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5 Abstract—Since the BRAIN Initiative and Human Brain Project began, a few efforts have been made to address the computational

6 challenges of neuroscience Big Data. The promises of these two projects were to model the complex interaction of brain and behavior

7 and to understand and diagnose brain diseases by collecting and analyzing large quanitites of data. Archiving, analyzing, and sharing

8 the growing neuroimaging datasets posed major challenges. New computational methods and technologies have emerged in the

9 domain of Big Data but have not been fully adapted for use in neuroimaging. In this work, we introduce the current challenges of

10 neuroimaging in a big data context. We review our efforts toward creating a data management system to organize the large-scale fMRI

11 datasets, and present our novel algorithms/methods for the distributed fMRI data processing that employs Hadoop and Spark. Finally,

12 we demonstrate the significant performance gains of our algorithms/methods to perform distributed dictionary learning.

13 Index Terms—fMRI, big data analytics, distributed computing, apache-spark, machine learning
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14 1 INTRODUCTION

15 AFTER the success of the Human Genome Project (HGP)
16 [1], [2], [3] to map 3 billion nucleotides representing
17 human inheritance, the US Brain Research Through Advanc-
18 ing Innovative Neurotechnologies (BRAIN) [4] Initiative,
19 European Union Human Brain Project (HBP) [5] launched in
20 2013 and China Brain Project (soon to be announced) were
21 initiated to reflect the aspiration and investment in neurosci-
22 ence research for understanding the human brain structure
23 and function, especially to treat many brain disorders.
24 The sheer complexity of the brain has forced the neuro-
25 science community and specifically the neuroimaging
26 experts to transit from the smaller brain datasets to the
27 extent far less manageable. The cutting-edge technologies
28 in the biomedical imaging field, as well as the new techni-
29 ques in digitizing, all lead to collect further information
30 from the structural organization and functional neuron
31 activities in the brain [6].
32 Understanding the relationship between functional neural
33 activity, structural organization of brain regions, and subse-
34 quent behavior became the main goals of neuroscience. These

35goals are only achievable by analyzing covariance in large
36scale studies [6]. Aligned with these goals, discovery-based
37approaches have been employed to empower the investiga-
38tion of brain-behavioral relationships. These goals are not
39reachable but through large-scale datasets. The possible chal-
40lenges of holding and analyzing this much data have been
41one of themain topics of the annualmeetings of the Organiza-
42tion for HumanBrainMapping (OHBM) since 2012.
43Certainly, Human Connectome Project (HCP) with
44more than 1200 healthy subjects is a perfect example of
45these large datasets [7], [8]. HCP was awarded more
46about $40 million in 2010 to develop advanced neuroim-
47aging methods and to recruit a large number of individu-
48als to map brain regions and their connectomes [9], [10].
49The main goal is to understand the human brain better
50and eventually to treat the neurological and psychiatric
51disorders. The other examples can be 1000 functional con-
52nectomes [11] and openfMRI project [12]. These efforts
53clearly draw a portrait clarifying the emphasis of neuro-
54science community to employ new techniques to deal
55with neuroimaging bigdata.
56As a few studies have shown [3], [13], the arrival of big
57data in neuroscience demands a cultural shift from isolated
58single efforts applying limited methods over small dataset
59to a more horizontal efforts to cover a wider range of prob-
60lems, using larger datasets and more comprehensive techni-
61ques. This transition, however, will require the community
62to address certain challenges [13]. A few of these challenges
63are as follows.
64Handling more comprehensive datasets demands sophis-
65ticated techniques and substantial resources that necessitate
66close collaboration among laboratories. In recent years,
67numerous articles have stressed the importance of data shar-
68ing, particularly neuroscience MRI data [11], [12], [14], [15],
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69 [16]. They mostly indicate that adoption of new data sharing
70 tools along with close collaboration among researchers will
71 benefit researchers methodologically, financially, and ethi-
72 cally, fully allowing researchers to exploit the sizeable quan-
73 tities of information generated across laboratories.
74 Techniques for studying the neural activities and the
75 brain structure are varied, consisting of strategies to repre-
76 sent a vast range of temporal and spatial resolutions [13].
77 Each of these methods is limited to a specific resolution and
78 only applicable to a portion of the brain studies. These tech-
79 niques can be as fast as 0:0001s for patch clamping and as
80 accurate as electron microscopy with � 0:0001mm accuracy,
81 to electroencephalography and fMRI with lower spatial and
82 temporal resolutions. Each of these techniques carries its
83 own set of vocabulary and metadata, and thus different
84 standardizations are needed. This complexity makes the
85 cross-pipelines harder to automate, as multidimensional
86 problems involving multiple modalities and techniques are
87 required to reach an appropriate level of scientific certainty.
88 Among various neuroimaging methods, functional mag-
89 netic resonance imaging, fMRI, has been widely used to
90 assess functional activity patterns in the brain [17], [18], [19],
91 [20]. Since the early 1990s [21], [22], when fMRI came to dom-
92 inate the brain mapping research, more than 42,000 papers
93 have been published according to PubMed which indicates
94 the significant interest of scientists to use this modality to
95 understand brain functions. Researchers have vastly used
96 both Task-based (tfMRI) and Resting-state (rfMRI) fMRI
97 techniques for functional brain mapping. [23], [24], [25], [26],
98 [27], [28], [29], [30]. From a total of 12 available shared neuro-
99 imaging datasets at 2014, 8 of those contained rfMRI and

100 four of them tfMRI scans [15]. This demonstrates the funda-
101 mental role of fMRI as a tool for discovery, shedding light on
102 the unexplored functional brain activities.
103 Given the popularity and the importance of fMRI to map
104 functional brain networks, tremendous efforts have been
105 devoted to the establishment of fMRI neuroinformatics sys-
106 tems through which users can easily employ comprehensive
107 statistical and computational approaches for fMRI analysis
108 [31], [32], [33], [34], [35], [36]. These systems are expected to
109 host large-scale datasets and to provide a modular indepen-
110 dent platform to run wide-ranging complex algorithms and
111 processes in which tasks can be run in a distributed or par-
112 allel fashion.
113 Storing, analyzing, visualizing, and sharing large data-
114 sets need intensive computational and storage resources
115 that more traditional methods could not deliver. Therefore,
116 experts in computer science have developed dedicated tools
117 in recent years to address these shortcomings.
118 We fit the current computational challenges for neuroim-
119 aging bigdata in 6 categories and then explain how
120 researchers have addressed each correspondingly. We then
121 discuss our solutions, developed at the Cortical Architec-
122 ture Imaging and Discovery Laboratory, or CAID, located
123 at the University of Georgia, and its collaborators.
124 Data management system is the core requirement to both
125 organize and present data to the researchers. The Extensible
126 Neuroimaging Archive Toolkit, XNAT [37] is one of the best
127 examples, designed particularly to host and manage neuro-
128 imaging data in which supports the standard input formats
129 such as DICOM and covers a broad range of meta-data

130standards. A hierarchical Extensible Markup Language
131(XML) schema provides a framework in which users can
132define their own types of inference, depend on the imported
133data, and easily import the experiments’ descriptors through
134both web interface and command environment. XNAT is an
135active project, and the modified version of this toolkit serves
136as the basis of Human Connectome Project Database [38].
137The open-source availability and the RESTful application
138programming interface allow communication between pack-
139age components via the web, making XNAT a unique solu-
140tion for neuroimaging datamanagement system.
141Data Processing Pipeline is another essential element of
142neuroimaging bigdata analysis where end-to-end process-
143ing workflows are specified, and users can manage work-
144flow parameters and execution. There exist a few of
145neuroimaging pipelining solutions, including LONI [39],
146[40] with a graphical user interface, Nypype [41] a Python-
147based pipelining tool, and XNAT, an XML-based solution
148with grid computing capability.
149Computing platform is the critical requirement for bigdata
150analysis. For example, preprocessing fMRI data takes
151roughly 5 minutes per subject using an 8-core machine with
15216 gigabytes memory dedicated to this task. Preprocessing
153compromises skull removal, motion correction, slice time
154correction, and spatial smoothing as well as global drift
155removal [30]. Applying this step over hundreds of subjects
156will take hours to days using a single machine. Therefore,
157running computationally-intensive tasks in parallel is essen-
158tial to reduce the overall computational time from days and
159months to hours and minutes; high-performance computing
160(HPC) is a very common solution. With the use of CPU and
161GPU-based clusters, substantial speedups can be achieved
162with no need of modifying the existing software tools.
163Incorporating GPUs and CPUs in parallel processing has
164recently become a popular topic among researchers to study
165[42], [43], [44], [45]. Amazon Elastic Compute Cloud (EC2) is
166one of the most successful instances in providing scalable
167computing capacity on-demand.
168Cloud storage and cloud computing are inseparable parts
169of bigdata analysis. High-speed access to the stored data is
170essential in cloud computing due to the constant read and
171write flow among computing nodes. Amazon Simple Stor-
172age System, or S3, is an efficient choice of cloud storage
173with instant access to the data from EC2 computing nodes.
174The read and write speed and fault tolerance, as well as
175pricing, make S3 a competitive choice for researchers.
176Data Visualization is an imperative entity of bigdata: mak-
177ing complex results understandable and interpretable by a
178human, and dynamic visualization is to improve the insight
179gained from data. A well-designed pipeline should generate
180graphics that represent the rich variety of date in neuroim-
181aging, including time series, regions of interest, networks,
182and connectomes. There exist several tools and libraries that
183in combination with statistical and analytical frameworks
184generate data-related graphics. However, it is hard for gen-
185eral users to implement and apply and in results, more
186efforts are needed to create customized tools for neurosci-
187ence experts that can be easily applied in the existent pipe-
188lines. As Freeman in [46] suggests, visualizing the results
189with an interactive environment is far valuable than a static
190image representing only a portion of information especially
191when we are interacting with large datasets with rich data.
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192 Processing engines enable researchers and programmers to
193 load and analyze data in a distributed fashion and to create
194 new methods to handle sophisticated analytics processes
195 faster and with ease of use. As we discussed earlier, dealing
196 only with a portion of datasets is ideal only at the testing
197 stage, but in benchmark analysis, a more substantial portion
198 of datasets is necessary. In 2003 and 2004, the Google file
199 system and MapReduce were introduced, respectively, to
200 the world as a simplified abstraction for parallel manipula-
201 tion of massive datasets [47]. The main idea of MapReduce
202 is to store data in a distributed file system located in a clus-
203 ter environment and then use individual nodes to do the
204 computation. This way, data is accessible from all the nodes
205 and only the subsequent aggregation steps of the computa-
206 tion will be transferred to the master node. The whole work-
207 flow works in two stages: map and reduce. At first, a
208 function will apply to partitions of the data in parallel, and
209 then an associative operator will aggregate the results
210 across partitions. Fig. 1 shows an example of word count
211 problem solved by MapReduce.
212 Although MapReduce is widely used by researchers and
213 programmers to model variety of computationally intensive
214 tasks and machine learning methods [48], due to some data
215 modeling constraints, it is not considered an all-purpose big
216 data tool. MapReduce loads the data into the memory from
217 the hard disk and returns the results at every round of anal-
218 ysis that causes a substantial amount of disk I/O and
219 queries especially for iterative machine learning algorithms
220 in neuroimaging. It is also hard to represent complex series
221 of computations given pipelining in neuroimaging.
222 In 2009, the Spark framework [49] was developed at the
223 University of Berkeley AMPlab. This framework addresses
224 deficiencies of MapReduce by introducing resilient distrib-
225 uted datasets (RDD) abstract which the operations are per-
226 formed in the memory. Spark compiles the action lineages of
227 operations into efficient tasks, which are executed on the
228 Spark engine. Spark’s schedulerwill execute the duties across
229 the whole cluster. Spark minimizes the repetition of data
230 loading by caching data in memory which is crucial in com-
231 plex processes. Also, Spark supports multiple programming

232languages, including Java, Python, Scala, and R. Fig. 2 shows
233the general Spark workflow and how it operates tasks in dif-
234ferent stages. Spark uses Hadoop filesystem as a core distrib-
235uted file system (HDFS) but networking file systems (NFS)
236can also be used if it runs on anHPC cluster. Apache Spark is
237the single most active Apache project. The new version 2.0 is
238promised to repair the performance leaks already found in
239the earlier version of 1.5 and 1.6. While Spark has consider-
240able traction in industry and academia, Apache Flink [50],
241developed originally as Stratosphere in 2014, is another new
242distributed processing engine with similar goals but an
243entirely new architecture. Flink offers a full compilation of
244execution plans, optimizing the operations performed and
245minimizing repeated computations and network accesses.
246However, this project is still under development, having
247only reached version 1.0 in recentmonths.
248Developing a comprehensive fMRI neuroinformatics
249platform named ‘HAFNI-Enabled Large-scale Platform for
250the Neuroimaging Informatics’ (HELPNI) [51] (http://bd.
251hafni.cs.uga.edu/helpni) was our first step toward bigdata.
252This platform was built on the version 1.6 of XNAT (will
253soon upgrade to version 1.7). HELPNI particularly was
254designed to apply our framework for the sparse representa-
255tion of whole brain fMRI signals termed, ‘holistic atlases of
256functional networks and interactions’ (HAFNI) [52]. This
257goal was achieved by aggregating fMRI signals into an over-
258complete dictionary matrix and a corresponding coefficient
259matrix through an efficient online dictionary learning algo-
260rithm [53], [54]. The time series of each over-completed dic-
261tionary represents the temporal activity of a brain network,
262and its corresponding reference weight vector stands for the
263spatial map of every network. HAFNI is recognized as an
264efficient method for inferring a comprehensive collection of
265concurrent functional networks in the human brain. [52]
266Dictionary learning and sparse coding have been the cen-
267ter of attention of researchers in a variety of disciplines [56],
268[57], [58], [64], [65]. These are unsupervised learning

Fig. 1. Illustration of the mapReduce model applied to counting words
problem. A potentially large list of words is processed into key-value pair
records of form (word, 1) in parallel during the Map step. During the
Reduce step, records with the same key (word) will be combined and an
associative operator computes a sum for each word.

Fig. 2. Illustration of the spark stack with its components. Spark offers a
functional programming API to manipulate Resilient Distributed Datasets
(RDDs). RDDs represent a collection of items distributed across many
compute nodes that can be manipulated in parallel. Spark Core is a
computational engine responsible for scheduling, distribution and moni-
toring applications which consists of many computational tasks across
worker machine(s) on a computation machine/cluster.
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269 algorithms that attempt to learn a concise, high-level repre-
270 sentation of unlabeled data. Sparse dictionary learning can
271 be applied to a variety of problems including signal, image,
272 video and audio processing as well as unsupervised cluster-
273 ing [66]. Image denoising, compression, and fusion are of the
274 widely used applications of these algorithms. The superior
275 performance of dictionary learning in decomposing the
276 meaningful and comprehensive functional networks from
277 various types of fMRI signals is also not an exception [52],
278 [55]. HAFNI framework and R1DL algorithm [59] are our in-
279 house dictionary learning solutions for decomposing func-
280 tional brain networks, as well as similar applications in dis-
281 cussed areas. The premise of dictionary learning is to reduce
282 millions of rows of fMRI signals to a smaller representation
283 of coefficient matrices and dictionary matrices. Understand-
284 ing the functional connectomics and defining it as a standard
285 requires group-wise and eventually population-wise stud-
286 ies. Group-wise fMRI needs combining subjects and analyz-
287 ing them as one unit expecting to process gigabytes of data
288 and even terabytes in population-wise studies. To address
289 this issue of scale, we devolved a novel distributed rank-1
290 dictionary learning (D-r1DL)model, leveraging the power of
291 distributed computing to handle large-scale fMRI big data.
292 We initially presented this model at the KDD 2016, and here
293 we present an extended version of it [59]. It is expected that
294 the new D-r1DL algorithm and methodology could be
295 widely applicable to many other domains of applications
296 that entail sparse representation of big data.
297 We have used spark version 1.6 at our previous project to
298 implement R1DL algorithm in a distributed fashion. We also
299 used our owndatamanagement platform (HELPNI) custom-
300 ized for fMRI, where datawill be stored and a variety of anal-
301 yses can be scheduled through its pipelining and scheduling
302 tools. Based on the choice of user and analysis requirements,
303 data will be transferred to either a local virtual cluster, the
304 Georgia Advanced Computing Resource Center (GACRC)
305 or an Amazon EC2 cluster for further analyses.
306 At the next section we will first briefly discuss the
307 general scheme of HELPNI, and then we will explain how
308 D-r1DL algorithm work. Moreover, at the experimental
309 result, we will focus on the efficiency of this method in com-
310 parison with the previous methods. We will demonstrate a
311 computational architecture which is capable of dealing with
312 the fast-growing demands of neuroimaging community.

313 2 METHOD AND IMPLEMENTATION

314 2.1 Overview of HELPNI

315 We developedHELPNI first to store and visualize large-scale
316 multi-modal neuroimages datasets. The second goal is to
317 facilitate running and controlling complicated neuroimaging
318 multi-stage processes with a secure, user-friendly web inter-
319 face. The third goal is to give researchers parallel and distrib-
320 ute computing accessibility while they implement their own
321 analytical and visualization tools via HELPNI. This way we
322 have provided a neuroinformatics tool that can conduct the
323 variety and volume complexities of neuroimaging big data.
324 It means that large datasets with diverse neuroimaging
325 standards can be easily imported to the system. Moreover,
326 newly implemented methods could leverage from the paral-
327 lel processing capabilities of such a system.

328The main five components of HELPNI are: data storage,
329data management tools, pipelining engine, user interface
330and data sharing tools. The web interface is built on the
331Apache Tomcat version 6.0 using WAR build process.
332RESTful application programming interface enables the
333data management through standard GET, PUSH, GIVE and
334DELETE commands. HELPNI runs over JAVA language,
335where it uses Maven to install and update the webapps, and
336it uses Jakarta turbine to generate reports and to manage
337web application. This platform uses XML schema from
338which data types are defined and users can also extend
339these definitions. The XML schema enables the Pipelining at
340HELPNI to understand the parameters and application
341resources through a Java parser and in result to properly
342run a workflow consist of multiple applications and proce-
343dures. Fig. 3 shows how different components are con-
344nected and interact with each other.

Fig. 3. Illustration of the HELPNI diagram and components. (a) shows
the core part of HELPNI. This part consists of web application, file
archiving, pipeline scheduler, local data storage, database and data
visualization tools. All the external components interact with HELPNI
core to transfer data. (b) demonstrates the data processing and cloud
storage architecture of the platform. Based on the analysis procedure,
user can define how the pipeline descriptor interacts with the computa-
tion machines. This includes Amazon EC2 linked to the S3 storage,
GACRC high performance computing cluster and its networking file stor-
age and our local server with 2 virtual machines. (c) shows different way
of importing data to the platform. Platform can either feed from datasets
or it can obtain the information directly from PACS server. (d) Illustrates
the data sharing capacity of system from which researchers can interact
with the system and access the raw, preprocessed or fully processed
fMRI data. They can also implement their own pipeline with obtaining
special access to the system.
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345 We implemented HAFNI pipeline to automate the whole
346 processes of fMRI data registration and online dictionary
347 learning (ODL) and to reduce the processing time of running
348 these tasks over extensive datasets. We used the 1000 FC
349 project with more than 1200 rfMTI images as a test bed to
350 examine the performance of HELPNI in a standard environ-
351 ment with an eight-core Intel CPU and 32 GB of RAM
352 machine. Running theHAFNI pipeline over the 1288 subjects
353 of 1000FC took � 214 hours (9 days) consist of an average of
354 5 min/subj for the preprocessing step and 5min/subj for the
355 ODL at the HAFNI framework. The results were the mean-
356 ingful functional brain networks for each subject.
357 Since then, we concentrated on developing and extend-
358 ing the data storage, data management, and also data proc-
359 essing aspects of HELPNI. The primary goal was to add a
360 distributed file system as well as empowering the computa-
361 tional platform with parallel processing feature. The rest of
362 this section will follow such a goal.

363 2.2 Extending HELPNI for Parallel Processing

364 Both local hard drives and cloud storage are integrated into
365 the system, as we use Amazon Simple Storage Solution (S3)
366 as permanent data storage for larger datasets. Data are
367 securely accessible from the web application with a Post-
368 gresql database to respond to data queries. Users either can
369 upload the data to the system manually from the web-based
370 Java uploader, or can use the script uploadingmethod. How-
371 ever, the latter method allows users to upload a vast number
372 of images after defining the appropriate data schema.
373 Another under-development feature is that users can obtain
374 DICOM images directly from PACS machines located at
375 other laboratories.
376 HELPNI platform controls the data flow and working
377 schedule from preparing data to the processing units. One
378 advantage of the proposed neuroinformatics platform is flexi-
379 bility and modularity of the processing units. Researchers,
380 depend on the algorithmic structure of the analysis, can
381 choose the available computational nodes that will process the
382 chain of tasks. Platform controls 3 data processing units: an in-
383 house cluster (8 cores, 16 GB memory) deployed on the same
384 machine as the platform exists; a remote high-performance
385 computing cluster (a GACRC cluster with 48 cores and 128GB
386 ofmemory, gacrc.uga.edu); and the cloud-basedAmazon EC2
387 cluster. Fig. 3 shows an overview of the neuroinformatics sys-
388 tem, through which stored fMRI data in centralized storage
389 will be sent to processing units, and the results will be visual-
390 ized through dynamically-generatedweb pages.
391 The preparation of fMRI data includes preprocessing and
392 the conversion of the 4D fMRI images to a 2D data matrix.
393 Model parameters are also set during the preparation: either
394 automatically extracted from the data (e.g., the number of
395 columns and rows of inputmatrix) or defined by user specifi-
396 cation (e.g., sparseness constraint r). While the data are being
397 processed, an online visualization tool will simultaneously
398 generate the reports of the statistics and visualizations of the
399 decomposed functional networks. Fig. 4 shows an overview
400 of real-time visualization of discovered networks. Then the
401 results will be uploaded to the Apache server, accessible via
402 web browsers for visualizing and sharing. The PDF version
403 of all reports, aswell as an interactiveweb page, will be avail-
404 able in every subjects’ profile page. This demonstration will

405make the future comparison and studies much easier. Also,
406all the results will remain in the system directory linked to
407the subjects’ profile. Doing so will help collaborators’ future
408studies be done easier and more efficient because they can
409access raw data as well as any prior study results instantly.
410For example, the standard fMRI preprocessing can be done
411once, and all the future analysis can easily leverage from the
412one time preprocessed data.

4132.3 Algorithm of Rank-1 Matrix Decomposition with
414Sparse Constraint

415The rank-1 dictionary learning (r1DL) algorithm [59] decom-
416poses the input matrix S (of dimension T� P) by iteratively
417estimating the basis vector u (T� 1 vector with unit length)
418and the loading coefficient vector v (P� 1 vector). The algo-
419rithm is an extreme case of the general dictionary learning
420framework [60] as the input is approximated by a rank-1
421matrix (spanned by two vectors). With the l-0 sparseness
422constraint, the following energy function L(u, v) will bemini-
423mized:

Lðu; vÞ ¼ S � uvT
�
�

�
�
F
; s:t: uk k ¼ 1; vk k0: (1) 425425

426

427Thus the total number of non-zero elements in v should
428be smaller than or equal to the given sparsity constraint
429parameter r which is empirically determined based on the
430context of the application. The algorithm alternates updat-
431ing u (randomly initialized before the first iteration) and v
432until the convergence of u:

v ¼ argmin
v

S � uvT
�
�

�
�
F
; s:t: vk k0 � r;

u ¼ argmin
u

S � uvT
�
�

�
�
F
¼ sv

svk k :
(2)

434434

435

436One dictionary basis [u, v] can be estimated after the con-
437vergence of Eq. (2). Since the value of the energy function in
438Eq. (1) decreases at each iteration in Eq. (2), the objective
439function is guaranteed to converge. For estimating the next
440dictionary (up to the dictionary size K), the input matrix S
441will be deflated to its residual R.

Rn ¼ Rn�1 � vTRn�1; R0 ¼ S; 1 < n � K: (3)
443443

444

4452.4 Algorithm of Rank-1 Matrix Decomposition with
446Sparse Constraint

447To utilize computational power and memory capacity
448across many machines to address the big data problem, we

Fig. 4. The generated networks as being computed will appear on a
dynamically-generated result screen linked to the report webpage.
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449 implemented the distributed r1DL algorithm on Spark,
450 which we refer to as the distributed rank-1 dictionary learn-
451 ing (D-r1DL) framework as illustrated in Fig. 5. Using
452 Spark’s Resilient Distributed Dataset (RDD) abstraction
453 from [61], D-r1DL can potentially deal with large-scale
454 imaging data whose size exceeds the memory capacity of
455 the working machine. Spark addresses such out-of-core
456 operations by loading only specific partitions of the whole
457 input matrix S into the memory of each node. The learning of
458 dictionary bases [u, v] is performed in parallel at each node
459 (i.e., machine), and are then broadcasted across all nodes
460 during the update. Specifically, the matrix multiplication
461 operations described in Eq. (2) and the deflation operation
462 defined in Eq. (3) were implemented by their corresponding
463 distributed primitives in Spark:

464 I. During the vector-matrix multiplication, each node
465 will use its portion of the updated u vector, then esti-
466 mate the v vector based on the multiplication of its
467 partition of S and the vector u. The resulting partial
468 v vectors from all the nodes will be then reduced by
469 the summation operation.
470 II. During the matrix-vector multiplication, each node
471 will use the updated v vector and its partition of the
472 S matrix to estimate a single corresponding element
473 of the u vector. The resulting u vector is assembled
474 from the results of each node.
475 III. During the matrix deflation operation, both u and v
476 learned from Eq. (2) will be broadcasted. Each node
477 estimates a portion of the outer product between cor-
478 responding elements of u vector with the whole v

479vector. Each partition of the S matrix is deflated
480using the corresponding partial product of u and v.

4813 EXPERIMENTAL RESULTS

4823.1 Model Performance on a Relatively Large-Scale
483Dataset

484We applied the D-r1DLmodel on the publicly available data-
485set from Human Connectome Project [7] for validating its
486effectiveness in discovering functional networks from large-
487scale fMRI dataset. The acquisition parameters of the fMRI
488are as follows: 90� 104 matrix, 220 mm FOV, 72 slices,
489TR ¼ 0:72s,TE ¼ 33:1 ms, flip angle ¼ 52�, BW ¼ 2290Hz=Px,
4902.0 mm isotropic voxels. Data preprocessing followed the
491protocols detailed in [62], including motion correction,
492spatial smoothing, temporal pre-whitening, slice time cor-
493rection, and global drift removal. The tfMRI data was then
494registered to the standard MNI152 2 mm space using FSL
495FLIRT to enable group-wise analysis. The final individual
496tfMRI signal matrix used as model input contains 223,945
497number of voxels (defined on the grey matter) and varying
498temporal length based on task design. In this work, tfMRI
499datasets from 68 subjects during Emotion Processing task
500were used, with the time length of 176 volumes which
501matches the aim of the proposed framework for population-
502level fMRI bigdata analysis.
503Afterward, we aggregated the 68 individual fMRI data
504during Emotion task into one big, group-wise matrix with
505the dimension of 176� 15; 228; 260 (�20 GB as a text file).
506Using the parameter setting of K ¼ 100 (i.e., decomposing
507100 functional networks) and r ¼ 0:07 (i.e., 7 percent of the
508total number of grey matter voxels across all subjects can
509have non-zero value), we obtained the 100 group-wise func-
510tional networks. The analysis was performed on the high-
511performance computing cluster and took around 10 hours
512to finish. The temporal patterns of the group-wise func-
513tional networks are defined in the D matrix. The spatial
514patterns were distributed across each individual’s space
515(223,945 voxels) in the z matrix. To obtain a volumetric
516image, we averaged the loading coefficient value on each
517voxel across all individuals.
518For validation purposes, we compared the decomposed
519group-wise functional networks with the group-wise activa-
520tion detection results obtained by model-driven General
521Linear Model (GLM). The basic rationale of such compari-
522son is that the activation detection results characterize the
523intrinsic and basic temporal/spatial patterns as a response
524to external stimuli and should therefore also be revealed by
525data-driven matrix decomposition-based methods such as
526D-r1DL. In order to identify the correspondence between
527the 100 functional networks decomposed by D-r1DL and
528the GLM results, we calculated Pearson’s correlation
529between the temporal patterns (in the D matrix) of the func-
530tional networks and the hemodynamic response function
531(HRF)-convolved task designs of Emotion Processing task
532and selected the result with the highest correlation. The
533group-wise functional network obtained by D-r1DL and the
534corresponding GLM results are shown in Fig. 6. We also cal-
535culated the spatial overlapping rate SOR between the spatial
536patterns of the results from D-r1DL (P1) and group-wise
537GLM (P2) to measure their similarity quantitatively:

Fig. 5. Illustration of the D-r1DL framework. (a) Running example show-
ing the input data S (one volume from the 4-D volumetric matrix), learned
vector v (3-D volumetric matrix as a vector) and vector u (time series).
(b) Algorithmic pipeline of r1DL. Red arrow shows the updating loop for
learning each [u, v], blue arrow shows the updating loop for deflation of
S and learning next dictionary. (c) Parallelization steps for the three
operations from (b).
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SORðP1; P2Þ ¼ P1 \ P2j j= P2j j; (4)
539539

540 where operator j � j counts the total number of voxels with
541 non-zero values in the given spatial pattern. The rate ranges
542 from 0 (no voxels overlapping) to 1 (exact the same pattern
543 with GLM result). The SOR values of the four pairs of corre-
544 spondent results between D-r1DL and GLM are 0.72, 0.75,
545 0.67 and 0.65, respectively.

546 3.2 Model Application with Sampling Strategy

547 In addition to the analysis on the whole group-wise tfMRI
548 dataset, we also uniformly sampled the 176� 15; 228; 260
549 input matrix into 10 �90 percent of its size (e.g., 10 percent
550 sampled data is a 176� 1; 522; 826 matrix). The main ratio-
551 nale for the sampling study is to further accelerate initial
552 investigations into the effectiveness of the dictionary bases
553 learned by D-r1DL. In such circumstances, the sampling
554 strategy could offer an approximation of the detailed and
555 accurate functional networks learned from the original data

556[67]. By applying D-r1DL on the nine sampled datasets, the
557corresponding sets of functional networks were obtained.
558One example functional network showing the correspon-
559dence between the ten sets of results is visualized in Fig. 7.
560Notably, our prior experiments using online dictionary
561learning and stochastic coordinate coding showed that dic-
562tionary learning algorithms have excellent performance of
563reconstructing original fMRI signals [52], [55], [68]. In the
564future, we will perform extensive comparisons of D-r1DL
565with these dictionary learning algorithms regarding their
566reconstruction performances, once all of them are imple-
567mented via the Spark framework.
568It was observed that the spatial patterns of the corre-
569sponding functional networks learned from the same data-
570set with different sampling rates are mostly the same (with
571overlapping rate>0.85), excepting some minor differences

Fig. 6. Spatial maps of the four pairs of group-wise functional networks
obtained by r1DL (upper) and GLM (lower) from Emotion dataset. The
temporal pattern of the functional networks are shown below the spatial
patterns.

Fig. 7. Visualization of the spatial patterns of a sample functional
networks learned from group-wise aggregated fMRI data with different
sampling rates.
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572 in the details. The time costs for the group-wise analysis
573 on uniformly-sampled datasets are summarized in Fig. 8.
574 The time cost follows a quadratic function with the sam-
575 pling rate (R2 ¼ 0:994Þ. Thus, while analyzing the original
576 20 GB dataset took around 10 hours to finish, the time cost
577 is approximately 1 hour using the 20 percent sampled data.
578 Further comparison of other sampling methods has already
579 done by Ge Bao et al. [67] where they have concluded that
580 signal sampling can speed up to ten times while represent-
581 ing the whole brain’s signals very well with high accuracy.

582 3.3 Performance Boost Relative to Other Dictionary
583 Learning Algorithms

584 The advantages of the proposed D-r1DL algorithm are
585 predicated on its smaller memory footprint and robust
586 learning mechanism (no need to set learning rate); even
587 without parallelization, the algorithm should have similar
588 or faster running speed compared with other dictionary
589 learning methods, as Spark intrinsically performs out-of-
590 core computations whether these are distributed over
591 multiple machines or run in parallel on a single machine.
592 We compare D-r1DL with two other dictionary learning
593 algorithms: the online dictionary learning framework
594 implemented in SPAMS [54] and the stochastic coordinate
595 coding (SCC) algorithm introduced in [6]. We applied these
596 two methods on the same HCP Q1 dataset and computed

597performance statistics compared to D-r1DL. We ran these
598algorithms using the same in-house server. The perfor-
599mance comparison is shown in Fig. 9 (averaged across all 68
600subjects over the HCP task fMRI (tfMRI) dataset). From the
601comparison, it can be seen that D-r1DL outperformed the
602other two methods in all the seven tfMRI datasets.
603To benchmark the D-r1DL efficiency on the running time,
604we designed an experiment using two popular parallel
605processing platforms of Spark and Flink. We set up a virtual
606cluster of three nodes, each with four virtual CPUs, 8192
607MB RAM, and 30 GB disk storage. As we examined both
608platforms using varying of input matrixes, the preliminary
609testing shows that Flink Dr1DL could offer performance
610gains over Spark Dr1DL for large data. Fig. 11 illustrates
611the performance gain of Flink as the input data growth.
612We are leading another experiment with a bigger cluster to
613test the impact of larger datasets on this.

6143.4 Real-Time User Feedback

615We tested the performance of D-r1DL on the HLPNI as intro-
616duced in Section 2.3 for individual-level analysis. Using indi-
617vidual fMRImatrix (with dimensions 176 � 223; 945) as input
618and the same parameter setting as for group-wise analysis

Fig. 8. Time cost (measured in seconds) for decomposing 100 functional
networks from group-wise aggregated fMRI data with different sampling
rates. The original dataset has the sampling rate of 100 percent (rightmost).

Fig. 9. Average time cost (measured in seconds) for functional network
decomposition from individual tfMRI data during 7 tasks across 68 sub-
jects, using the three dictionary learning methods.

Fig. 10. Spatial maps and temporal variation patterns of the functional
networks decomposed by D-r1DL (left) and GLM (right) on the tfMRI
data during Emotion Processing task from a randomly-selected subject.
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619 (K ¼ 100; r ¼ 0:07Þ, the combined time cost for decomposing
620 one network, generating network visualizations, and report-
621 ing web pages averaged around 4 seconds on our in-house
622 server. Such a time cost is short enough for real-time visualiza-
623 tions on the decomposition results, thereby providing a useful
624 feedback mechanism for the users. One sample result from
625 the individual-level analysis and the comparison with GLM
626 activation detection results is shown in Fig. 10.

627 4 CONCLUSION AND DISCUSSION

628 The neuroscience has entered into the bigdata era just as
629 other leading sciences. This arrival though requires a cultural
630 shift among the community from enormous isolated efforts
631 applying a single technique to the smaller problems in labo-
632 ratories toward more horizontal approaches researchers
633 integrate data collected using a variety of techniques to
634 solve bigger problems addressing the central questions
635 of how the brain functionally and structurally connected.
636 We have categorized the current computational efforts of
637 neuroscience experts for in dealing with the bigdata chal-
638 lenges in 6 groups of data management, data visualization,
639 Cloud storage, computing platforms, processing pipelines
640 and processing engines.
641 In this work, we introduced our endeavors to address
642 each of the above categories, notably for fMRI data types.We
643 introduced HELPNI as an efficient neuroinformatics plat-
644 form for data storage, processing pipelines, and data visuali-
645 zation. We used our HAFNI method to represent the fMRI
646 data through a dictionary learning algorithm, and then we
647 developed and implemented the D-r1DL framework on
648 Spark for distributed functional network analysis on large-
649 scale neuroimaging data. We tested its performance on both
650 the individual and group-wise fMRI data from HCP Q1
651 release dataset and demonstrated the results through an
652 online visualization tool. The results show that the frame-
653 work can meet the desired scalability and reproducibility
654 requirements for fMRI bigdata analysis and serve as a useful
655 tool for the community. The framework and the neuroinfor-
656 matics system are both online as a web service for public
657 usage and testing. Currently, we are working on applying
658 the same algorithm using the Apache Flink framework on
659 larger data. While Spark is vastly superior to Hadoop
660 MapReduce for highly iterative computations, Flink pos-
661 sesses a few domain-specific advantages over Spark that

662yields additional performance gains for D-r1DL. We are also
663working on a general solution for fRMI signals to combine
664deep learning techniques with parallel processing engines to
665exhibit a new processingmethod for fMRI signals.
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