The tem-
poral FC segments of each subject are manually divided,
by two expert observers, into quasi-static brain states.
Each state is defined as a time period (t1, t2) during which
functional connectivity across DICCCOLs remains quasi-
stable. The criteria used here for definition of quasi-static
brain states are similar to those in Zhang et al. [2012] and
Li et al. [2012]. The total number of interactively seg-
mented FCs in each subject is approximately with the
range of 15–25, and the detailed statistics of the interactive
FC segmentation are provided in Table I.

Based on the abovementioned interactive segmentation
result of FCs, the dynamics of FCs can be described by the
characteristics of brain states as:

FCSstatei
¼

Xt2

n¼t1

FCSt=ðt1 � t2Þ; Where Statei

¼ ft1; t1 þ 1; : : : t2g (4)

where FCS of each brain state FCSstate is defined as the
averaged FCS of temporal segments within this state
bounded by (t1, t2). In this work, the R-fMRI data of 95
brains (44 PTSD patients and 51 healthy controls) were di-
vided into 2,044 temporally quasi-stable states, in which
PTSD patient group has 1,137 segments and healthy con-
trol group has 907 segments.

CFC Modeling

In recent years, it has been widely reported that sparse
coding methods exhibit very good performance in image
analysis, especially in signal and image classification [e.g.,
Wright et al., 2009; Zhang and Li, 2010; Ramirez et al.,
2010]. In this work, the recently developed Fisher Discrim-
ination Dictionary Learning (FDDL) algorithm [Yang et al.,
2011] based on Fisher discrimination criterion [Duda et al.,
2000] was used to identify CFCs in R-fMRI data. The basic
idea of FDDL is to learn a structured dictionary D from
the training data A so that A¼DX, where X is the coding
coefficient. D contains certain numbers of sub-dictionary
Di that corresponds to the class labels in the training data,
under the constraint of maximizing the discriminative
capacity of the dictionary. We first applied the K-means
clustering method on A to obtain labels on the data, that
is, each training sample was assigned an index. Then, the
Bayesian Information Criterion (BIC) [Schwarz, 1978] was
used to identify the optimal number of classes (i.e., model
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order) for the dictionary learning. The criterion is
defined as:

BIC ¼ n In r̂2
e

� �
þ kInðnÞ (5)

where r2
e is the estimation for error variance, and in this

study it is defined as the summed variance of each state
within its corresponding class, n is the total number of
states in training matrix A, and k is the number of classes.
A larger r2

e indicates that the brain states are more scat-

tered within each class, which is contrary to our goal in
dictionary learning. When n is equal to 1, the r2

e would
reach its maximum, which is equal to the variance of the
original data without any classification. Conversely, a
larger n means we are using more classes in the dictionary
to reconstruct the data, which is also against our goal.
When n is equal to the number of states, r2

e would reach
its minimum 0 as each state is within a single class by
itself. The trade-off between the model order and the error
variance is balanced by the BIC value, and the optimized
number of states is determined by finding n to minimize

TABLE I. Summary for interactively segmented FCs including the average numbers, durations, and the statistics

for relatively long and short segments (measured by time points)

Average
number

Average
duration of

states (slices)

Number of states
with duration > 15
with duration <5

Number of
states with

duration < 5
% of states with
duration > 15

Healthy Control 17.78 10.46 1.24 4.47 8.39%
PTSD Patients 24.84 7.2 0.78 7.66 3.38%

All the numbers listed are per subject, for example, there are 17.78 interactively segmented FCs per subject on average.

Figure 1.

Illustration of calculating FC and FCS. Top panel: Illustration of

R-fMRI signals extracted from two DICCCOL ROIs of a ran-

domly selected subject, X1 and X2, and their sliding time-win-

dowed functional correlation R1,2,1 to R1,2,186; Middle panel: FC

strength (FCS). Each column is a single FCSt at one window, and

each row is the dynamics of the connectivity strength of one

DICCCOL ROI. The connectome strength is normalized to 0–1,

and is color-coded by the level of strength. The dark blue lines

highlight manual segmentation results, which are abrupt change

points between functional states. Bottom panel: Several averaged

FCs of segmented states, which are color-coded matrices, with

arrows pointing to their corresponding time periods in the FCS.
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BIC value from the experimental result through searching
a range of model orders.

Then, the following energy function J(D,X) were opti-
mized to obtain the learned dictionary D and its corre-
sponding projection X of the data on D [Yang et al., 2011]:

JðD;XÞ ¼ argminðD;XÞ rðA;D;XÞ þ k1X1 þ k2f ðXÞf g (6)

rðA;D;XÞ ¼ Am �DX2
mF þ Am �DmX

m2
mF þ

Xc

m

DmX
m2
mF (7)

f ðXÞ ¼ trð
Xc

m¼1

X

xk2Xm

xk � Xm

� �
ðxk � XmÞT

� tr
Xc

m¼1

nm xm � X
� �

ðxm � XÞTÞ þ gX2
F (8)

The first term in the energy function, r(A, D, X), is the con-
straint on discriminative fidelity, allowing the dictionary D
able to code the data A (which is the congregated FCSstates

matrix) with minimum residual, while at the same time
only using one subdictionary Dm, but not other subdiction-
aries. The neuroscience rationale behind it is that each sub-
dictionary Dm learned is corresponded to one way of the
classification of FCSstate, where within this class the FCSstate

are similar with each other, and X is the projection of the
dataset A on dictionary D, thus it is the classification result
(class labels). In Eq. (7), Xm is the projection of Am, which is
one of the subclasses in A, on the whole dictionary D. Xm

m is
the projection of Am on the correct subdictionary Dm. Xm

m is
the projection of Am on other incorrect subdictionaries other
than Di. Thus, to minimize Eq. (7), we requires the opti-
mized dictionary and its corresponding classification to use
the correct subdictionary Dm to project Am, and avoid using
other subdictionaries.

The second term in the energy function in Eq. (6) is the
sparse constraint, requiring the coding coefficient X be as
sparse as possible, that is, the total number of nonzero
items in X should be minimized. With this constraint, each
single FCSstate in A would only be projected by a limited
number of subdictionaries, which is in accordance with
our premise that the brain states would be discrete with
abrupt change on the boundaries. The third term f(X) is
the constraint on the discriminative coefficient, which aims
to minimize within-class scatter of X, and maximize cross-
class scatter of X, according to Fisher discrimination crite-
rion [Duda et al., 2000]. In the definition of f(X), Xk is the
item (single FCSstate) in Xm, that is, each class of the projec-
tion. The within-class scatter of the projection was meas-
ured by the summed distance from each item in the class
(xk) to the average of the class (Xm). The cross-class scatter
was measured by the summed distance from the average
of each class (Xm) to the average of the whole data (X).
The integer c is the total number of classes in the training
data A, as well as the total number of subdictionaries in
dictionary D. The integer ni is the number of items in Xi,
as there are multiple items in each class of the training
data A, and g is the scaling constant.

In the energy function, there are three parameters scal-
ing the trade-off between three terms: value of 1 (discrimi-
native fidelity constraint), k1 (sparseness constraint), and
k2 (discriminative scatter constraint). We estimated these
parameters based on the premise that there would be sub-
stantial alteration of the functional connectivity in the
PTSD patients, which has been previously reported [Fonzo
et al., 2010; Lanius et al., 2010; Hughes and Shin, 2011].
Thus the optimization would be aimed at maximizing the
capacity of the model in discriminating the healthy control
subjects from the PTSD subjects in the training data based
on their functional connectivity patterns, that is, CFCs. By
trying the parameter combination within the range prede-
termined by the scale of the three terms, we selected the
value of parameter k1 (0.01) and k2 (0.05) so that the model
could obtain maximum difference in the distribution of
CFCs between healthy control and PTSD subjects. To ver-
ify that the parameters estimated from the training dataset
are optimal, we applied the models with different parame-
ter combinations on the testing data in a similar fashion. It
was found that the same value of parameters (k1 ¼ 0.01,
k2¼ 0.05) had been estimated on the testing dataset, sug-
gesting that the parameter selection method used in this
work is valid and stable.

The learned dictionary has the same dimension with the
input training matrix A, and contains subdictionaries cor-
responding to each class label. Also, as every state has its
own FC depicted in Figure 1, we obtained the average FC
for each subdictionary, defined as CFC in our study. The
dynamics of brain connectomes could then be projected
into the small number of representative CFCs with mini-
mum information loss. The learned dictionary was then
applied to classify the testing matrix T, to project brain
state in testing data to the CFCs. The sparse coding algo-
rithm is based on the sparseness function developed in
(Olshausen and Field, 1996) and further enhanced in
[Wright et al., 2009] as:

X̂ ¼ argminðXÞX1; subject to T ¼ DX (9)

where D is the dictionary learned from training samples
and T is the testing data. The projection resulted in a vec-
tor with the length of total number of states; each value in
the vector is the labeling result (an integer) of the corre-
sponding testing sample. An example of the projection
result is shown in Supporting Information Figure S2.

RESULTS

Sixteen CFCs Inferred from R-fMRI Data of

Healthy Controls

As described in ‘‘FCs and Temporal Segmentation’’ Sec-
tion, there were 907 brain states manually segmented from
51 healthy control subjects, and each state could be charac-
terized by its corresponding 358*1 FCSstate vector. Since
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the DICCCOL definition of ROIs provided us an inher-
ently universal coordinate system across all the subjects,
we could congregate all the FCSstate together into a
907� 358 matrix, which is the characterization of group-
wise functional connectivity strength of healthy control
subjects. Then the FDDL model was applied to the congre-
gated data to identify the common functional connectivity
patterns across subjects.

The total number of classes for dictionary learning,
which was also the number of CFCs, was optimally deter-
mined as 16 by the BIC criteria (details in Supporting
Information Fig. S3). Based on the estimation of model
order, 16 CFCs were identified from brain functional con-

nectivity strength of healthy controls, as shown in Figure
2. The patterns of these 16 CFCs are visualized on the cort-
ical surfaces in Figure 3. Based on the results in Figures 2
and 3, it can be easily appreciated that the brain exhibits
remarkably different FC patterns even in resting state, in
agreement with prior reports on the functional dynamics
of the brain, for example, Chang and Glover [2010],
Majeed et al. [2011], Smith et al. [2012], Li et al. [2012]. The
novel contribution of the present work is that we quantita-
tively characterized the representative CFCs of the whole
FCs at the population level. The neuroscience meanings of
these 16 CFCs are interpreted as follows. The most fre-
quent CFCs (#1–#2) involve strong activities in the default

Figure 2.

Visualization of 358 � 358 connectivity patterns of 16 CFCs obtained by the dictionary learning

from healthy controls. Matrices are color-coded according to the strength of functional interac-

tion between the ROI labeled by the column index, to the ROI labeled by the row index. CFCs

are ordered by their corresponding frequency of occurrence in the projected temporal segments

of all subjects.
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Figure 3.

Visualization of CFCs on cortical surfaces. DICCCOL ROIs are marked as green spheres on the

cortical surface, and the functional connectivities between ROIs are shown as red edges connect-

ing those spheres. A threshold (threshold ¼ 0.75 for Pearson’s correlation) was used to select

the highest functional connectivities that are shown here. The yellow circles in the first row

highlight the nodes involved in the DMN.
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mode network (DMN) [Raichle et al., 2001; Fox and
Raichle, 2007], as highlighted by the yellow circles in Fig-
ure 3. The major difference between CFCs #1 and #2 is
that there are more connectivities between the anterior
and posterior nodes of the DMN in CFC #2. CFCs #3 and
#4 involve activities in the DMN, but exhibit more connec-
tions between two hemispheres as highlighted by the yel-
low circles. A clear difference between CFCs #3 and #4 is
that CFC #3 exhibit interhemisphere connections at the vis-
ual area and supplementary motor area, while CFC #4
shows more interhemisphere connections at the superior
part of the central sulcus. CFC #14 also exhibits activities
in the DMN, but involves interhemisphere connections in
the occipital lobe as highlighted by the oval shape. In com-
parison, there are many more strong connections between
hemispheres in the parietal lobes in CFCs #5, #6, #7 and
#9, though the nodes locations are different, as indicated
by the dashed oval shapes. Also, the interhemisphere con-
nection patterns in the occipital lobes also differentiate
CFCs #5–#7 and #9, as shown by the oval shapes. The CFC
#8 only has very sparse strong connection, suggesting that
the brain is really in the ‘‘resting state’’ in this CFC state.

CFCs #10 and #13 show some strong connections in the
parietal lob and occipital lobe, but not as dense as those in
CFCs #5–#7. CFCs #11 and #15 have widespread connec-
tions along the dorsal part of the cortex as illustrated by
the oval shapes, though the densities and nodes locations
are different. Interestingly, the CFCs patterns #12 and #16
involve strong connectivities of the whole brain, as evident
by the widespread red edges in Figure 3. The difference
between these two CFCs is that functional connections in
CFC #16 are more widespread and strong. These two
CFCs demonstrated that the brain scanned in R-fMRI
could be in very active state. Notably, the clustering of all
of the temporally segmented FCs into 16 representative
CFCs is optimal based on the BIC criterion and achieves
the maximal separation among these 16 patterns according
to the FDDL.

Reproducibility Studies

A 10-fold cross-validation of the derived CFC models
was performed on the dataset of control subjects, in order
to examine the reproducibility of our results in Figures 2
and 3. The same input data used in identifying CFCs in
Figures 2 and 3 was divided into 10 equal portions, each
consisting of five subjects (except portion #10 consisting of
six subjects). There were approximately 80–110 temporal
FC segments in each portion. The cross-validation training

data was subsequently constructed by sequentially com-
bining nine portions into one matrix, and the remaining
portion was used as the testing data:

FCSAll ¼ FCSpart iji ¼ 1; 2; : : : ; 10
� �

; FCSTest ¼ FCSpart iji ¼ k
� �

FCSTrain ¼ FCSpart iji ¼ 1; 2; k� 1; kþ 1; : : : ; 10
� �

(10)

Afterwards, the Fisher discriminative dictionaries were
learned from each of the 10 training datasets, using the
same model parameter (k1¼ 0.01, k2¼ 0.05) as well as
mode order (16 classes) as in ‘‘Sixteen CFCs Inferred from
R-fMRI Data of Healthy Controls’’ Section. Each dictionary
consisted of 16 subdictionaries, corresponding to the 16
CFC classes in the training dataset. Next, the dictionary
was applied to both training and testing datasets to per-
form the sparse coding, resulting in the projected CFC
labels for each temporal FC segment. Also, the connectiv-
ity patterns of the 16 CFCs were obtained from training
datasets.

To assess and present the cross-validation results, three
steps were taken. First, the connectivity patterns of the
CFCs obtained in each validation experiment are illus-
trated in Supporting Information Figure S4, and similar
patterns can be found across the results. Second, the distri-
butions (histograms) of the CFCs in each of the 10-fold
dataset were compared, and the histograms are shown in
Supporting Information Figure S5. Also, a table of histo-
gram comparison is provided in Table II. As shown in the
figure and the table, the average relative difference of the
CFCs distribution from the training and testing datasets is
2.66%. Considering the average standard deviation of the
CFCs distributions from training datasets is 6.53%, it is
concluded that there is no substantial difference between
the CFCs distributions obtained from the training and test-
ing datasets, and the histogram is consistent across train-
ing and testing datasets. Third, the model residual of
projecting each temporal segment using the CFCs in each
validation experiment was obtained and shown in Sup-
porting Information Figure S6 and summarized in Table
III. Similar residual levels through the cross-validation
studies indicate that the CFC model performance was con-
sistent in different datasets. In addition, within each vali-
dation experiment, the residual of testing data is at
comparable level with the training data, suggesting the
model’s capability in explaining new observations from
the same population. Considering these results together,
the derived CFCs in Figures 2 and 3 are highly
reproducible.

TABLE II. List of relative difference of CFCs distribution from the training and testing datasets

Fold#01 Fold#02 Fold#03 Fold#04 Fold#05 Fold#06 Fold#07 Fold#08 Fold#09 Fold#10

2.37% 2.61% 2.90% 3.38% 2.19% 2.42% 2.36% 2.53% 3.28% 2.51%
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Temporal Transition Patterns of FCs

In this section, we examine the group-wise temporal
transition patterns of CFCs. As shown previously in Figure
1, brain connectivity strength has state transition behav-
iors. Also, we found a similar pattern in the CFC indices
of the projected temporal FC segments (an example is
shown in Supporting Information Fig. S7), suggesting that
the brain would maintain its FC pattern for certain length
of time and then hop to another pattern. Our premise in
analyzing the FC transition pattern is that multiple sub-
jects could share the similar transition patterns, and that
each subject’s brain would possibly hop back and forth
among these representative states [Holtzheimer and May-
berg, 2011]. In this sense, the brain activity in each subject
can be described as a dynamic random process that tran-
sits through a set of successive projected CFC states S1, S2,
S3, : : : , Sn, similar to a finite-state machine consisting of 16
states. The transition from any states Si to its next state Sj
is quantified by a group-wise probability Pij. Thus, the
transition probabilities obtained from the projected state

changes of all 51 control subjects were averaged into a
16�16 state transition matrix (shown in Supporting Infor-
mation Fig. S8). After averaging over the entire popula-
tion, 26 cells in the state transition matrix are significantly
greater than 0 by one-sample t-test under P¼ 0.05, which
are mainly the cells with high averaged transition proba-
bility, The connectivity map of those cells is presented as a
state flow diagram in Figure 4.

An interesting observation that can be made from Figure
4 is that that CFC #01 and CFC #02, which are the most
dominant states across all subjects, serve as the hubs of FC
transitions during resting state. For instance, more than
half of the CFCs are connected to CFC #01 (#2, #3, #4, #5,
#6, #9, #10, #11, #13, #14) and #02 (#1, #3, #4, #7, #8, #9,
#12, #15). Importantly, these transition patterns are also re-
producible in independent groups of subjects. Considering
the connectivity patterns of CFC #01 and CFC #02 are
mainly composed of ROIs in the default node network
(DMN) (highlighted by yellow circles in Fig. 3), it can be
postulated that the DMN plays central roles in functional
brain transitions and dynamics.

Figure 4.

The state flow diagram depicting significant transitions (transition probability significantly greater

than zero at P ¼ 0.05; transition from and to CFC state #14, #15, and #16 were also visualized

although their probability were not significant) between 16 CFCs in 51 healthy control subjects.

Area of the node indicates the total number of temporal FCs segments projected to it.

TABLE III. List of average relative residuals from the sparse coding of the training and testing datasets

Fold#01 Fold#02 Fold#03 Fold#04 Fold#05 Fold#06 Fold#07 Fold#08 Fold#09 Fold#10

Train 49% 48% 47% 50% 47% 50% 49% 43% 45% 43%
Test 59% 61% 61% 65% 57% 63% 58% 69% 63% 61%
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Altered CFCs and Temporal Dynamics in PTSD

To investigate possible altered CFCs and their abnormal
state transition patterns in PTSD, the PTSD patients’
R-fMRI datasets were analyzed in the same manner as that
in ‘‘Temporal Transition Patterns of FCs’’ Section. In total,
2044 manually segmented FCSstate from both healthy con-
trol (907 FCSstate) and PTSD patients (1137 FCSstate) were
pooled together. The combined dataset was then equally
divided into two groups for training and testing of the
CFC models, which forms a 974� 358 training matrix A
and a 1070� 358 testing matrix T. Here, each row in the
matrices is the FCSstate of manually segmented temporal
FC, serving as a training/testing sample. Both the training
and testing data contain approximately equal amounts of
healthy control and PTSD patient FCSstate. We subse-
quently applied the FDDL method to the training matrix A
and learned the corresponding discriminative dictionary.
As the training data included both PTSD and control
groups, the learned dictionary and corresponding CFCs
reflected patterns from both healthy control and PTSD
patients. In this study, the BIC was also used for determin-
ing the optimal model order (the curve of BIC is shown in
Supporting Information Fig. S9). It turned out that for the
mixed data, the model with order of 18 (18 CFCs) has the
lowest BIC value and is thus selected as the optimal one.

In Figure 5, the connectivity patterns of the 18 CFCs
learned from the training matrix A are presented. Interest-
ingly, all of the first 16 CFCs shown in Figure 5 correspond
to the 16 CFCs discovered from healthy control subjects
shown in Figure 2, indicating the consistency of the CFC
models in identifying common connectomes. Strikingly, the
last two FC patterns (CFC#17 and CFC#18), also referred to
as SFCs, very rarely exist in the learned dictionary obtained
from healthy control data at all (occurred in only one out
of 51 control subjects), but mostly occur in the PTSD sub-
jects. Furthermore, these two patterns occur widely in the
PTSD patients (over 80% of 44 PTSD patients), as seen in
the histograms in Supporting Information Figure S10. Con-
sidering the fact that all CFCs were learned from the same
mixed dataset without a priori knowledge, the clear differ-
ence between the CFCs distributions in healthy controls
and PTSD patients indicate the high discrimination power
of the learned models of CFCs #17 and #18 in separating
PTSD patients from controls.

Based on the similar procedures of analyzing the FC dy-
namics in healthy controls in Figure 4, the state transition
probabilities among the 16 normal CFCs and the two PTSD
signature SFCs in the mixed dataset were obtained, and the
derived state flow diagram is shown in Figure 6. It is appa-
rent that the CFC state transition patterns in PTSD patients
are remarkably different from those in the healthy controls,
as shown in Figure 4. For instance, CFC #1 becomes the
dominant hub of state transitions, while CFC #2 is less
active in PTSD patients. This result suggests that the
DMN’s functional activities are substantially altered in
PTSD, in terms of their roles in regulating the functional

brain transitions connected to CFCs #1 and #2. Furthermore,
the visualizations of the connectivity patterns of the two sig-
nature SFCs (CFC#17 and CFC#18) that occur primarily in
PTSD patients are provided in the top panels of Figure 6. It
is evident that the two abnormal PTSD SFCs are character-
ized by the hyper-connectivities in the frontal areas and the
cingulate gyri, consistent with current neuroscience knowl-
edge about PTSD that has been considered as an anxiety
disorder associated with changes in extensive neural circui-
tries including frontal and limbic systems [Francati et al.,
2007]. This result lends support to the validity and effective-
ness of our methods and results. The contribution of our
work is that we quantitatively modeled and characterized
the brain dysfunctions of PTSD via descriptive and rich
dynamic functional connectomics signatures.

Two SFCs for the Differentiation of PTSD

Patients

The results in the previous sections have shown that
CFC #17 and CFC #18 exist dominantly in PTSD patients
and that current neuroscience knowledge of PTSD [Fran-
cati et al., 2007] lends interpretation of these two SFCs.
That is, these two CFCs are characterized by the hyper-
connectivities in the frontal areas (e.g., the anterior cingu-
late cortex (ACC)) and the cingulate gyri, which are
believed to be involved in the neural circuitries in PTSD
[Francati et al., 2007]. In particular, the hyper-connectiv-
ities in the ACC as revealed in the CFC #17 are in agree-
ment with the literature report that enhanced resting
metabolic activity in the anterior cingulate cortex (ACC)
was associated with PTSD [Shin et al., 2009]. Also, the
hyper-connectivities shown in the CFC #18 are consistent
with the literature report about the greater increases in
blood flow in the posterior cingulate [Bremner et al., 1999].
In this section, we describe the possibility and perform-
ance of applying the derived CFC and SFC models to dif-
ferentiate PTSD patients from healthy controls.
Specifically, Figure 7 showed that the two SFCs appear fre-
quently in a majority of PTSD patient subjects. Quantita-
tively, there were �80% of 44 PTSD patients with one or
more of their FCs throughout the entire time course exhib-
iting significant project to either or both of these two SFCs.
The detailed distributions of two SFCs in 44 PTSD patients
are shown in Figure 7. Meanwhile, there was only one
healthy control subject out of 51 who exhibited CFC #17.
These numbers suggest that the CFC#17 and CFC #18 are
intrinsic signature CFC patterns specifically for PTSD
patients, and they could be used as potential biomarkers
for the individualized differentiation of PTSD patients
with quite high sensitivity and specificity.

Studies on the Effect of the Number of

DICCCOLs Used for Model Input

In this work, we used the fMRI time series extracted
from 358 DICCCOL ROIs as our model input. In order to
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investigate the effect of the relatively high-dimensional
input, we also applied our model to learn the dictionary
and performed the classification on the data defined on

reduced number of ROIs. Three schemes of input ROI
reduction were used. In scheme I, we removed certain
proportion (10, 25, and 50%) of ROIs which were

Figure 5.

Visualization of 358 � 358 connectivity patterns of 18 CFCs obtained from mixture of healthy

control and PTSD patients. Matrices are color-coded according to the strength of functional

interaction from ROI labeled by the column index, to the ROI labeled by the row index. CFCs

are ordered to their correspondent CFCs discovered from healthy control subjects in Figure 2,

while there are no correspondents of CFC#17 and CFC#18 for healthy controls.
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randomly selected from the whole 358 ROIs, keeping a
randomly partially covered ROI definition of the brain. In
scheme II, we removed the same proportions (10, 25, and
50%) of ROIs with the lowest summed FCS, which indi-
cates their functional connectivity strength through the
whole time series, thus keeping those ROIs with stronger
functional connection. In scheme III, ROIs were hierarchi-
cally clustered by their FCS vectors, where the same pro-
portions (10, 25, and 50%) of ‘‘outlier’’ ROIs (i.e., those
with FCS vector distant apart from other ROIs) were
removed. After the reduction of ROIs, the model was
trained and tested using the similar method as in previous
health control/PTSD classification described in ‘‘Altered
CFCs and Temporal Dynamics in PTSD and Two SFCs for

the Differentiation of PTSD Patients’’ Sections. We
obtained the two CFCs that had the highest proportion in
PTSD data to serve as the SFC for PTSD patient classifica-
tion with reduced ROIs, listed in the ‘‘proportion’’ col-
umns in Table IV. It is noted that in the result of the
model using the original 358 DICCCOL ROIs, the propor-
tion of CFC#17 and CFC#18 in PTSD dataset were 98 and
100%. The experiment here shows that reducing the num-
ber of ROIs by less than 10% would not affect the model
performance much, while the model results would be
infeasible when more than half of the ROIs were removed,
where there was only one SFC identified in scheme II with
significantly high proportion in PTSD data, and no SFCs
identified in scheme I and III. We also compared the

Figure 6.

The state flow diagram depicting significant transitions (transi-

tion probability significantly greater than zero at P ¼ 0.05;

transition from and to states #14, #15, #16, #17, and #18

are also presented although their probabilities were not signif-

icant) between CFCs of 44 PTSD patient subjects. Area of

the node indicates the total number of temporal FC segments

projected to it. Nodes representing state #17 and #18 are

colored in red as they are SFCs for PTSD. The patterns of

functional connectivities of CFC #17 and #18 on cortical sur-

face are shown to the top panel, where a global threshold

(threshold ¼ 0.75 for Pearson’s correlation) was used to

select the highest functional connectivities shown here. The

state transition matrix of Fig. 6 is shown in Supplemental

Figure 11.
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functional connectivity pattern of the two SFCs from
reduced data with the SFCs obtained from the original
data. The similarities were only calculated on the ROIs
defined in both settings, and the values are listed in the
‘‘similarity’’ columns in the table. Generally with less than
25% ROIs removed the result is still reasonably good, only
with minor alterations of the two SFCs, especially on data
that are more homogeneous (scheme III). Although on
data with 50% ROIs removed, there would be substantial
loss of coverage of the brain functions, thus reducing the
feasibility of the model.

Studies on the Effect of Model Order Selection

To investigate the model sensitivity to the number of
classes used during the optimization and classification, we
tested our model by using various numbers of classes on
the mixed (healthy control and PTSD patients) data as
described in ‘‘Altered CFCs and Temporal Dynamics in
PTSD’’ Section. For each experiment (e.g., running the
model on 17, rather than 18 classes), we obtained the

CFCs using the same method and model parameters as in
‘‘Altered CFCs and Temporal Dynamics in PTSD’’ Section.
We then compared their corresponding functional connec-
tivity patterns with the 18 CFCs obtained in ‘‘Altered
CFCs and Temporal Dynamics in PTSD,’’ which is
regarded as the basic patterns in this experiment. By the
comparison we could find the matching of CFCs between
the model results using different model orders. For exam-
ple, by using model order of 17 (i.e., 17 classes) in running
the model, we observed that the least matching CFC in ba-
sic patterns with those 17 CFCs from the model results is
CFC#16, indicating that this CFC was ‘‘merged’’ into other
classes when the number of classes was reduced. Simi-
larly, by increasing the model order and conduct the com-
parison between the obtained CFC and basic patterns, we
found that the additional CFCs would be ‘‘split’’ from the
18 basic patterns. The detailed changing of CFCs with the
different number of classes is listed in the Table V below.
The table shows that only when the model order is
reduced to 11, the SFCs used for classification (CFC#18 or
CFC#17) would be merged to other CFCs, that renders the
model unable to classify the patients with normal controls.

Figure 7.

The SFC distributions in 44 PTSD patients. Indices at y-axis are PTSD subjects. The mark on

each subject indicates that this subject had one or more of its temporal FCs segments projected

to the corresponding SFCs (CFC#17 and/or CFC18). The union of them (‘‘#17 or #18’’ of black

mark) serves as the criteria for identifying a specific subject as PTSD patient.

TABLE IV. Result of the model classification accuracy and the similarities of the SFCs for classification obtained

from data defined on reduced numbers of ROIs

# of ROIs Scheme Similarity of CFC#17 Similarity of CFC#18 Proportion of CFC#17inPTSD Proportion of CFC#18inPTSD

322 I 82% 80% 85% 84%
268 I 78% 65% 71% 73%
179 I N/A N/A N/A N/A
322 II 79% 85% 87% 91%
268 II 66% 70% 80% 73%
179 II 69% N/A 72% N/A
322 III 92% 95% 92% 95%
268 III 83% 78% 82% 88%
179 III N/A N/A N/A N/A
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Conversely, when the model order was increased to as
large as 22, the two SFCs was still intact and the model
retains its classification capacity.

Model Parameter Estimation by Stability

Selection Method

In addition to the method used in ‘‘CFC Modeling’’ Sec-
tion for the estimation of model parameters k1 and k2,
which aims at optimizing the model capacity of classifying
normal controls/patient subjects, we have used the stabil-
ity selection method [Meinshausen, 2010] to obtain the sta-
ble FCSstate involved in the dictionary learning process of
FDDL modeling. In this work, we used the stability selec-
tion method by first selecting a model parameter k1. Then
we used the bootstrapping methodology to perform N
times of random resampling of the control training dataset
containing 907 number of FCSstate, and obtained N (set to
1,000 in this study) number of new datasets, which were
of the same size as the original dataset but may contain
duplicate values as the sampling is with replacement. The
FDDL dictionary learning was thus applied on the new
datasets with the predetermined parameter k1. Then the
probability of a specific item FCSstate-i being included in
the subdictionary Dm could be obtained by the following
equation [Ye, et al., 2012]:

Pm
i ¼

X
IfðXm

i > 0Þ=N (11)

where If(�) is the indicator function of whether the specific
item is included in the corresponding subdictionary. For
each model parameter k1 used in the above analysis, we
could obtain one corresponding Pm

i that measures the
probability of the ith FCSstate used in the mth subdiction-
ary. In this work, we have tried 11 values of k1 ranging
from 0 to 1 by a step of 0.05. Thus for each FCSstate, there
would be 21 probability vectors corresponding to each

model parameter. Then, the set of stable FCSstate is defined
by congregating all FCSstate whose maximum probability
over all of the 21 parameters in all of m subdictionaries
exceeding a predefined threshold s (set to 0.7 in this
study). For instance, if a specific FCSstate has at least one
frequent (thresholded by s) occurrence in any of the sub-
dictionaries in any parameter used, it would be considered
as stable. The experiment results are shown in the Table
VI. It can be seen from Table VI that there is at least one
stable FCSstate corresponding to each of the 16 subdiction-
aries learned, suggesting the good capability of the pro-
posed methods in analyzing the FC dynamics. The
functional connectivity maps of the brain states which the
stable FCSstate belong to are visualized in Supporting Infor-
mation Figure S12.

DISCUSSION AND CONCLUSION

In this study, we applied the Fisher discrimination dic-
tionary learning sparse coding approaches to identify CFCs
from temporally divided quasi-static FC segments obtained
from resting state fMRI data. Both structural and FCs were
derived via our recently established 358 DICCCOL ROIs
[Zhu et al. 2012b]. The optimal number of CFCs was deter-
mined by the minimization of Bayesian information crite-
rion. In the 16 reproducible CFCs in healthy control brains
identified in independent datasets by our methods, there
existed two CFCs (CFC #1 and CFC #2) that are mainly
composed of the DMN [Raichle et al., 2001; Damoiseaux
et al., 2006; Fox and Raichle, 2007] ROIs, and they occur
frequently throughout the entire scan time course and
serve as the hubs for temporal CFC transitions. This novel
finding suggests the important roles of DMN in functional
brain state transitions and dynamics.

Furthermore, by analyzing the mixed data of healthy
controls and PTSD patients together, we found that
healthy controls and PTSD patients shared a large number
of common connectome patterns, as the 16 CFCs derived

TABLE V. The relationship between the changing of CFCs and the model order (number of classes)

11 classes 12 classes 13 classes 14 classes 15 classes 16 classes 17 classes 18 classes 19 classes 20 classes 21 classes 22 classes

Remove
CFC#18

Remove
CFC#12

Remove
CFC#17

Remove
CFC#11

Remove
CFC#9

Remove
CFC#6

Remove
CFC#16

N/A CFC#10
Split

CFC#13
Split

CFC#7
Split

CFC#21
Split

The CFCs obtained by using model order of 18 is regarded as basic, and all the other result were derived from the comparison with the
basic patterns.

TABLE VI. The stability selection result on healthy control training dataset

FCS state 7 39 203 236 237 282 304 378 412 464 474 503 541 584 624 682 693 891

Frequency 89% 84% 81% 84% 75% 79% 76% 83% 81% 83% 83% 82% 82% 84% 81% 84% 83% 78%
Class 6 1 7 13 15 14 14 3 11 2 9 16 8 15 4 10 5 12

The first row is the indices of the training samples (from 1 to 907). The second row is the maximum frequency of the sample being
included in a specific subdictionary. The third row is the indices of the class (subdictionary) most frequently using that sample.

r Functional Connectomes r

r 15 r



from healthy control subjects were all present in PTSD
patients. This result not only demonstrates the commonal-
ity of FCs in healthy controls and PTSD patients, but also
reveals the reproducibility of the CFCs in different popula-
tions. Furthermore, we identified two additional CFCs that
existed primarily in PTSD patient subjects, which were
then defined as PTSD SFCs. Further examination of these
two SFCs revealed abnormal hyper-connectivities in the
frontal cortex and cingulate gyri of the PTSD patients, con-
sistent with current neuroscience knowledge about PTSD
[Bremner and Charney, 1994; Francati et al., 2007]. Interest-
ingly, these two SFCs occur frequently in PTSD subjects
but very rarely in healthy controls, and they alone can dif-
ferentiate 80% of individual PTSD subjects from healthy
controls with very low false positive of 2%.

Additionally, the temporal transition patterns among
those CFCs in both healthy control and PTSD patient sub-
jects were analyzed, and substantial and meaningful dif-
ferences between their transition patterns were discovered,
in agreement with the concept of brain states modeling for
psychiatric conditions in psychiatry literatures. For
instance, in 2011, Holtzheimer and Mayberg postulated
that in major depressive disorder could be defined as the
tendency to enter into, and inability to disengage from, a
negative mood state rather than the mood state per se.
Though the CFCs and FSM modeling in our work for
PTSD patients would not necessarily correspond to the
state models in the depression study, the present work
shares the similar concepts of abstracting brain functional
activity as brain states and representing mental status by a
finite state transition space. In particular, our work has
demonstrated the existence of abnormal functional SFCs
that are specific for PTSD patients, providing direct sup-
port to the concept of diseased functional brain states in
psychiatric conditions [Holtzheimer and Mayberg, 2011].

The work presented in this article can be further
enhanced in the following directions. First, as noted by
several researchers [Goebel et al., 2003; Stephan et al.,
2009] and other reports, structural brain connectivity could
be helpful in guiding the modeling of functional brain
connectivity. Hence, we plan to develop new models to
analyze FC dynamics based on both functional and struc-
tural connectivity of DICCCOL ROIs in the future. The
joint modeling of multimodal neuroimaging data would
potentially improve the model stability both within (e.g.,
through different scan sessions) and across subjects. Also,
by adding structural information, we could better interpret
the model result (CFCs and state transition) with more an-
atomical and neuroscience implication. Second, we plan to
employ more sophisticated modeling methods to describe
the FC transition patterns. As shown in the state flow dia-
gram of healthy control and PTSD patient subjects, the
transition pattern modeling is a powerful tool in analyz-
ing, combining and comparing brain dynamics across sub-
jects and populations. Currently, only the adjacent state
change is considered in this work, which is the simplest
feature of random processes (e.g., first-order Markov

chain). We already observed that there exist high-order
dependencies between states, that is, not only the current
state determines how the brain transit to the next state but
also the previous states would affect the transition. By uti-
lizing higher-order random process analysis in the future,
we would be able to model such characteristics of higher-
order brain state transitions, providing a new way of
understanding how the brain functions dynamically.

Structural and functional connectivity analysis via multi-
modal DTI/R-fMRI data has offered exciting opportunities
to understand the functions and dysfunctions in healthy
brains and a variety of neurological/psychiatric diseases
[Rogers et al., 2007; Zang et al., 2007; Castellanos et al.,
2008; Buckner et al., 2009; Church et al., 2009; Rombouts
et al., 2009; Li et al., in press], including schizophrenia
[Whalley et al., 2005; Liang et al., 2006] and Alzheimer’s
disease [Li et al., 2002, Wang et al., 2006]. The dynamic
functional connectomics mapping methods in this article
have revealed PTSD SFCs and their temporal transition
patterns that can effectively characterize and differentiate
PTSD subjects from healthy controls. We envision that this
school of dynamic functional connectomics mapping meth-
odologies can be potentially applied to reveal intrinsic
pathological brain activities in many other brain conditions
and contribute to the development and validation of effec-
tive biomarkers of those brain illnesses in the future.
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