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Abstract. Functional MRI has attracted increasing attention in cognitive neu-
roscience and clinical mental health research. Towards understanding how brain
give rises to mental phenomena, deep learning has been applied to functional MRI
(fMRI) dataset to discover the physiological basis of cognitive process. Consider-
ing the unsupervised nature of fMRI due to the complex intrinsic brain activities,
an encoder-decoder structure is promising to model hidden structure of latent
signal sources. Inspired by the success of deep residual learning, we propose a
68-layer 3D residual autoencoder (3D ResAE) to model deep representations of
fMRI in this paper. The proposed model is evaluated on the fMRI data under 3
cognitive tasks in Human Connectome Project (HCP). The experimental results
have shown that the temporal representations learned by the encoder matches the
task design and the spatial representations can be interpreted to be meaningful
functional brain networks (FBNs), which not only include tasks based FBNs, but
also intrinsic FBNs. The proposed model also outperforms a 3-layer autoencoder,
showing the key factor for the performance improvement is depth. Our work
demonstrates the feasibility and success of adopting 2D advanced deep residual
networks in computer vision into 3D fMRI volume modeling.
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1 Introduction

It has been decades since the neuroscience community started to research the neural
connections that are involved in cognition process, aiming for a comprehensive under-
standing of brain functions. Functional MRI (fMRI) provides a powerful non-invasive
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tool to model cognitive behaviors of the whole brain and offers a useful information
source to understand the intrinsic functional networks and the architecture of the human
brain function [1-4]. In respect of modeling task-related brain function, growing evi-
dence from fMRI (tfMRI) data [5-8] has revealed that these cognitive functions can
be represented as a set of functional brain networks (FBNs), which are a collection of
regions showing functional connectivity committed to different tasks [3, 4, 9]. Various
computational algorithms/methods have been successfully exploited for tftMRI, such as
independent component analysis (ICA) [10-13], general linear model (GLM) [9, 14]
and sparse dictionary learning (SDL) [15-17]. Yet limited by their shallow nature, these
existing machine learning models cannot extract fMRI intrinsic features in a hierar-
chical way. What’s more, GLM relies on prior knowledge of task designs, ICA has
independence assumption and SDL has sparsity assumption.

Deep learning has attracted much attention in the fields of machine learning and data
mining. It has been proven with great performance in multiple tasks that deep learn-
ing approach is superb at learning high-level and mid-level features from low-level raw
data. [18-21] Considering the complexity of fMRI data and its intrinsic weak supervised
nature, unsupervised deep models have gained great popularity in fMRI data modeling
due to its superior representation power in learning latent features and association repre-
sentations in a hierarchical way. Among those unsupervised deep models that have been
applied to fMRI data analysis, the Deep Belief Nets (DBN) [22-24], Convolutional
Autoencoder (CAE) [25-27] and Recurrent Autoencoder (RAE) [28, 29] have shown
great promise in yielding a compact representation of brain activity. Recently, deep
residual network has achieved significant performance improvement on natural image
classification datasets with a substantially deeper structure than previous deep models
[30, 31]. Despite that deeper neural networks are more difficult to train the gradient van-
ishing issue, they have greater representation powers, and the deep residual networks
solve the issue using shortcuts between layers. Inspired by the success of deep residual
networks, this paper exploited the possibility of learning representations of fMRI data
with a very deep model. More specifically, a 68-layer residual autoencoder (ResAE) was
designed to model the task-based fMRI in an unsupervised way.

In this paper, a group-wise scheme that aggregated multiple subjects’ fMRI data
was designed for the effective training of ResAE models. The contribution of this work
is three-fold. First, it presented an new approach to utilizing very deep models for
learning meaningful FBNs from fMRI volumes. In addition, a comparison study with
GLM showed that out proposed ResAE generates meaningful functional networks. Sec-
ond, the enormous feature dimension challenge is tackled with convolution and pooling
filters in the proposed method. Despite these recent investigations of the feature extrac-
tion and classification of MRI/fMRI data using deep networks, no study has explicitly
employed whole-brain fMRI volume as an input and blindly extracted hidden features
from the fMRI data. The curse of dimensionality is evident when the deep neural net-
works with tens of thousands of input nodes. Third, to address the inherent unsupervised
nature of fMRI data, which comes with only coarse-grained labels or no labels at all, an
autoencoder scheme is designed for fMRI analysis. Due to the unsupervised framework,
many intrinsic FBNs were also found besides the task related FBNs, which implies the
complexity of human brain activity.
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2 Methods

The proposed computational framework is summarized in Fig. 1. In Sect. 2.1, fMRI data
of all subjects are registered to a standard space and concatenated after preprocessing.
In Sect. 2.2, the ResAE model consists of a pair of encoder and decoder which takes
3D fMRI volumes as input. The model is trained on a large-scale task fMRI dataset
by reconstructing the input volumes. In Sect. 2.3, the feature representations of fMRI
data were generated from the trained encoder with the latent nodes and were further
visualized into interpretable FBNs.
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Fig. 1. Illustration of ResAE learning representations of fMRI data. The preprocessed 3D fMRI
volumes are temporally concatenated as input. The proposed ResAE consists of a 34-layer encoder
and a 34-layer decoder. Each residual block consists of two 3D convolution layers and an up/down
pooling layer. With linear regression, the learned temporal features are used to build FBNs, which
are further illustrated in Sect. 3.

2.1 Dataset and Preprocessing

The HCP task fMRI dataset is a systematic and comprehensive brain mapping collection
of connectome-scale over a large population [6]. The primary goals of the HCP datasets
were to identify as many core functional nodes in the brain as possible that can be
correlated to structural and functional connectomes and behavior measurements. In the
HCP Q3 public release, 900 subjects’ fMRI datasets are available. In this paper, our
experiments are based on three tasks: Emotion, Gambling and Social. Among these
900 subjects, 35 are excluded from our experiment for consistency of all tasks. The
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acquisition parameters of tfMRI data are as follows: 90 x 104 matrix, 220 mm FOV,
72 slices, TR = 0.72 s, TE = 33.1 ms, flip angle = 52°, BW = 2290 Hz/Px, in-plane
FOV = 208 x 180 mm, 2.0 mm isotropic voxels. For tftMRI images, the preprocessing
pipelines are implemented by FSL FEAT including skull removal, motion correction,
slice time correction, spatial smoothing, global drift removal (high-pass filtering). All
of these steps are implemented by FSL FEAT. [32, 33].

To perform group-wise ResAE training, all subjects’ data were registered to the
MNII52 4 x 4 x 4 mm> standard template space, making sure that data from all
subjects are in one same template space. The MNI152 template image is with 2 x 2 x
2 mm? spatial resolution originally and was down-sampled to 4 x 4 x 4 mm? before the
registration. All volumes were variance normalized, concatenated along time dimension
and shuffled. The size of the dataset is shown in Table 1. The dimension of the volumes
is 49 x 58 x 47 and was padded to 64 x 64 x 64 for the convenience of the multiple
down-sampling and up-sampling operations.

Table 1. Size of tfMRI data in HCP Q3

Task Volumes | Duration (min) | Subjects | Samples
Emotion | 176 2:16 865 152,240
Gambling | 253 3:12 865 218,845
Social 274 3:27 865 237,010

2.2 Residual Module and ResAE

In this work, the deep residual module is adopted to address the notorious vanishing
gradients problem in the training of deep neural networks. As shown in Fig. 2, given
the input x of a layer, instead of fitting the regular mapping H(x) of a layer, the residual
module fits a residual mapping of F(x) = H(x) — Xx. Thus, the original mapping is
transformed into an identity mapping F(x) 4+ x and is realized by shortcut connections
of feedforward neural networks.

weight layer |
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Fig. 2. Illustration of a residual block consisting of two weight layers.
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Inspired by the success of deep residual nets on natural images, we propose an
extension of deep residual networks for 3D neuroimage reconstruction. As illustrated in
Fig. 1, the residual autoencoder network architecture creates a feature representation with
its encoder. The encoder consists of 17 down-residual blocks and the decoder consists of
17 up-residual blocks. The down-residual block is composed of residual down sampling
block following two 3D residual blocks, whereas the down-residual block is composed
of residual down sampling block followed two 3D residual blocks. The solid side arrow
in the standard residual block is a shortcut connection performing identity mapping.
The dotted arrows in the up and down residual blocks are projection connections done
using upsampling and max pooling, respectively. The up and the down residual blocks
increase and decrease the output size, respectively.

To improve the gradient flow, the batch normalization (BN) [34] was applied to
convolutional layer output before activation, which explicitly forces the activations to
be unit gaussian distributed. All convolution filters are of size 3 x 3 x 3. All rectified
linear units (ReLLU) in up-residual blocks had leak 0.3. We use Adam optimizer with a
mini-batch size of 20 [35]. Mini batches take the advantage of GPU boards better and
accelerate training with a proper size. However, if the batch size is too large, it may end up
with less efficiency or even not converging, unless learning rate is decreased even larger.
With a learning rate of 0.001, full cohort of data is trained with 100 epochs from scratch
for full convergence in 20 h with a NVIDIA GTX 1080 GPU. The implementation can
be found at https://github.com/QinglinDong/ResAE.

2.3 FBN Estimation

To explore the representation on the task fMRI data, we apply Lasso regression to
estimate the coefficient matrix which is further used to build spatial maps. As shown
in Fig. 1, the group-wise fMRI data X is fed into the trained encoder, yielding the
latent variables Z from the output of encoder. Next, the FBNs W are derived from latent
variables and group-wise input via Lasso regression as follow:

W = minl|Z — XW|2 + 1| W], (1)

After Lasso regression, W is regularized and transposed to a coefficient matrix, then
each row of coefficient matrix is mapped back to the original 3D brain image space,
which is the inverse operation of masking in data preprocessing. [36] Thus, the FBNs
are generated and interpreted in a neuroanatomically meaningful context.

For comparison study, the GLM-based activation result was performed individually
using FSL FEAT and group-wise averaged. Task designs were convoluted with the
double gamma hemodynamic response function and set as the repressors of GLM. The
contrast-based statistical parametric mapping was carried out with T-test and p < 0.05
(with cluster correction) is used to reject false positives. All the FBNs were thresholded
at Z > 2.3 after transformation into “Z-scores” across spatial volumes.
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3 Results

3.1 Temporal Features from ResAE

To further investigate the temporal feature corresponds to the FBNs, the ResAE-derived
temporal features of a random subject are illustrated. As shown in Fig. 3, the ground
truth is the Hemodynamic Response Function (HRF) Response to the task stimulus,
indicating the brain activity corresponds the task design. The temporal features resulted
from ResAE are compared with the HRF Response using Pearson correlation and it
is shown that ResAE matches the task design well. To illustrate the effect of depth
and residual model, a fully connected, 3-layer Autoencoder is adopted as comparison.
The temporal features resulted from the 3-layer AE are also compared with the HRF
Response and it shows an inferior match with task design compared to ResAE. For
temporal features, the correlation between ResAE and HRF Response (average of 0.758)
is greater than the correlation between AE and HRF Response (average of 0.404) at a
significance level of 0.006%. It can be implied that ResAE has better capability to model
the temporal information than the 3-layer AE.
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Fig. 3. Pearson correlation of temporal features based on AE and ResAE. The blue lines are the
HRF responses, which are ground truth. (Color figure online)

3.2 Task-Related FBNs from ResAE

After the ResAE training, the temporal features are regressed and mapped back to the
MNI152 space and superimposed onto the T'1-weighted MRIimage, so that the functional
spatial maps are visualized and interpreted. For each node in the hidden layer, there is one
functional network learned by ResAE. Due to space limit, some representative networks
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that are task related are selected and visualized in Fig. 4. By visual inspection, these
FBNs can be well interpreted, and they agree with domain knowledge of functional
network atlases in the literature. To quantitively evaluate the performance of ResAE in
modeling tfMRI data, a comparison study between the proposed ResAE, a 3-layer AE
and GLM (considered as benchmark) is also provided.
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Fig. 4. Tllustration of task-related FBNs showing the FBNs derived from GLM (benchmark), 3-
layer AE, ResAE. For each of the tasks involved in this paper (Emotion, Gambling, Social), the
original two explanatory variables (EVs) and corresponding results are shown.

To compare the FBNs derived by these three methods, the spatial overlap rate is
defined to measure the similarity of two spatial maps. The spatial similarity is defined
by the intersection over union rate (IoU) between two FBNs N DandN @ as follows,
where n is the volume size:

|

U NG) = S o]

(2)

With the similarity measure defined above, the similarities loU (Ngesag, Norym ) and
IoU (NaAg, Ngrym ) are quantitatively measured. All the networks by ResAE have similar
spatial distributions as the GLM derived networks, as shown by the quantitative similar-
ities by the side of FBNs in Fig. 4. It is evident that the ResAE-derived network maps are
very similar to the GLM derived network maps. This result demonstrated that ResAE can
identify all GLM-derived networks, partly suggesting the effectiveness of the proposed
model. Comparing this ResAE with the 3-layer AE, it is shown that ResAE has a better
match with GLM than the 3-layer AE. For task related FBNs, the IoU between ResAE
and GLM (average of 0.634) is greater than the IoU between AE and GLM (average of
0.326) at a significance level of 0.0001%. It is shown that with a deeper network, the
proposed ResAE can model FBNs better than the 3-layer AE, suggesting the importance
of the depth effect.

3.3 Intrinsic FBNs from ResAE

In our experiment results, it was also observed that the intrinsic FBNs, or resting state
networks (RSNs), were continuously dynamically active even when subjects are doing
task, which provides evidence supporting the conclusion in [2].
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With the similarity measure defined above, the similarities IoU (NgsaE, Nica) and
loU (Nag, Nica) are quantitatively measured, where ICA is considered as benchmark
for the intrinsic FBNs. Comparisons of pairs by these two methods are shown in Fig. 5,
and the quantitative comparison are shown with the FBNs. RSN1, RSN2 and RSN3
correspond to visual network, RSN4 correspond to default mode network (DMN), RSN5
correspond to cerebellum, RSN6 correspond to sensorimotor network, RSN7 correspond
to auditory network, RSNS correspond to executive control network, RSN9 and RSN10
correspond to frontoparietal network. For intrinsic FBNs, the IoU between ResAE and
ICA (average of 0.607) is greater than the IoU between AE and ICA (average of 0.365)
at a significance level of 0.002%. It is shown that with a deeper network, the proposed
ResAE can model FBNs better than the 3-layer AE, suggesting the importance of the
depth effect, again. Major RSNs are all covered in the ResAE derived FBNs, which
shows ResAE can discover intrinsic RSNs besides task related FBNs.

T1oU=0.706 ToU=0.721 10U=0.617 ToU=0.547 ToU=0.4700

Fig. 5. Illustration of intrinsic FBNs showing the RSNs derived from ICA (benchmark), FBNs
from 3-layer AE and ResAE.

4 Discussions

This paper is the first study that model fMRI networks with deep residual network to
our best knowledge. In this paper, we proposed to adopt the encoder-decoder struc-
ture to exploit the deep residual network for this unsupervised task. With a group-wise
experiment on massive tfMRI data, the ResAE model quantitatively and qualitatively
showed its capability to learn FBNs. A comparison study with GLM, AE and ResAE
shows that the FBNs learned by ResAE are meaningful and can be well interpreted.
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One limitation of our current approach is that the effects of hyperparameters is not fully
shown, including the model depth, which we plan to illustrate the model depth effects
in further study. One promising future study is to apply the encoder representation and
corresponding functional connectivity as biomarkers to brain disorder characterization
such as Alzheimer’s disease, ADHD, Autism, etc.
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