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ABSTRACT 

 

Based on the structural connectomes constructed from 

diffusion tensor imaging (DTI) data, we present a novel 

framework to discover functional connectomics signatures 

from resting-state fMRI (R-fMRI) data for the 

characterization of brain conditions. First, by applying a 

sliding time window approach, the brain states represented 

by functional connectomes were automatically divided into 

temporal quasi-stable segments. These quasi-stable 

functional connectome segments were then integrated and 

pooled from populations as input to an effective dictionary 

learning and sparse coding algorithm, in order to identify 

common functional connectomes (CFC) and signature 

patterns, as well as their dynamic transition patterns. The 

computational framework was validated by benchmark 

stimulation data, and highly accurate results were obtained. 

By applying the framework on the datasets of 44 post-

traumatic stress disorder (PTSD) patients and 51 healthy 

controls, it was found that there are 16 CFC patterns 

reproducible across healthy controls/PTSD patients, and two 

additional CFCs with altered connectivity patterns exist 

solely in PTSD subjects. These two signature CFCs can 

successfully differentiate 85% of PTSD patients, suggesting 

their potential use as biomarkers. 

 

Index Terms— fMRI, DTI, Connectome 

 

1. INTRODUCTION 

 

Neuroscience research suggests that the function of any 

cortical area is not fixed, and each cortical area runs 

different “programs” according to the context and to the 

current perceptual requirements [1]. For instance, it has been 

observed that brain state change is a dynamical process of 

functional connectivity, even in resting state [2], and there 

exists “temporal functional modes” [3] or a switching 

between activation in default mode network and task 

positive networks [4]. Essentially, quantitative 

characterization of these time-dependent brain dynamics can 

elucidate fundamentally important temporal attributes of 

functional connections which cannot be revealed by 

traditional static functional connectivity analysis. Several 

methodologies have been developed in modeling the brain 

functional dynamics, including temporal ICA [3] and 

Bayesian network modeling [5]. While in this work, we 

proposed a novel framework to capture the dynamics of 

functional connectomes, and to analyze the common 

functional connectomes (CFCs) by dictionary learning and 

sparse coding algorithms, and the framework pipeline is 

shown to the right of Fig. 1. We hypothesize that there exist 

quasi-stable brain states in R-fMRI data that can be 

quantitatively characterized, and the continuous functional 

status of the resting brain can be decomposed into a series of 

temporally concatenated representative CFCs. The whole 

framework is built based on the recently discovered and 

validated large set of consistent and correspondent cortical 

landmarks based on consistent DTI-derived fiber patterns 

[6], which offers a natural universal reference system across 

individuals and populations. We applied the framework to 

study PTSD (post-traumatic stress disorder) patient subjects 

along with health control subjects, and identified 16 

common functional connectomes that could form the brain’s 

functional state space in resting state. Data from PTSD 

patients exhibited additional two altered connectomes, and it 

turned out that these two altered connectome patterns could 

be used as biomarkers for classifying PTSD patients with 

health control subjects. 

 

Fig. 1. Examples of results generated at each stage: (a) Funcitonal 

connectome strength (FCS) of 358 ROIS from a randomly 

selected subject using Eq. (2). The dark blue lines highlight 23 

automatically segmented brain states. (b) The global connectivity 

vector (GCV) derived from FCS. (c) The filtered GCV using Eq. 

(3). (d) State change points identified from the filtered GCV using 

Eq. (4). (e) 358*358 correlation matrix of four sample CFCs 

obtained from dictionary learning. (f) The projected brain 

dynamics. Each dot is the index of CFC that the FCS is projected 

to at each time window. The total number of CFCs is 16. 
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2. METHOD 

2.1. Functional connectome and its dynamics 

 

To investigate the dynamics of global whole-brain 

functional connectivity, defined as Functional 

Connectome (FC), we applied the sliding time window 

approach to measure a temporal FCt at time point t out 

of all T time points, with the duration of window length l. 

Specifically, for each pair of temporal segments Xi,t and 

Xj,t from the fMRI time series of two ROIs (region of 

interest) i and j out of all I number of ROIs, we obtained 

the functional connectivity Ri,j,t between them:  
𝑅𝑖,𝑗,𝑡 = 𝑐𝑜𝑟𝑟(𝑋𝑖,𝑡, 𝑋𝑗,𝑡), 𝑋𝑖,𝑡 = {𝑓𝑀𝑅𝐼𝑖,𝑡, … , 𝑓𝑀𝑅𝐼𝑖,𝑡+𝑙}  (1) 

FCt characterizes the brain functional connectivity 

between all ROI pairs. For visualization and dimension 

reduction purposes, we defined the Functional 

Connectome Strength (FCS): 

𝐹𝐶𝑆𝑡 = ∑ 𝑅𝑖,𝑗,𝑡
𝐽
𝑗=1 , 𝐹𝐶𝑆 = {𝐹𝐶𝑆1, 𝐹𝐶𝑆2, … , 𝐹𝐶𝑆𝑇−𝑙}    (2) 

FCSt is the sum of functional correlation between each 

ROI and all the other ROIs at time t, which is an I×1 

vector, and the ith value in the vector is the strength of 

connectivity of the ith ROI. Thus, FCS is the 

concatenation of FCSt on all time points, and reflects the 

connectivity strength through the whole time course. An 

example visualization of FCS is shown in Fig. 1(a). As 

the example data contains 200 time points and the 

window length l was set to 14, the total number of 

windows is 186 in the example. 

Furthermore, from Fig. 1(a) it could be seen that the 

brain functional connectome is in a state-like behavior, 

with abrupt changes in connectivity strength on the 

boundaries of states. Thus, in order to capture the state-

like dynamics of FC and provide a data space for the 

subsequent dictionary learning and sparse coding, we 

designed an automatic approach to segment the temporal 

FC by performing filtering of the averaged FCS across 

all ROIs, defined as the Global Connectivity Vector, 

GCV. GCV is a T×1 vector that describes the global 

functional connectome strength dynamics, as shown in 

Fig. 1(b). It could be assumed that many adjacent values 

in GCV should be constant in each quasi-stable state, so 

we applied the L1-regularized fused-LASSSO to model 

this piece-wise constant process, and the following 

energy function will be optimized: 
𝐸 = ‖𝐺𝐶𝑉 − 𝑥‖2 + 𝜆‖𝐷(𝑥)‖1+K                (3) 

where D is the first-order difference function, and x is 

the filtered vector obtained from GCV with constant 

adjacent values regularized by λ. x would be the same as 

GCV with λ=0, and approaches a constant value K with 

λ→∞. An example filtered GCV is shown in Fig. 1(c). 

Then the local maximum of the first-order difference of 

the filtered GCV was identified as the change point for 

brain state change detection and segmentation: 
𝑦 = {𝐷(𝑥)1…𝑤 , … , 𝐷(𝑥)𝑇−𝑤…𝑇−1}, 𝑃 = 𝑓𝑖𝑛𝑑𝑚𝑎𝑥(𝑦)    (4) 

where y is the piece-wise partition of the first-order 

difference of x. The length of each piece is w, a small 

value usually 1~3 time points long, as we are assuming 

no state change exists within this short interval. P are the 

indices of points in D(x) which are the non-trivial local 

maximum in each piece. The change points are depicted 

in Fig. 1(d), and visualized as dark blue lines segmenting 

the FCS in Fig. 1(a). Derived from the results of Eqs. (3) 

and (4), we defined the brain states as a time period ( t1, 

t2) identified by the automatic segmentation process in 

which the global functional connectivity strength 

remains quasi-stable, and the FCS of each brain state is 

defined as: 

𝐹𝐶𝑆𝑠𝑡𝑎𝑡𝑒𝑖
= ∑ 𝐹𝐶𝑆𝑡

𝑡2
𝑡1

/(𝑡1 − 𝑡2)                     (5) 

where the FCS of each brain state is defined as the 

averaged FCS of time points within this state bounded 

by (t1, t2), as we found that the brain state is jumping 

back and forth between limited numbers of similar 

connectome patterns, and such observation has been 

replicated in all of the cases of R-fMRI datasets we 

studied. It thus motivated us to propose the following 

Common Functional Connectome (CFC) modeling, 

based on the premise that 1) functional connectome 

pattern is stable in each brain state identified by the 

automatic method; 2) there exists large number of 

occurrence of such patterns, not only within each subject, 

but also across subjects, given that the 358 consistent 

cortical landmarks provides us a basis for the 

connectome pattern modeling at the group level. 

 

2.2. Functional connectome modeling via dictionary 

learning and sparse coding 

 

In this study, the recently developed Fisher 

Discrimination Dictionary Learning (FDDL) algorithm 

[7] based on Fisher discrimination criterion was tailored 

and optimized to model the common functional 

connectome. The basic idea of FDDL is to learn a 

structured dictionary D from a set of data A so that 

A=DX, where X is the coding coefficient. In the scope of 

this framework, A is the FCSstate obtained in Eq. (5), 

which describes functional connectome strength of brain 

states identified in Eq. (3) and (4) from multiple subjects. 

D contains certain numbers of sub-dictionary Di 

corresponding to the potential classes of the data, under 

the constraint of maximizing the discriminative capacity 

of the dictionary. As the initialization, matrix A would 

firstly be pre-labeled by the component indices obtained 

by principle components. Then the energy function 

J(D,X) would be optimized to obtain the learned 

dictionary, as well as the class labeling Ai of the data: 
𝐽(𝐷,𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐷,𝑋){𝑟(𝐴, 𝐷, 𝑋) + 𝜆1‖𝑋‖1 + 𝜆2𝑓(𝑋)} 

𝑟(𝐴, 𝐷, 𝑋) = ‖𝐴𝑖 − 𝐷𝑋𝑖‖𝐹
2 + ‖𝐴𝑖 − 𝐷𝑖𝑋𝑖

𝑖‖
𝐹

2
+ ∑ ‖𝐷𝑗𝑋𝑗

𝑖‖
𝐹

2𝑘

𝑗=1,𝑗≠𝑖
 

𝑓(𝑋) = 𝑡𝑟(∑ ∑ (𝑥𝑘 − 𝑋𝑖)(𝑥𝑘 − 𝑋𝑖)
𝑇

𝑥𝑘∈𝑋𝑖
)𝑐

𝑖=1   

−𝑡𝑟(∑ 𝑛𝑖(𝑥𝑖 − 𝑋)(𝑥𝑖 − 𝑋)𝑇) + 𝜂𝑐
𝑖=1 ‖𝑋‖𝐹

2         (6)  
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𝐴𝑖̂ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑖)(‖𝐴𝑖 − 𝐷𝑋𝑖‖2)                         (7) 

The first term in the energy function, r(A, D, X) is the 

constraint on discriminative fidelity, thus making the 

dictionary D able to code the data with minimum 

residual, while at the same time only using one sub-

dictionary Di, but not other sub-dictionaries. The second 

term is the sparse constraint, requiring the coding 

coefficient X be as sparse as possible, i.e., the total 

number of non-zero items in 𝑋 should be minimized. The 

third term f(X) is the constraint on the discriminative 

coefficient, which aims to minimize within-class scatter 

of X, and maximize cross-class scatter of X, according to 

Fisher discrimination criterion [13]. It has been shown in 

[7] that the energy function in Eq. (6) is convex and 

could be solved by iterative projection method. The 

learned dictionary D has the same dimension with matrix 

A, and contains sub-dictionaries corresponding to each 

class. Then the class labeling Ai would be rearranged so 

that the residual from coding could be minimized as in 

Eq. (7). The two energy functions in Eq. (6) and (7) 

would be optimized in turn iteratively until the solution 

converges or exceeds the max number of iteration.  

To determine the optimal number of potential classes 

of the data (i.e. model order), the Bayesian Information 

Criterion (BIC) was used in the model framework, 

defined as: 

𝐵𝐼𝐶 = 𝑛 𝑙𝑛 (𝜎𝑒
2̂) + 𝑘𝑙𝑛 (𝑛)                          (8) 

where σe
2
 is the estimation for error variance, and in this 

study it is defined as the summed variance of each entry 

in the matrix A within its corresponding class. n is the 

total number of entries in A, and k is the number of 

classes. There is a trade-off between the model order and 

the error variance, and the optimized number of states is 

determined a posteriori by finding the minimum BIC 

value from the model result (dictionary learned) by 

searching a range of model orders. 

The final goal of this framework is to determine the 

CFCs of brain states, which could be defined from 

labeling of each class. As each entry in matrix A is 

corresponding to brain states previously identified, and it 

has been class-labeled during the learning, by averaging 

FC (correlation matrix) of brain states labeled to the 

same class, we could have one CFC (averaged 

correlation matrix) from each class as the representative 

connectome pattern of it (shown in Fig. 1(e)), based on 

the premise that similar connectome pattern is 

reoccurring within class. As another result of the 

framework, the encoded brain’s functional dynamics 

could be obtained by projecting each time point in FCS 

by the learned dictionary to obtain its class label (index 

of CFCs). The projection could be done by applying the 

dictionary D to sparse-code the given matrix T, so long 

as T has the similar structure and type of information 

with A, while the total number of entries needs not to be 

the same. The sparse coding algorithm is based on the 

sparseness function developed in [8]: 

𝑋̂ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑋)‖𝑋‖1, subject to 𝑇 = 𝐷𝑋                   (9) 

where D is the dictionary learned in Eq. (6) and T is the 

new data. An example of the encoded brain functional 

dynamics is shown in Fig. 1(f). 

 

3. RESULTS 

3.1. Model application on PTSD data  

 

In this study, post-traumatic stress disorder (PTSD) 

patients and healthy controls were recruited under IRB 

approvals. Multimodal DTI and R-fMRI datasets for 95 

subjects including 51 adult normal controls and 44 adults 

PTSD patients were acquired on a 3T MRI scanner. 

Acquisition parameters for the scans were as follows. R-

fMRI: 64×64 matrix, 4 mm slice thickness, 220 mm 

FOV, 30 slices, TR = 2s, total scan length = 400s; DTI: 

256×256 matrix, 3 mm slice thickness, 240mm FOV, 50 

slices, 15 DWI volumes, b-value = 1000. The 358 

consistent cortical landmarks were obtained by structural 

connectivity inferred from DTI data, each of which was 

optimized to possess maximal group-wise consistency of 

DTI-derived fiber shape patterns. The detailed prediction 

approach was described in [6]. In this study, totally 2530 

FCSstate were obtained, out of which 1032 were from 51 

normal control and 1498 from 44 PTSD patient subjects. 

To test the model capability in identifying differences 

between PTSD patient and health control data, these 

FCSstate were divided into two separate groups for 

training and testing, and formed the 1265×358 training 

matrix A1 and the 1265×358 testing matrix A2, where 

each entry in the matrix is a training/testing sample. That 

is, exactly half of the FCSstate from both PTSD patient 

and health control data was assigned to A1, and the other 

half was assigned to A2.  

Then the dictionary as well as the data labeling and 

the corresponding CFCs was learned from training data 

A1 as in Eqs. (6) and (7), where the model order (number 

of classes) was determined to be 18 by Eq. (8). As each 

entry in the matrix has been projected to its 

corresponding index of CFC (ordered by their frequency 

of occurrence), we could obtain the histograms of CFCs 

differentiated by PTSD patients and health controls 

according to the source of those entries, shown in Fig. 2. 

There is observable difference in the distribution 

between PTSD patient and health control datasets in 

CFC #13 and #14, where these two CFCs that only exist 

in patient data, but almost never occur in health controls. 

Furthermore, by sparse-coding T2 using the dictionary 

learned, we found similar distributions of CFCs in the 

test data which was independent of the data used to learn 

the dictionary. Consistent with the CFC distribution in 

A1, there are almost no CFC #13 and #14 in the health 

control data in A2.  
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Figure 2: Histograms of CFCs in training and testing data. Labels 

on the x-axis are the indices of CFCs, values on the y-axis are their 

corresponding proportions in the data. Two signature CFCs that 

would be used for patient/control classification are highlighted by 

the red-colored diamonds. 

 

Considering these two signature CFCs as the 

potential biomarkers for PTSD patient data, as visualized 

in Fig. 3, we projected all the time points in each subject 

into its corresponding CFC by the dictionary learned, 

and used the presence of CFC#13 and #14 for classifying 

the PTSD patient subjects from health controls: if a 

subject contains any time points projected to either of 

those two CFCs (out of 186 time points), it would be 

classified as PTSD patient subject. The classification 

result shows that over 85% of the PTSD patient subjects 

can be successfully classified (false negative rate < 15%), 

and only one health control subject was classified as 

PTSD patient (false positive rate < 2%).  

 
 

It is interesting that the two abnormal PTSD 

signature CFCs (#13 and #14) are characterized by the 

hyper-connectivities in the frontal areas and the 

cingulate gyri, consistent with current neuroscience 

knowledge about PTSD that has been considered as an 

anxiety disorder associated with changes in extensive 

neural circuitries including frontal and limbic systems 

[9]. This result lends support to the validity and 

effectiveness of our connectomics signature discovery 

methods and results. The contribution of our work is that 

we quantitatively modeled and characterized the brain 

dysfunctions of PTSD by functional connectome patterns.    

 

4. DISCUSSION AND CONCLUSION 

 

In this study, we developed a novel framework for 

automatic discovery of common functional connectomes 

from resting-state functional fMRI across subjects and 

populations and for the automatic encoding of functional 

connectome dynamics. The framework utilized an effective 

global change point detection algorithm to identify quasi-

stable brain states, then applied the Fisher Discrimination 

Dictionary Learning for capturing common functional 

connectomes in brain states, and finally used sparse coding 

for projecting the brain functional dynamics to the learned 

common functional connectomes. It was applied on the real 

R-fMRI data obtained from PTSD patient/healthy control 

subjects, and identified 16 common functional connectomes 

for all subjects and two altered signature connectomes for 

PTSD patient subjects. While the health controls and PTSD 

patient subjects share a large number of common functional 

connectomes, the two altered connectomes could potentially 

be used as biomarkers for differentiating PTSD patients.  
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Figure 3: (a): Illustration of the CFC distribution in health control 

and PTSD patient subjects. (b)-(c): Visualization of CFC #13 and 

#14 on brain surface, where a global threshold (=0.75 for 

Pearson’s correlation) was used to select the highest functional 

connectivities to demonstrate. ROIs are visualized as green spheres 

on the surface, and the functional connectivities between ROIs are 

visualized as red edges connecting those green spheres. 
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