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ABSTRACT 

 

Recent studies have proposed the theory of functional 

network-level neural cell assemblies and their hierarchical 

organization architecture. In this study, we first proposed a 

novel Bayesian binary connectivity change point model to 

be applied on the binary spiking time series recorded from 

multiple neurons in the mouse hippocampus during three 

different emotional events, to find stable temporal segments 

of neural activity. We then applied a Bayesian graph 

inference algorithm on the segmentation results to find 

multiple functional interaction patterns underlying each 

experience. The resulting interaction patterns were analyzed 

by multi-view co-training method to identify the common 

sub-network structure of cell assemblies which are strongly 

connected i.e. "neural cliques". By analyzing the resulting 

sub-networks from three memory-producing events, it is 

found that there exist certain common neurons 

participating in the functional interactions across 

different events, lending strong support evidence to the 

hypothesis of hierarchical organization architecture of 

neuronal assemblies. 

 

Index Terms— neuronal code, cell assebmly interaction 

 

1. INTRODUCTION 

 

Recently there have been increasing number of studies 

on the neuronal network-level organization mechanisms 

of the brain [1-3], based on the simultaneous monitoring 

of neural spiking activities across multiple neurons [4, 5]. 

These researches have led to a series of exciting results 

including that ensembles of neurons activation i.e. 

"population code" are directly correlated with the brain 

space recognition [6] and memory formation [3, 7]. Also, 

it has been found that the functions of neural cell 

assemblies  have a hierarchical architecture that enables 

the brain in dealing with both general and specific 

memory coding [2]. However, most of the researches 

utilize the neuron firing rate for characterizing the neural 

network pattern and the corresponding cell assemblies, 

and there have been very few studies on inferring the 

functional interaction patterns and their dynamics 

between neurons by their spiking time series.  

Recently, Bayesian partition model has been widely 

applied on biomedical data [8-9], including 

neuroimaging studies [10-12]. Inspired by these studies, 

in this work, we developed a novel Bayesian network 

change point model to detect the abrupt changes in 

neuron spiking time series. The change points were 

determined by the joint probability among neurons 

between different time segments, and Markov chain 

Monte Carlo (MCMC) was applied to sample the 

posterior probability distribution of each time point 

being a change point. Based on the detected change 

points and their corresponding temporal blocks, we 

further analyzed the functional interaction patterns 

among 195 neurons by a multi-view co-training method 

and identified the common neural clique structures 

which are strongly connected. The major findings of this 

work are: 1) There exists functional interaction dynamics 

in response to external stimuli events; 2) Strongly 

functional interacting neurons form one or more "neural 

cliques" for a specific event. These results offer 

supporting evidence to the hypothesis of hierarchical 

organization architecture of neuronal assemblies [1-3]. 

 

2. METHOD 

2.1. Data acquisition and pre-processing 

 

Neural spike data were collected using 128-channel 

recording arrays recording from the anterior cingulate cortex 

(ACC) of freely behaving mice. The detailed procedures 

were previously described in [5, 13]. In brief, two bundles 

of 64-channel stereotrodes were implanted in ACC 

bilaterally (0.5 mm anterior to bregma, 0.5 mm lateral and 

1.1–1.2 mm ventral to the brain surface). Spike activities 

were recorded via Plexon neural data acquisition system 

while the animal was subjected to mild blast, air puff and 

shake stimuli [5, 13]. The recorded spike activities were 

sorted into putative single units offline by using MClust 3.3 

after automatic pre-clustering with KlustaKwik 1.5. 

(http://redishlab.neuroscience.umn.edu-

/MClust/MClust.html). The spiking time of totally 195 
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neurons were recorded during an 8-minutes period in which 

the animal was given each stimulus. As the recorded spiking 

time was point-process data, we used 100-ms time bin to 

sample the spiking and convert it into binary time series data. 

Among a total of 4800 bins (8 minutes), each 100-ms time 

bin was set to the value of 1 if there was at least one neural 

spiking in that bin, otherwise it was set to the value of 0. In 

this way we obtained three binary neuronal activation matrix 

with the dimension of 195 (neurons) by 4800 (time bins), 

which would be used for further analysis. 

 

2.2. Bayesian binary connectivity change point model 

 

As the input data obtained in 2.1 is a binary multivariate 

random process, for the set of binary column vectors
 

x1,x2,…,xT i.i.d. (independent and identically distributed) 

from the m-dependant binary random variable 

probability mass function we have:  
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vector, 2
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where nj is the number of column vectors in x1, x2,…, xT 

taking the j-th combination j=1,2,…,2
m
. As
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,..., mp p are 

unknown, we assume they are random and apply Dirichlet 

prior on them:  
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By integrating p, we have the probability of  x1,x2,…,xT: 
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where we take 
1 2 2

... 1 2m

m      . 

Given an m×T neuron spiking matrix X=(x1, x2, …, xT) 

where m is the number of neurons and T is the number of 

observations in temporal order, a block indicator vector 

I=(I1, I2, …, IT) is defined to indicate the possible locations 

of network change points, where It=1 indicates that there is a 

change point at time point t and there is a new block, It=0 

otherwise. The time serials matrix X is thus divided into 

blocks. I1 is always 1, as the first time point is always 

the beginning of the first block. The likelihood of the neuron 

spiking matrix X=( x1, x2, …, xT) is then: 

          
1
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where Xb are the temporal data belonging to the b-th block 

and p(Xb) is calculated according to Eq. (5). We assume that 

the temporal blocks are independent from each other, 

therefore the posterior distribution p(I|X) satisfies 
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 and  ~Bern(0.5). 

We then design a Markov chain Monte Carlo (MCMC) 

scheme [14] to sample the posterior distribution p(I|X) with 

a random initial block indicator vector I
0
. For i-th iteration: 

1. A new block indicator vector I
*
 is proposed by 

randomly choosing an indicator in I
i-1

and its value is 

changed from 0 to 1 or from 1 to 0. 

2. p(I
*
|X) is then evaluated by Eq. (7). 

3. A uniform (0,1) random number u is generated and set: 
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4. Iterate until i reaches a given number N (in this work, N 

is set as 2000 to make sure that p(I
i
|X) converges). 

5. Finally, we exclude the burn-in from the MCMC 

samples and calculate the posterior probability for each 

time point to be a change point from MCMC samples. 

 

3. RESULTS 

 

3.1. Results on neuronal recording dataset 

 

In this work, we have applied the proposed model on the 

three time series neural spiking dataset obtained as 

described in 2.1. Taken the results from blast event data as 

an example, the timings of the 8 change points, along with 

the timings of the blast stimulus are depicted in Fig. 1. 

According to the change points vs. stimulus timing plot, it 

could be concluded that the change points detected are well 

in correspondence with the stimulus. Such correspondence 

validates the practicability of our model as it has been 

shown in previous literature that both single neuronal and 

network-level neuronal activation are expected to respond to 

external inputs [1, 7]. Moreover, previously the response 

was mainly characterized by the change of the activity 

patterns of neuron(s), e.g. by the firing rate [7]. However, 

the change points detected by our model capture the 

dynamics of the functional interaction patterns among 
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neural cell assembly, inferred by a Bayesian basis. Thus the 

aligned change point/stimuli pairs imply the dynamic nature 

of the brain functional organization mechanism at neuronal 

level, i.e. there exists a perpetual "functional switching" in 

the brain where functional networks across regions are 

dynamic, subjecting to the external input, its own previous 

states and other contexts. 

 
Figure 1. Posterior probability (on y-axis) of each temporal 

position (on x-axis) to be a change point during blast event, 

colored in red. Also, the starting point of each repeat of the 

stimulus is colored in blue. It should be noted that the red lines 

in the figure are not deterministic, and the change points could 

be existing within a small range around. 
 

3.2. Functional interaction patterns analysis 

 

Based on the detected change points and corresponding 

temporal blocks defined by them, we have used the widely-

applied GES (Greedy Equivalence Search) Bayesian graph 

algorithm [15] on the neural spiking time series segmented 

by the temporal blocks to infer the functional interaction 

patterns represented by the causal graphs from the data. 

Again, taking the blast event for example, as there were 

totally 8 change points detected, we have obtained 9 

functional interaction patterns P1,…,P9, each of which is a 

195*195 connectivity matrix showing the causal links 

between variable pairs, as illustrated in Fig. 2a. Similar 

methods were applied on the dataset from other two events 

(air puff, shake) as well. Further, in this work we are 

interested in the common sub-structures across interaction 

patterns of each event, which characterizes the consistent 

functional interaction structure maintained during the event. 

To achieve this goal, for each of the three event, we applied 

the graph based multi-view co-training method [16] on the 

interaction patterns obtained from it, aiming to maximize 

the agreement across different patterns. In short, the method 

takes the similarity matrix from each view and tries to 

project all of them along the k eigenvectors obtained from 

their graph Laplacian. Then it inversely projects the results 

to obtain each modified ("trained") similarity matrix. The 

procedure iteratively performs the projection/inverse-

projection by n steps, finally obtaining several consistent 

clusters of the similarity matrix with maximizing inter 

cluster discrimination ability, while discarding the local 

information of individual matrices. In this work, we 

consider the connectivity matrices obtained from different 

temporal segments as different "views" of the interaction 

pattern of the whole event, and the clusters in the training 

result as the consistently participating neuronal sub-

networks that are stable over time. The training result of the 

blast event is visualized in Fig. 2b. It could be seen that the 

195 neurons formed two clear clusters (sub-networks). 

There is strong inter-neuron functional interaction within 

each sub-network which almost constituted two complete 

graphs i.e. neural clique assemblies. The concept of neural 

clique has been observed and reported in previous literature 

based on the co-firing of the neurons [1]. However, in this 

work the clique is formed by identifying the common sub-

structure of the inferred functional interaction patterns. 

(a)

(b)

P1 P2 P3 P4 P5 P6 P7 P8 P9

GES

multi-view co-training 

Figure 2. (a) Binary time series of the neural spiking data 

during blast event, red bars indicate the detected change points. 

Through GES inference, 9 195*195 connectivity matrices were 

obtained, marked as P1 to P9 in the figure. (b) The multi-view 

co-training result from the 9 GES results, which is also a 

195*195 connectivity matrix, color coded by the intensity of 

interaction. The indices of neurons were re-ordered so that the 

bandwidth of the matrix is minimized. 

 

Using the similar procedure, we have obtained the 

multi-view co-training results characterizing the consistent 

interaction patterns during the air puff and shake events as 

well, which are shown in Fig. 3a and 3b. It could be 

observed that similar to the blast event, neurons were 

organized into smaller but strongly interconnected sub-
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networks shown as the bright-colored blocks in the matrix 

visualizations. If we focus on the most strongly connected 

sub-networks shown as the red blocks, it would be found 

that the sizes of those sub-networks are similar across events. 

In the blast event shown in Fig. 2b, there were 36 neurons 

strongly connected and formed the clique (red block), while 

in the air puff event (Fig. 3a) there were 35 neurons, and in 

shake event (Fig. 3b) there were 33 neurons. Further, we 

summarized the common neurons that participated in those 

most strongly connected sub-networks across different tasks, 

i.e., the intersection among the three cliques, and found that 

there were 13 common neurons involved in the sub-

networks of the blast and air puff events, 9 neurons in air 

puff and shake events, and 6 neurons in blast and shake 

events, shown as in Fig. 3c. Out of those common neurons 

between two events, there were 3 neurons that participated 

in the sub-networks of all three events with index #29, #35 

and #144. Such findings revealed the possibility that 

neuronal functional interaction might be hierarchically 

organized, in correspondence with previous literature 

reports [2], where certain "general" neurons would be highly 

interacting with other neurons in different tasks.  

(a) (b)
25,44,66,82,83,101,109,146,180,19029

35

144

61,93,96,103,151,183
124,126,144

Common
Blast&AirPuff
AirPuff&Shake
Blast&Shake (c)

 
Figure 3. (a) The multi-view co-training result from the GES 

results of air puff event. (b) The multi-view co-training result 

from the GES results of shake event. It should be noted that 

the neurons have been re-ordered thus there are no 

correspondence between the indices across events. (c) Indices 

of the common neurons across all three events (marked by 

"Common") and across two events (marked by event names).  

 

4. DISCUSSION AND CONCLUSION 

 

In this work, we have proposed a novel Bayesian binary 

connectivity change point model to detect the change points 

from neural spiking data and obtained reasonable results. 

The strong correspondence between the results from our 

model and from previous studies has shown that there is a 

potentially novel way in discovering neural encoding 

patterns from a dynamic interaction perspective. As no a-

priori input is needed for our model, we could further apply 

it on time periods during which no explicit external stimuli 

is given i.e. resting-state or cognitive state and study their 

internally-driven functional organization patterns. 
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