Neuroinform (2013) 11:193-210
DOI 10.1007/s12021-012-9157-y

ORIGINAL ARTICLE

Detecting Brain State Changes via Fiber-Centered Functional

Connectivity Analysis

Xiang Li - Chulwoo Lim - Kaiming Li - Lei Guo -
Tianming Liu

Published online: 2 September 2012
© Springer Science+Business Media, LLC 2012

Abstract Diffusion tensor imaging (DTI) and functional
magnetic resonance imaging (fMRI) have been widely used
to study structural and functional brain connectivity in re-
cent years. A common assumption used in many previous
functional brain connectivity studies is the temporal statio-
narity. However, accumulating literature evidence has sug-
gested that functional brain connectivity is under temporal
dynamic changes in different time scales. In this paper, a
novel and intuitive approach is proposed to model and
detect dynamic changes of functional brain states based on
multimodal fMRI/DTI data. The basic idea is that functional
connectivity patterns of all fiber-connected cortical voxels
are concatenated into a descriptive functional feature vector
to represent the brain’s state, and the temporal change points
of brain states are decided by detecting the abrupt changes
of the functional vector patterns via the sliding window
approach. Our extensive experimental results have shown
that meaningful brain state change points can be detected in
task-based fMRI/DTI, resting state fMRI/DTI, and natural
stimulus fMRI/DTI data sets. Particularly, the detected
change points of functional brain states in task-based fMRI
corresponded well to the external stimulus paradigm admin-
istered to the participating subjects, thus partially validating
the proposed brain state change detection approach. The
work in this paper provides novel perspective on the dy-
namic behaviors of functional brain connectivity and offers
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a starting point for future elucidation of the complex pat-
terns of functional brain interactions and dynamics.

Keywords Brain connectivity - Diffusion tensor imaging -
Functional MRI - Brain state change

Introduction

Studying structural and functional connectivity in brain net-
works has received increasingly strong interest recently due
to its significant importance in basic and clinical neuro-
sciences (e.g., Friston et al. 2003; Sporns et al. 2005;
Biswal et al. 2010; Van Dijk et al. 2010; Lynall et al.
2010; Kennedy 2010; Hagmann et al. 2010; Li et al.
2012). A common assumption used in many previous func-
tional brain connectivity studies (e.g., Wang et al. 2006;
Dickerson and Sperling 2009; Lynall et al. 2010; Liu
2011) is the temporal stationarity; that is, functional con-
nectivity are computed over the entire fMRI scan and used
to characterize the strengths of connections across regions.
However, accumulating literature evidence (e.g., Lindquist
et al. 2007; Robinson et al. 2010; Chang and Glover 2010),
including our own recent studies (Lim et al. 2011; Hu et al.
2011; Li et al. 2011), have shown that functional connectiv-
ity are under dynamic changes at different time scales. In
particular, extensive neuroscience research suggests that the
function of any area of the cortex is subject to top—down
influences of attention, expectation, and perceptual task
(Gilbert and Sigman 2007; Bassett et al. 2011). For instance,
each cortical area runs different “programs” according to the
context and to the current perceptual requirements (Gilbert
and Sigman 2007), and dynamic functional interactions
between structural connections mediate the moment-by-
moment functional switching in the brain (Gilbert and
Sigman 2007). Even in the resting state, functional brain
connectivity is still under dynamic changes within time
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scales of seconds to minutes (Chang and Glover 2010).
Therefore, we are strongly motivated to examine the tem-
poral dynamics of functional connectivity in resting state
(e.g., Fox and Raichle 2007), during task performance (e.g.,
Faraco et al. 2011), and under natural stimulus of movie
watching (e.g., Hu et al. 2012) in this paper.

In the literature, there have been a variety of studies that
investigate the problem of temporal brain state changes from
different perspectives. For instance, from the fMRI blood-
oxygen-level dependence (BOLD) signal processing per-
spective, statistical signal processing methods have been
applied on fMRI signals to detect BOLD signal state change
in response to stimulus (e.g., Lindquist et al. 2007;
Robinson et al. 2010), and these results have been correlated
to brain state change. From the brain network perspective,
functional networks have been reported to form and disap-
pear during certain tasks, and the temporal clustering anal-
ysis (TCA) approach has been developed to detect the
dynamic behavior of brain states (e.g., Gao and Yee 2003;
Morgan et al. 2004). It has been observed that the brain state
change is a dynamical process of functional brain connec-
tivity, e.g., even at resting state (Chang and Glover 2010).
Recently, signal propagation from changing networks with-
in rats and human brains was discussed in (Majeed et al.
2011). In addition, brain state change has been studied from
a sensory processing perspective, in which the brain is
assumed to go through a succession of states when
performing a task, with each state serving as the source of
top—down influences for the subsequent states (Gilbert and
Sigman 2007). More recently, Bassett et al. 2011 examined
the dynamic changes of brain networks af the temporal
scales of days, hours, and minutes in a learning paradigm,
and found that modular network organization changed
smoothly over short temporal scales.

The work reported in this paper is along the direction of
network-based brain state change detection. That is, we
model and determine functional brain state change points
by identifying abrupt alterations of functional connectivity
in large-scale brain networks. Our rationale is that the brain
function is integrated via large-scale structural and function-
al connectivity (e.g., Sporns et al. 2005; Honey et al. 2009;
Biswal et al. 2010; Hagmann et al. 2010; Kennedy 2010;
Van Dijk et al. 2010), and that sudden change of global
functional brain connectivity is a meaningful and effective
indicator of functional brain state switch. Therefore, in this
study, the functional brain state is defined as the specific
organizational pattern of the brain’s global functional con-
nectivity (Zalesky et al. 2010), and brain state changes are
hypothesized to reflect the brain’s functional interaction
dynamics in response to external/internal stimulus and/or
previous brain states. In comparison with many previous
approaches that modeled static functional brain connectivity
(e.g., Wang et al. 2006; Dickerson and Sperling 2009; Liu
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2011), quantitative characterization and visualization of
these time-dependent dynamics on functional networks can
possibly elucidate important temporal attributes of function-
al connectivity that cannot be seen by traditional static
network connectivity analysis. Hence, in this paper, we
adopted a network-based approach (Bullmore and Sporns
2009) and utilized global functional connectivity patterns
defined based on DTI-derived structural connections to rep-
resent the brain’s functional states.

In general, a prerequisite step for static or dynamic func-
tional brain connectivity study is to determine the network
node ROIs (regions of interests), which can be determined
by manual delineation (Amunts et al. 2000; Dickerson and
Sperling 2009; Biswal et al. 2010), image registration
(Thompson and Toga 1996; Shen and Davatzikos 2002;
Avants et al. 2008; Liu et al. 2011a), task-based fMRI
(Saxe et al. 2006; Faraco, et al. 2011; Zhu et al. 2011), or
by data-driven clustering, such as regional homogeneity
(ReHo) measurement (Zang et al. 2004) and independent
component analysis (ICA) (Calhoun et al. 2004; Beckmann
et al. 2005). Then functional connectivity between network
node ROIs can be calculated by measuring the correlation of
the time courses of their representative fMRI signals.
Alternatively, people may identify ROIs and their connec-
tivity simultaneously by data-driven models such as the
independent component analysis (ICA)-based method
(Tsunoda et al. 2001; Calhoun et al. 2004; Beckmann et al.
2005). In this paper, we propose a novel fiber-centered
approach to defining functional connectivity on DTI-
derived white matter fibers. Our basic premise is that axonal
fibers obtained from DTI tractography are the structural
substrates of functional connectivity between brain regions
(e.g., Honey et al. 2009; Zhu et al. 2011; Li et al. 2012), and
thus provide a natural anatomical localization for inference
of functional connectivity. In our approach, the functional
connectivity is defined as the temporal correlation between
spatially remote fMRI signals extracted from gray matter
voxels on the two terminals of a DTI-derived axonal fiber.
That is, we measure the temporal correlation of fMRI time
series of two ends of a fiber (Lv et al. 2010; Lim et al. 2011)
to define the functional connectivity between the gray mat-
ter voxels that it connects. The functional connectivity pat-
terns of all of the DTI-derived white matter fibers within the
whole brain are then concatenated into a descriptive func-
tional feature vector to represent the brain’s state, called
functional connectivity vector (FCV). The functional brain
state change points are then determined by the abrupt
changes of the FCV patterns calculated by the sliding win-
dow approach along the time series.

Based on the above premises regarding structural and func-
tional brain connectivity, as well as the concept of dynamic
brain state change, we employed the FCV model to characterize
and describe the dynamics of functional brain states based on
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multimodal DTI/fMRI data. We have applied the FCV models
on task-based fMRI (Faraco, et al. 2011; Zhu et al. 2011),
resting state fMRI (Li et al. 2010), and natural stimulus fMRI
data sets (Hu et al. 2012), and meaningful and promising results
were obtained. In particular, our results have shown that the
functional brain state change curve roughly follows the external
stimulus paradigm used in task-based fMRI (Faraco et al. 2011;
Zhu et al. 2011), which partially validates our approach in that
our algorithmic pipeline is totally data-driven and no a priori
knowledge was used in the analysis. Our major contributions in
this paper are summarized in the following three statements.
First, we developed, validated and applied a novel fiber-
centered approach to defining the functional connectivity pat-
tern in the human brain, and proposed the FCV pattern to
represent a functional brain state. From a neuroscience perspec-
tive, structural and functional brain connectivity are closely
related (e.g., Passingham et al. 2002; Honey et al. 2009; Zhu
et al. 2011; Li et al. 2012). As suggested in Passingham et al.
2002, the fucntions of different brain areas are largely deter-
mined by the extrinsic and intrinsic structural connections
among these areas. Thus it is reasonable to define fiber-
centered functional connectivity. Second, instead of using raw
fMRI BOLD signals, we use the FCV pattern that measures and
represents the whole-brain functional connectivity of fibers for
brain state change detection. Rooted in structural connections,
this FCV-based representation of the large-scale functional
interaction pattern can, potentially, faithfully reflect the work-
ing status of the brain in the resting state, during task perfor-
mance or under @ natural stimulus. Our experimental results
have suggested that the FCV pattern effectively represents the
functional interaction and dynamics on structural brain net-
works and is a good indicator of brain state. Third, the work
in this paper provides novel understanding of and perspective
on the dynamic behaviors of functional brain connectivity,
which cannot be seen in traditional static connectivity analysis,
and offers a starting point for in-depth elucidation of the com-
plex patterns of large-scale functional brain interactions and
their dynamics in the future.

It should be noted that an early short version of this meth-
odology was presented of the ISBI 2011 conference (Lim et al.
2011). The major extensions on this paper include the expan-
sion of the introduction and literature review, additional details
on the methodology, extended experiments and result inter-
pretation, comparison with other methods, applications to
three types of fMRI data sets, and extensive discussion.

Materials and Methods
Overview

As summarized in Fig. 1, the proposed computational pipe-
line is composed of eight steps. Briefly, after brain tissue
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Fig. 1 The flowchart of the algorithmic pipeline for fiber-centered
brain state change detection. Eight steps are labeled as follows. (1)
brain tissue segmentation (gray matter (GM) and white matter (WM))
and fiber tractography using DTI data; (2) warping fMRI images to the
DTI space via image registration; (3) identification of structurally-
connected GM (SCGM) voxel pairs; (4) fMRI signal extraction at each
SCGM voxel pair; (5) applying sliding windows to fMRI signals; (6)
functional connectivity analysis for each SCGM voxel pair within the
sliding window; (7) functional connectivity vector (FCV) construction
for each sliding window; (8) Sub-network analysis of fiber-centered
functional connectivity dynamics

segmentation (gray matter (GM) and white matter (WM))
via the approaches in (Liu et al. 2007) and DTTI fiber trac-
tography (MEDINRIA http://www-sop.inria.fr/asclepios/
software/MedINRIA/) in the DTI image space (Step 1), we
warped fMRI images to the DTI space via the FSL FLIRT
image registration toolkit (Step 2). Then, structurally-
connected GM (SCGM) voxel pairs were identified from
the two ends of a DTI-derived fiber (Step 3), and
corresponding fMRI signals were extracted at both SCGM
voxels located on the gray matter (Step 4). Afterwards, we
applied a sliding window approach to the extracted fMRI
time series signals (Step 5) and the functional connectivity
was then calculated for each SCGM within a sliding win-
dow (Step 6). Afterwards, all of these functional connectiv-
ity were concatenated into a functional connectivity vector
(FCV) for each sliding window (Step 7), based on which the
brain state change points were identified. In addition to the
whole-brain functional state change detection, sub-network
analysis of fiber-centered functional connectivity dynamics
was also examined (Step 8). This computational pipeline has
been applied and tested in three types of fMRI data sets
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including resting state fMRI data (Li et al. 2010), task-based
fMRI data (Faraco et al. 2011; Zhu et al. 2011), and natural
stimulus fMRI data (Hu et al. 2012), and DTI images are
available for each of these fMRI data sets.

Notably, there are two key methodological novelties in
the above computational pipeline. First, we used DTI-
derived white matter fibers to guide the identification of
meaningful functional connectivity between gray matter
voxels, and thus the brain’s functional status and its dynam-
ics are represented by the functional connectivity of
SCGMs. This structural connection based constraint signif-
icantly reduces the number of possible functional connec-
tivity measurements from O(n?), n being the total number of
gray matter voxels, toO(m), m being the total number of
fibers. This meaningful and effective search space reduction
enables quantitative representation of the whole-brain func-
tional state. Second, we used a dynamic sliding window
approach to obtain temporal transitions of functional brain
connectivity, rather than analyzing the static correlation
between the entire time series of two regions (Li et al.
2010; Lv et al. 2010; Lynall et al. 2010). As a result, the
temporally dynamic nature of functional brain networks can
be captured and characterized. In particular, the results of
our FCV model from task-based fMRI data have been
compared with the external task stimulus curve for valida-
tion, and the detected functional brain state change points
were well temporally aligned with stimulus inputs.

Data Acquisition and Preprocessing

Three types of fMRI data were used and analyzed in this
study including operation span (OSPAN) working memory
tasked-based fMRI data (Faraco et al. 2011; Zhu et al.
2011), resting state fMRI data (Li et al. 2010; Lv et al.
2010; Lim et al. 2011) and natural-stimulus fMRI data (Hu
et al. 2010, 2012). In the OSPAN working memory task-
based fMRI scan (Faraco et al. 2011; Zhu et al. 2011), fMRI
and DTI images were acquired on a 3 T GE Signa scanner at
the University of Georgia (UGA) Bioimaging Research
Center (BIRC). Acquisition parameters were as follows:
fMRI: 64 %64 matrix, 4mm slice thickness, 220mm Field
of View (FOV), 30 slices, repetition time (TR)=1.5 s, echo
time (TE)=25ms, ASSET=2. Each participant performed
the operational span (OSPAN) task while fMRI data was
acquired. The total task length was 6 min and 45 s, with
fixed alternating conditions of OSPAN, Arithmetic, and
Baseline. 3 OSPAN, 3 Arithmetic, and 6 Baseline epochs
were presented and each epoch last 30s. More details of the
paradigm design could be referred to (Faraco et al. 2011).
In the natural stimulus fMRI scan (Hu et al. 2010, 2012),
we randomly selected video shots from the TRECVID 2005
database (http://trecvid.nist.gov/), which were presented to
four healthy adult subjects during their fMRI scans at the
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same scanner at UGA BIRC. Three categories of sports,
weather and commercial/advertisement were selected from
the TRECVID 2005 data sets with corresponding labels. 51
shots were randomly selected in these three categories, and
were composed into 8 media clips with length of 11 min.
The acquisition parameters were as follows: 30 axial slices,
matrix size 64x64, 4mm slice thickness without interslice
space, 220mm field of view (FOV), repetition time (TR) 1.5
s, echo time (TE) 25ms, ASSET=2. Additional details of
the experimental paradigm and imaging settings could be
referred to (Hu et al. 2012).

In the resting state fMRI scan (Li et al. 2010; Lv et al.
2010; Lim et al. 2011), nine subjects were scanned in the
same scanner at UGA BIRC. Resting state fMRI data were
acquired with dimensionality 128*128*60*100, spatial res-
olution 2mm*2mm*2mm, TR 5 s, TE 25 ms, and flip angle
90°. For all of the three types of fMRI data sets, DTI data
was acquired using the same spatial resolution as the resting
state fMRI data; parameters were TR 15.5 s and TE 89.5 ms,
with 30 DWI gradient directions and 3 BO volumes acquired
(Zhu et al. 2011; Zhang et al. 2011).

For preprocessing, we used the DTI images as the refer-
ence space and registered fMRI images to the DTI space by
the FSL FLIRT tool. The rationale is that DTI and fMRI
sequences are both echo planar imaging (EPI) sequences,
their geometric distortions tend to be similar (Li et al. 2010,
2012), and the misalignment between DTI and fMRI images
is much less than that between T1 and fMRI images (Li et
al. 2010, 2012). DTI preprocessing steps included skull
removal, motion correction and eddy current correction
(Zhu et al. 2011; Li et al. 2012). Then fiber tracking was
performed using streamline tractography (via MEDINRIA,
FA (fractional anisotropy) threshold of 0.2, smoothness of
20 and minimum fiber length of 20) and the tracked whole-
brain fibers were used for the following fiber-centered
functional connectivity analysis. Brain tissue segmentation
was conducted on DTI data directly via the in-house meth-
ods in (Liu et al. 2007), and the cortical surface was
reconstructed using the in-house approaches in (Liu et al.
2008). FMRI preprocessing steps included motion correc-
tion, spatial smoothing, temporal prewhitening, slice time
correction, global drift removal, and band pass filtering
(Lv et al. 2010; Li et al. 2010, 2012; Lim et al. 2011;
Zhu et al. 2011).

Functional Connectivity Measurement Based on Structurally-
Connected Gray Matter Voxel Pairs

Structural connectivity was defined based on white matter
fibers tracked from DTI images, and fMRI signals were then
mapped onto the gray matter volumes segmented from DTI
images directly (Liu et al. 2007) using the similar methods
in (Lv et al. 2010). Denote the set of all gray matter voxels
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as v; € V; the structural connectivity (SC) between voxel pair
(vg, V) is defined as:

SC(vg,v;,) _ {(1): thz::;isles a fiber connecting vq, vy (1)

In practice, to determine whether a gray matter voxel is
connected by a DTI-derived fiber, we search its nearby
neighborhood within an empirically defined range. This step
is essential to accurately extract the structurally-connected
gray matter voxels (Lv et al. 2010) because DTI fiber
tractography via the streamline approach might have diffi-
culty in tracking inside gray matter and there could be
discrepancy in the brain tissue segmentation based on DTI
data and the DTI tractography (Liu et al. 2007). Typically a
fiber would connect several gray matter voxel pairs, and in
this study, all the pairs were taken into account during the
construction of the voxel pair set, while redundant pairs (the
same pair of voxels connected by different fibers) would be
removed. An example of gray matter voxel pairs connected
by DTI-derived fibers is illustrated in Fig. 2(a), in which a
randomly selected fiber connecting gray matter voxel pairs
is displayed. We denote the set of GM voxel pairs connected
by fibers as structurally-connected gray matter (SCGM)
voxel pairs:

SCGM = {(vg,v4)|SC(vg,v4) =1} (2)

The order of elements is maintained by indexing all
(vg, V) in the set.

In Fig. 2, the fMRI time series of the two GM voxels are
shown in two different time periods: state I in Fig. 2(b) and
state II in Fig. 2(c). The same voxel pair exhibits different
functional correlations during these two states, suggesting
that brain functional connectivity could be under dramatic
changes throughout the time course. To quantitatively char-
acterize the functional connectivity dynamics on axonal

Fig. 2 a Example of a SCGM
voxel pair shown in red and
blue boxes that are connected
by DTI-derived fibers (in yel-
low). b The fMRI time series
from the two voxels have low
correlation within a specific
time window (State I). ¢ The
fMRI time series from these
two voxels are relatively higher
correlated within another time
window (State II)

fibers, we defined the functional connectivity (FC) between
voxel pair [v,, vp] in time window [t;, t] as:

FC(vg7 Vi, tis tj)

= Pearson correlation between fMRI signals of vg, vy fiom t; to t;
(3)

Assume that the totally scan length is / time points, and
the time window size is s, we could apply a sliding time
window (ty, ti+s) where 1 <k </—s and obtain FCs
defined on SCGM voxels. By concatenating all FCs into a
vector, we thus generated the functional connectivity vector
(FCV) of all fibers defined at each time point k:

FCV (k) = {FC(vg,vi, 1i,1;) | (vg,v4) € SCGM, t; =k, t; =k + s}
(4)

FCV consists of m (the total number of fiber-connected
voxel pairs) elements; each element is the connectivity
strength of a specific voxel pair within the time window.
Therefore, for each brain, we can extract (I-s) FCVs, and all
those FCVs could be temporally concatenated into a FCV
matrix. For dimension reduction and analysis purposes,
elements in FCV at each time window would be further
averaged into a single value, which is the measurement of
the connectivity strength of the whole brain at that time
point, and the collection of them throughout the whole time
series is defined as the global brain connectivity strength
curve (CSO):

CSC(k) = FCV(k)/m (5)

The curve is a simplified illustration of the dynamics of
functional brain connectivity, and this temporal summary of
functional connectivity strength serves as the basis for our
state change detection modeling, where the change points
were determined by the local maximum of the absolute
temporal derivative of the curve, if its exceeds the
experimentally-defined threshold.

e

b state1

=

C State II
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Also, we applied a threshold T to all elements in the FCV
to obtain the connectivity edge vector (CEV):

1, if FC(vg, v, tit;) > T
0, otherwise

CEV (k) = { |(ve,vi) € SCGM, t; =k, t; =k +s}

(6)

where CEV(k) denotes the unweighted binary edges describ-
ing brain functional network at time point £. Both FCV and
CEV would be used for functional state quantification.

As an intuitive illustration, Fig. 3(a) and (b) show five
examples of voxel pairs and the dynamics of their functional
connectivity. The temporal dynamics of function connectiv-
ity is apparent in Fig. 3(b). In addition, as shown in Fig. 3
(c), 253 FCVs were obtained and visualized as a matrix. An
important observation obtained from Fig. 3(c) is that the
FCVs undergo consistent dynamic changes along the time
series. For instance, three dashed black lines highlighted
three abrupt changes of the FCV attributes, further suggest-
ing that the brain is under constant functional dynamics and
these FCV changes indicate possible state changes. This
interesting observation has been replicated and reproducible
in all of the thirteen cases of task-based fMRI data sets (Zhu
et al. 2011; Faraco et al. 2011) we studied and motivated us
to propose the FCV-based brain state change detection ap-
proach in this paper.

So far, we have demonstrated in Figs. 2 and 3 that for the
same pair of SCGM voxels at the two ends of a DTI-derived
fiber, it could have quite different functional connectivity
patterns in different time windows. Our extensive observa-
tions from the fMRI data is that brain functional connectiv-
ity changes dramatically temporally. As examples, Fig. 4
shows the voxel and fiber views of two brain states with
different functional connectivity patterns, possibly caused
by the time-lapse changes of external inputs (stimulus vs.
base-line). It is evident that during external stimulus inter-
vals, there are extensive voxels with high FC spreading over
most parts of the brain as shown in Fig. 4(a) and (c). While
during the baseline interval, there are much less such func-
tional connections (in Fig. 4(b) and (d). This result further
suggests that functional connectivity of the two ends of
axonal fibers can be a good indicator of how active the
brain is and can be used for functional brain state detection,
e.g., active or inactive states.

Constructing Similarity/Difference Matrix Between FCVs
for Brain State Change Detection

As mentioned before, we can determine the functional brain
state changes by examining the temporal abrupt alterations
of FCV, based on our main premise that functional connec-
tivity of the whole brain, which could be described by the
correlations of SCGM at each time window, i.e., via FCV

@ Springer

Fig. 3 a Fibers with their end points in cortical gray matter, five fiber
connections are highlighted; b Dynamics of functional connectivity of
the above five SCGM voxel pairs. The temporal correlation between a
specific voxel pair within each time window is a single cell in the
corresponding color-coded vector (1 to 5). Thus each color-coded
vector is a visualization of the connectivity strength dynamics of that
voxel-pair; ¢ Combined FCVs through the whole time course, which is
an extension of b from five SCGM voxel pairs to all SCGM voxel
pairs. The temporal correlation between a specific voxel pair within
each time window is a single cell in the matrix visualization, each
column of the matrix is the visualization of a single FCV at a specific
time window, and each row is the dynamics of the functional connec-
tivity of a specific SCGM voxel pair. Thus the whole matrix represents
the whole brain (all SCGM voxel pairs) functional connectivity
dynamics

and CSC, is undergoing state-like dynamics. To show the
similarity between any two states (t;, #;1) and (¢, ), we
measured the Pearson correlation between their FCVs.
Figure 5 shows the matrix of similarity between FCVs in a
duration of 22 time points. If the brain state within a time
period is stable, we will have relatively high similarity for
this period in the matrix, as shown in the red-block areas in
the red boxes in Fig. 5. Within this area, FCVs that are even
temporarily far away from each other still have high simi-
larity. On the contrary, if there is a functional brain state
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Fig. 4 Two connectivity states
from two different time
windows of one subject. Fiber-
connected voxel (colored box-
es) pairs with FC greater than
the threshold of 0.8 are visual-
ized. Voxels are colored by the
MNI (Montreal Neurological
Institute) atlas labels in (Shen
and Davatzikos 2002). a Con-
nectivity state (highly function-
al correlated voxel pairs) during
the time window from 78 s to
96 s that falls into the stimulus
period of task-based fMRI
(Faraco et al. 2011); b Connec-
tivity state during the time
window of 34 s to 52 s which
falls into the baseline period; ¢
Lateral view of (a); d Lateral
view of (b)

change, there is low similarity between temporarily neigh-
boring or even adjacent FCV’s (the blue low intensity values
in Fig. 5), where the connectivity pattern changes abruptly,
as shown in the boundaries around the red blocks.

Based on the observation of the similarity of FCVs, we
quantified the brain functional connectivity dynamics and
detected the change point by measuring the similarity be-
tween adjacent F'CVs, defined as the functional state simi-
larity vector (F'SSV):

FSSV(t;) = _[FCV(ti1) — FCV(1y)] (7)

which is the summed absolute difference between FC on
each fiber of two adjacent time points. At each time point t;,
FSSV captures the brain activation magnitude change as
well as connectivity pattern change, e.g., if the overall brain
activation (functional correlations on most of the fibers) was
high on time t; but low on time t,, F.SSV would be increased;
on the other hand, if a group of fibers were activated (have
high functional correlation) on time t; but deactivated on
time t,, FSSV would also be increased because of the large
difference caused by this group of fibers. The state change
point could be detected by the local maximum of FSSV. In
addition to the state change modeling introduced in
section Functional Connectivity Measurement Based on
Structurally-Connected Gray Matter Voxel Pairs using
CSC, FSSV would also be used for the state change detec-
tion, and it will be shown later that the results obtained from

these two modeling schemes, which are both based on FCYV,
are similar to each other.

Assessment of Functional Connectivity Dynamics
in Sub-networks

The FCV matrix shown in Fig. 3 was obtained from all of
the fibers in the whole brain for assessment of global brain
state changes. A natural question is how this global func-
tional brain state is correlated to the functional states of
specific sub-networks in the brain. In this paper, we used
the FCV model within a specific sub-network to investigate
the dynamics of functional connectivity between different
regions of the brain. First, we applied the HAMMER regis-
tration toolkit (Shen and Davatzikos 2002) to warp the MNI
atlas into a subject brain in consideration, which was then
used to annotate each SCGM voxel pair by the MNI atlas
labels. As a result, each SCGM pair would belong to one or
two MNI atlas regions. Then, the functional correlation of
each region with other regions can be characterized and
described by the FCV of all of the fiber bundles connecting
them, as illustrated in Fig. 6. In this figure, the functionally-
connected brain regions, which are identified by the high
FCV values, are illustrated in four different time windows.
These four time windows were then marked by (1) to (4),
where (1) and (3) were in the baseline periods, while (2) and
(4) were in the stimulus periods, as shown in the stimulus
function in Fig. 6(b). It can be clearly seen that the activated
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Fig. 5 Similarity matrix
between FCV at different
temporal points, showing clear
temporal boundaries that
represent brain state changes, as
indicated by the red boxes

brain regions exhibit different functional connectivity pat-
terns in the baseline periods and stimulus periods, respec-
tively. In the baseline periods, there are many fewer
activated brain regions, in the stimulus period, activated
regions are distributed all over the brain. Then, we investi-
gated the region-to-region functional connectivity by using
a similar method fo that described in Section Functional
Connectivity Measurement Based on Structurally-
Connected Gray Matter Voxel Pairs, but only using a subset
of the DTlI-inferred fibers that connect these specific brain
regions (Fig. 6(c)). By analyzing the functional connectivity
between different brain regions, their brain state dynamics
described by FCV patterns within sub-networks was assessed
via the similar approaches in Section Constructing Similarity/
Difference Matrix Between FCVs for Brain State Change
Detection. Finally, the functional states within those sub-
networks are compared with the global CSC curve derived
from the whole brain, in order to verify the possible common
functional dynamics patterns within both local and global
networks.

Experimental Results

In this section, we applied the modeling scheme in
sections Functional Connectivity Measurement Based on
Structurally-Connected Gray Matter Voxel Pairs and
Constructing Similarity/Difference Matrix Between FCVs
for Brain State Change Detection on three types of fMRI
data sets (the task-based fMRI, resting state fMRI and
natural stimulus fMRI) to evaluate and validate the proposed
framework in revealing the dynamics of functional brain
states. First, we applied our F'CV model on a task-based
fMRI dataset to detect global brain state change. The results
were partially validated by benchmark block-based stimuli
curves in benchmark block-based paradigm. In the second
experiment, we used the proposed framework to investigate
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functional brain state changes in resting state and under
natural stimulus of movie watching, respectively. The third
experiment compared our functional brain state change de-
tection approach with the temporal clustering analysis
(TCA) method (Gao and Yee 2003). Finally, in the fourth
experiment, we assessed the sub-network connectivity dy-
namics and compared those with global brain state changes
based on a task-based fMRI dataset.

Lateral view

Coronal view

Superior view

Fig. 6 Illustration of assessment of functional connectivity dynamics
in sub-networks. a Regions with high functional connectivity are
highlighted with colors on the cortical surface, during four separate
brain states ((1)—(4)); b Integrated external stimulus curve during task-
based fMRI. The brain state (1) and (3) in (a) correspond to the
baseline intervals in (b), and the brain state (2) and (4) in (a) corre-
spond to the stimulus intervals in (b). ¢. Example of SCGM voxel pairs
in sub-networks
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Results on Task-Based fMRI Data

We applied the proposed approaches in Sections Functional
Connectivity Measurement Based on Structurally-
Connected Gray Matter Voxel Pairs and Constructing
Similarity/Difference Matrix Between FCVs for Brain
State Change Detection on a working memory task-based
fMRI dataset (Faraco et al. 2011; Zhu et al. 2011). The FCV
and CEV matrices of the subject are shown in Fig. 7. We can
see the abrupt changes (e.g., those marked by the colored
lines) between adjacent 'CVs, which verify our premise that
the human brain undergoes through a series of functional
state changes when performing tasks. Such abrupt function-
al state change can also be clearly observed in the similarity
map of FCV matrix shown in Fig. 8, where each matrix cell
corresponds to the similarity between a pair of FCVs in
adjacent time windows (the diagonal line is the correlation
of a feature vector with itself) and the color of each cell
encodes the correlation value (the color bar is on the right).
From the correlation map, boundaries of FCV changes are
visualized as blue columns because of their low correlations.
Also, there are observable alignments between the bound-
aries of FCV changes and the external stimulus curve. In
particular, it can be appreciated that both the onsets and the
offsets of the working memory task stimulus are associated
with the brain state changes, as shown by the blue columns
aligned to the peaks and valleys of the integrated external
stimulus curve. Intuitively, the abrupt changes between ad-
jacent FCVs reflect the changes of global brain connectivity
presumably induced by the external stimulus. Notably, there
are several temporal ranges with continuously high FCV
correlations in the correlation matrix, suggesting that the
whole-brain functional connectivity remains relatively con-
stant for a period of time, until another functional brain state
change occurs. In addition, as shown in Fig. 9(a), the global
CSC 1is displayed along with the integration of working
memory task stimulus curve. We can see that the connectiv-
ity strength curve, which shows the functional synchroniza-
tion level of the whole brain, is in rough temporal alignment
with the external stimulus curve. When the brain was under
steady stimulus state or steady baseline state, the global CSC
tends to reach the high values (highlighted in purple and

Fig. 7 An example of FCVand
CEV matrix visualization over
the whole fMRI scan time
course. a FCV matrix, the black
lines show the state change
boundaries; b CEV matrix, the
red lines are voxel pair

green respectively), as the whole brain is synchronized.
These qualitative observations of the alignment of function-
al brain state dynamics identified by the model with the
external stimulus as shown in Figs. 8 and 9 are reproducible
and replicable in all of working memory fMRI data sets we
studied. It should be noted that during baseline state, if the
brain is truly at rest, the synchronized level could be very
high (as highlighted in green circle) because of the high
functional correlation between the similar fMRI signals.
However, there are cases when brain would not be at rest
during what was supposed to be the baseline state, and the
CSC is low at those periods. When in the transitional state,
the overall functional connectivity magnitude tends to be
small and undergoes substantial change, as different parts in
the brain activate asynchronously.

The FSSV of the FCVs dynamics is also shown in Fig. 9
(b). By visual inspection, the change points detected by
FSSV and CSC are similar to each other, and further com-
parison of the results obtained by the two methods shows
that over 85 % of the total state change points detected by
FSSV were within 2 temporal points distance as the state
change points detected from the derivative of CSC in all
subjects.

To further replicate the above results, we obtained the
FCV and CSC on twelve subjects with DTI and working
memory tasked-based fMRI data, and the results are pre-
sented and visualized in Fig. 10. It is evident that most of the
abrupt changes of CSC (local maximum of first-order deriv-
ative) roughly correspond to the external stimulus curve
change points, as highlighted by the yellow arrows. This
result further supports that the proposed FCV and CSC can
effectively represents the brain’s responses to external stim-
uli. Statistically, the correlations between CSC and the stim-
ulus curve are significant for all of these twelve subjects (p-
value<0.05), indicating that our data-driven method has the
ability to model and detect the functional brain state changes
presumably induced by external stimulus input. Hence, we
hypothesize that the proposed F'CV model and the global
CSC curve can effectively represent the overall functional
connectivity in the brain, and thus their abrupt changes
along the time axis can effectively identify brain state
changes. Given that the global CSC change points correlated

connections with correlation
value greater than the threshold T
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OSPAN Stimulus (Integrated)

Fig. 8 Temporal alignment between the FCV similarity map and the
integrated OSPAN stimulus curve. Blue areas indicate low temporal
correlation between F'CVs and correspond to brain state changes

well with the stimulus curve in the task-based fMRI para-
digm, we consider this result as a partial validation of our
model for brain state change detection.

Stimulus Integration ——Fiber-Centered ——Randomly Connected ——ROI-based
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Fig. 9 Temporal alignment between the stimulus curve and the global
brain CSC. The horizontal axis represents the temporal points of brain
activation, while vertical axis is the averaged functional correlation
value (except for integrated stimulus function). Global CSC for fiber-
connected voxels is shown as blue curve, global CSC for randomly
connected voxels is shown as red curve, ROI-based inferred CSC is
shown as orange curve, and the integrated stimulus curve are shown as
grey triangles. Points with high connectivity during the stimulus peri-
ods are highlighted by purple circles. Points with high connectivity
during baseline periods are highlighted by green circles. b FSSV (in
blue) of the same subject, derived from the change of connectivity
pattern between consecutive windows. Integrated stimulus curve are
shown as grey triangles

@ Springer

Results on Resting-State and Natural-Stimulus fMRI Data

In addition to task-based fMRI/DTI data, we also applied the
proposed approaches in Sections Functional Connectivity
Measurement Based on Structurally-Connected Gray Matter
Voxel Pairs and Constructing Similarity/Difference Matrix
Between FCVs for Brain State Change Detection on resting
state fMRI/DTI data (Li et al. 2010) and natural stimulus
fMRI/DTI data (Hu et al. 2012), respectively, in order to
investigate functional brain state changes under these condi-
tions. As shown in Fig. 11(a), the dynamics of functional brain
connectivity in resting state are relatively low, which indicates
a comparatively stable functional status during resting state.
This observation can also be confirmed by the visualized FCV
matrix in Fig. 11(c). As a quantitative comparison, Table 1
shows the numbers of functional brain state changes obtained
from both task-based and resting-state fMRI data sets for the
same group of subjects. The table shows that brain has much
more functional state change points in task-based fMRI data
than those in resting-state fMRI, and the difference is consis-
tently large across the same group of participating subjects.
Since the comparison is from the same group of subjects who
were coincidently scanned with both resting state fMRI and
task-based fMRI using the same scanner, the difference be-
tween the results from task-based and resting-state fMRI
proves the validity of the model, showing the link between
state change points detected and the real brain functional
connectivity dynamics. In addition, the number of edges in
CEV in task-based fMRI is also much higher than that in
resting state fMRI using the same threshold. This result is
quite reasonable since functional brain connectivity is much
more prominent when the subject is performing tasks. It
should be noted that even in resting state, the brain could be
still under continuous brain state changes. For instance, the
five brains in Table 1 had 15 state changes on average during
the resting state fMRI scan periods. This result is in agreement
with the recent report in (Chang and Glover 2010) that the
functional connectivity is under dynamic changes within mul-
tiple time scales.

In contrast, when the proposed fiber-centered brain state
change detection approaches in Sections Functional
Connectivity Measurement Based on Structurally-Connected
Gray Matter Voxel Pairs and Constructing Similarity/
Difference Matrix Between FCVs for Brain State Change
Detection were applied on the natural stimulus fMRI data
under movie watching (Hu et al. 2010, 2012), it turned out
that there are many more functional brain state changes, as
shown in Fig. 11(b), which can also be observed by the
visualized FCV in Fig. 11(d). Also, examples of fibers with
high functional connectivity at different time windows are
visualized in Fig. 12. When comparing the functional state
change dynamics between resting state and natural stimulus in
Fig. 12, it can be clearly seen that the numbers of functionally
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Fig. 11 FCV matrices and its
similarity matrices in resting
state and under natural
stimulus. a Similarity matrix for
resting state fMRI data. b
Similarity matrix for natural
stimulus fMRI data. ¢ FCV
matrices for resting state. d
FCV matrices for natural
stimulus

Timei

—

b Natural Stimulus ‘Simila:ity

connected fibers during resting state varies much less tempo-
rally, while those during natural stimulus fMRI scans change
dramatically. Due to the lack of widely-accepted quantitative
measurements of the natural stimulus curves at the current
stage, we only performed this qualitative study and further
quantitative analysis of the FCV and natural stimulus curves
are left to our future work. It should be emphasized that our
FCV model and brain change detection method can clearly
reveal the brain dynamics during natural stimulus of movie
watching.

Rationale of Using Fiber-Guided Functional Connectivity
Modeling

To demonstrate the benefit of using structural information in
guiding the modeling of functional connectivity and validate
our premise that structurally connected brain voxels are
more likely to be functionally connected, we analyzed the
functional correlation of fiber-connected voxel pairs, as well

+1.0

0.5

as the same number of randomly selected GM voxel pairs, in
the whole time course. The histograms of the results are
shown in Fig. 13, where blue bars are the correlations
between fiber-connected point pairs and red bars are the
correlations between random points. From the figure we
can see that there are much more highly functionally corre-
lated voxel pairs connected by fibers, comparing to those of
random voxel pairs. Besides the histogram from two sub-
jects shown in Fig. 13 as an example, we have observed the
same trend of difference in correlations of all subjects.
Also, we obtained the FCV and the CSC between the
randomly selected GM voxel pairs using the same model.
The CSC is shown as the green curve in Fig. 9(a), compar-
ing to fiber-centered CSC as the blue curve. From the figure,
it is evident that the randomly selected GM voxel pairs have
much lower global functional connectivity than the fiber-
centered SCGMs, suggesting that the proposed fiber-
centered approach has good effectiveness in representing
functional brain states and in detecting their changes. It is

Table 1 Numbers of brain state

changes detected and the aver- State change number

State change numbers in

% of edges in CEVin % of edges in CEV in

age percentages of CEV edges in in task-based fMRI resting-state fMRI task-based fMRI resting-state fMRI
task-based fMRI and resting
state fMRI. Five subjects who Subl 27 7 34 % 28 %
had both task-based fMRI and Sub2 30 16 37 % 27 %
resting state fMRI data sets were Sub3 20 16 379, 22 9
analyzed
Sub4 37 17 38 % 35%
Sub5 38 18 38 % 27 %
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Fig. 12 Visualization of fibers with functional connectivity value
(defined as the averaged FC of all voxel pairs connected by the fiber
greater than a predefined threshold from a randomly selected subject. a

interesting that the CSC of randomly selected GM voxel
pairs also roughly follows the shape of that of fiber-centered
SCGMs, which might suggest that the whole brain is really
undergoing a stable functional state change. However, the
underlying reasons that could potentially explain the similar
CSC curves of both fiber-connected and randomly selected
voxel pairs should be investigated in the future. Our current
interpretation is that the global functional brain state
changes in response to the external stimulus drive the over-
all CSC shape patterns, despite the significant difference in
connectivity strengths for fiber-connected and randomly
selected voxel pairs.

The Effect of Sliding Time Window Length

To investigate the potential effect of the chosen of sliding
time window length on the results, we have tested and
compared 15 different window sizes from 19 to 49 time
points, by using both square-edged and tapered window.
Four CSCs obtained from different window sizes ranging
from 19 to 49 are selected to ben shown in Fig. 14(a) to (d).
It could be seen that the CSCs were all roughly aligned with
the stimulus function and are in correspondence with each
other, suggesting the FCV model and brain state change
detection result are not sensitive to the selection of the
specific time window length. Also, Fig. 14(e) is the moving
average of Fig. 14(a) (sliding time window length of 19),
and is similar with Fig. 14(c) (sliding time window length of
39). This similarity suggests that using a larger sliding time
window for the model has similar effect of smoothing the
model results. From all the window size tested on all sub-
jects, the experiment results showed a monotonically

Fig. 13 Histograms of a
Pearson’s correlations 0.15
(correlation coefficient are
binned at horizontal axis) of
SCGM voxel pairs (blue bars)
and randomly selected GM
voxel pairs (red bars) of two 0.0
subjects

0.

-

w

Functional connectivity during resting state in two different time win-
dows; b Functional connectivity during natural stimulus states (when
watching CNN video news) within three different time windows

decreasing of the change points detected by the model,
indicating a trade-off between the model sensitivity in
detecting change points and its vulnerability to noise. The
optimal length of sliding time window is related to the
frequency response of the brain and fMRI BOLD signal.
In this work, the length was determined experimentally to be
23, which is twice of the period (23 s) of the normal cut-off
frequency (0.08 Hz) for low-pass filter (Fox and Raichle
2007), thus the temporal length should cover sufficient
BOLD signal and recover the correlation pattern.

Comparison with Temporal Clustering Analysis (TCA)

Temporal clustering analysis (TCA) is a method that uses
the fMRI BOLD signal to detect the occurrence of maximal
signal response in the brain (Gao and Yee 2003). In brief,
TCA is performed by creating a histogram of the voxels that
reach their maximum signal at each time point in the time
axis, and then the global signal peaks can be selected (Gao
and Yee 2003). For quantitative comparisons, the TCA
method was applied on the same task-based fMRI dataset
used in Section Results on Task-Based fMRI Data, and the
results are shown in Figs. 15 and 16 and Table 1. It can be
clearly seen in Fig. 15 that certain brain responses to the
external stimulus can be detected by TCA, and they are in
correspondence with our results (highlighted by green
circles). However, the number of functional brain state
changes that can be successfully identified by our method
is substantially more (represented by green circles) than
those by the TCA method, meaning that our method is more
sensitive and accurate in detecting functional brain state
changes. In particular, these above results are reproducible
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“ ||| ot n\
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Fig. 14 Global CSC curves obtained by using four different sliding 1 76 151 226

time window lengths: a sliding time window length=19; b sliding time
window length=29; ¢ sliding time window length=39; d sliding time
window length=49. e Moving average of (a) (length 19) with the
window size of 12. The curves have been trimmed to enable
comparisons

in all of other subjects we scanned, as shown in Fig. 16.
Quantitative comparisons between FCV model and the TCA
method are provided in Table 2. Specifically, 48.9 % of the
functional brain state changes can be detected by both
methods, but other 46.8 % of the functional brain state
changes can only be detected by FCV model. This result
suggests the superiority of the FCV model over TCA in
terms of better sensitivity to functional brain state changes.

Stimulus Function ——Global CSC curve ——TCA Result
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0.4
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Fig. 15 Result comparison with TCA method. The blue curve is the
global CSC obtained by FCV method, and the red curve is the result
obtained by TCA. The magnitudes of both curves have been normal-
ized to be in the range of (0, 1). State changes detected by both
methods are highlighted by green circles. State changes detected only
by FCV model are highlighted by purple circles
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Fig. 16 Additional results of comparisons between FCV model with
the TCA method for two subjects. The blue curve is the temporal
derivative curve of the global CSC, and the red curve is the result
obtained by TCA

Our interpretation of the performance difference between
the proposed method and the TCA method is that TCA is
performed on the raw fMRI signals, which might be sensi-
tive to the low signal-to-noise ratio; while FCV model is
based on the temporal correlation curve between fMRI
signals of SCGM pairs, which could better reflect the tem-
poral dynamics of functional connectivity and be more
robust to noises (Lv et al. 2010; Lim et al. 2011).

Comparison with ROI-Based Functional Connectivity
Dynamics

Recently, a large set of consistent and correspondent cortical
landmarks (named Dense Individualized and Common
Connectivity-based Cortical Landmarks, or DICCCOL) were
discovered and validated by optimizing group-wise consisten-
cy of DTI-derived fiber shape patterns (Zhu et al. 2011, 2012).
This set of DICCCOL ROIs has been reproduced in four
separate healthy populations (Zhu et al. 2012), and could be
predicted on new individual subject only based on DTI data
(Zhang et al. 2011; Zhu et al. 2011, 2012). The definition of
DICCCOL ROIs and the source codes are available at: http:/
dicccol.cs.uga.edu. Based on the fMRI signal extracted from
each ROI, the dynamics of functional connectivity between
ROIs were studied using a similar sliding time window


http://dicccol.cs.uga.edu
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Table 2 Comparison of the
change points detected by FCV
model and the TCA method.

Benchmark change
points determined by

Additional change
points detected by

Additional change
points detected by

Common change
points detected by

Column 2-4 only listed the visual examination both models FCV model only TCA only

number of change points which

were determined by visual ex- Subl 11 3 8 0

amination and also detected by Sub2 14 7 5 2

either of the models Sub3 10 7 3 0
Sub4 12 6 6 0
Total 47 23 (48.9 %) 22 (46.8 %) 2 (4.3 %)

approach described in section Functional Connectivity
Measurement Based on Structurally-Connected Gray Matter
Voxel Pairs, where the FCV was composed of functional
connectivity between fMRI signals extracted from ROISs rath-
er than between signals extracted from fiber-centered voxel
pairs. Specifically, at each time window, a 358*358 FCV was
obtained, and each of its elements was the pairwise correlation
between ROIs. Then, the CSC was obtained by averaging the
FCV at each time window and concatenating all the averaged
value into a vector, e.g., as shown by the orange curve in Fig. 9
(a). From the curves in the figure, it could be seen that CSC
obtained from ROI-based model is in correspondent with the
CSC obtained from fiber-centered model. Similar results were
observed in all other subjects we studied, proving the effec-
tiveness of the model and the potential in applying the sliding
time window functional connectivity modeling on other data
sets. On the other hand, the variation of CSC identified from
ROI-based model is much smaller than CSC identified from
fiber-centered model, which could probably be caused by the
fact that time series abstracted from each ROI was the aver-
aged fMRI signal of all voxels defined in that ROI, thus
potentially lower the contrast of functional correlation be-
tween ROIs. CSC magnitude of variation from ROI-based
model is around 40 % lower than that from fiber-centered
model, thus reducing its power in state change point detection
and lowering the number of state change points detected by
25 % for all subjects on average, including some benchmark
change points that could be determined by visual examination.

Sub-network Analysis

In this section, we examined the functional brain state
change in sub-networks on the task-based fMRI dataset
described in Section Data Acquisition and Preprocessing
via the methods in Section Assessment of Functional
Connectivity Dynamics in Sub-networks. Figure 17 shows
an example of the temporal dynamics of functional connec-
tivity between the “middle frontal gyrus right” to other three
brain regions, including the “middle frontal gyrus left”, the
“superior frontal gyrus left”, and the “thalamus left” respec-
tively. In Fig. 17, the temporally changing patterns of func-
tional connectivity in these three sub-networks have

considerable degree of similarity with the global brain
CSC (in purple dashed line), suggesting that the global
CSC reflects the summation of state curves of sub-
networks in the brain. We have applied the analysis on all
of our data, and it turned out that there are a variety of sub-
networks with synchronized functional brain state dynamics
that are similar to the global CSC. Based on quantitative
analysis of 13 subjects, Table 3 lists the common sub-
networks with synchronized functional brain state dynamics
that are presented repeatedly in at least 12 subjects. These
results demonstrate that the global brain functional dynam-
ics described by global CSC is closely correlated to the
functional dynamics within the sub-networks in the brain
described by local CSC, further supporting our hypothesis
that the F'CV model is an effective representation of func-
tional brain states.

Discussion and Conclusion

In this study, we investigated the concept of representing
functional brain state change by the whole-brain functional
connectivity, and presented a fiber-centered FCV model that
can characterize and detect brain state change via data-
driven approaches. The FCV model represents the brain’s
global functional connectivity state through the temporal
correlations of fMRI time series signals extracted from
structurally-connected grey matter voxels in temporally slid-
ing windows. The functional brain state change detection
was formulated as abrupt change point detection on the
global CSC derived from FCV. Experimental results demon-
strated that the detected changes points in task-based fMRI
data well corresponded to the block-based stimulus para-
digm, and are substantially better than the results obtained
by the TCA method. FCV model is also applied on resting
state fMRI and natural stimulus fMRI data and reasonable
results are obtained, which further indicate the effectiveness
of the proposed approaches. In general, FCV model and the
experimental results offered novel perspectives and insights
into the functional dynamics of the brain in resting state,
during task performance and under natural stimulus. In
contrast, these revealed functional dynamics can hardly be
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0.7

Fig. 17 Functional connectivity dynamics on three sub-networks. The
curves in the figure are the local CSC between structurally-connected
brain regions. The blue curve (A) is the functional connectivity
strength between “middle frontal gyrus right” and “middle frontal
gyrus left”. The red curve (B) is the connectivity strength between

seen by traditional static functional connectivity analysis
(e.g., Wang et al. 2006; Dickerson and Sperling 2009; Liu
2011), which is the major motivation of this work.

There are several lines of research directions that could
potentially improve the current computational pipeline of
brain state detection substantially. Currently, the brain state
changes are modeled by the local maximum above a pre-
defined threshold on the temporal derivative of the averaged
FCV (CSC), as well as the local maximum of the difference
between adjacent FCVs (FSSV). Though this method is
effective and efficient, other alternative approaches such as
those statistical algorithms in (Lindquist et al. 2007) and
(Robinson et al. 2010) could be investigated and compared
for more accurate change point detection in the future. In
this work, only the pairwise connections between two ends
of fibers (Sections Functional Connectivity Measurement
Based on Structurally-Connected Gray Matter Voxel Pairs
and Constructing Similarity/Difference Matrix Between
FCVs for Brain State Change Detection) or Brodmann areas
(Section Assessment of Functional Connectivity Dynamics

—@
—®)
—(©)
== (D)

the “middle frontal gyrus right” and the “superior frontal gyrus left”.
The green curve (C) is the connectivity strength between the “middle
frontal gyrus right” and the “thalamus left”. The dashed purple curve
(D) is the global CSC for the purpose of comparison

in Sub-networks) were considered. In the future, we plan to
improve the FCV model by integrating and fusing more
information from other functionally-specialized brain sub-
networks, such as the attention, emotion, vision, and lan-
guage systems determined by task-based fMRI, for better
modeling and characterization of functional brain dynamics.
Also, the functional state changes within these different
brain networks will be examined and compared to verify
that the proposed methodology can effectively reveal the
common patterns of functional dynamics.

Given that there is very few ground-truth data in fMRI,
complete validation of the proposed computational pipeline
will be challenging. Nevertheless, we plan to further evalu-
ate and partially validate the proposed FCV model and
functional brain state change detection approaches via
large-scale task-based fMRI data sets that can at least pro-
vide meaningful benchmarks for comparisons. Similarly, the
correlations between the detected functional brain change
points and those of the block-based paradigm curves will be
used as the metric. Another possibility is to generate

Table 3 13 sub-networks that

consistently exhibit synchro-
nized functional brain state dy-
namics similar to the global CSC
curves across in least 12 sub-
jects. Each row is one sub-
network. The three right col-
umns list the names of the sub-
network nodes. One example of
the visualizations of the brain
state dynamics of these sub-
networks is shown in Fig. 17

@ Springer

Region 1

Region 2

Region 3

Subnetwork 1
Subnetwork 2
Subnetwork 3
Subnetwork 4
Subnetwork 5
Subnetwork 6
Subnetwork 7
Subnetwork 8
Subnetwork 9
Subnetwork 10
Subnetwork 11
Subnetwork 12
Subnetwork 13

middle frontal gyrus right
brain stem

precentral gyrus right
medial frontal gyrus left
medial frontal gyrus left
inferior frontal gyrus left
inferior frontal gyrus left
inferior frontal gyrus left
brain stem

brain stem

precuneus right

inferior occipital gyrus left

insula left

angular gyrus right
middle frontal gyrus right
brain stem

inferior frontal gyrus left
brain stem

brain stem

middle occipital gyrus left
middle frontal gyrus left
middle frontal gyrus left
superior frontal gyrus left
medial frontal gyrus right
middle temporal gyrus left
middle occipital gyrus left

inferior frontal gyrus right
thalamus right

postcentral gyrus right
superior frontal gyrus left
medial frontal gyrus left
thalamus left

angular gyrus left

middle occipital gyrus left
thalamus left

thalamus left

cuneus right

middle occipital gyrus left

angular gyrus left
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simulated functional brain states and their temporal dynam-
ics, e.g., via the approaches in (Smith et al. 2011), as
ground-truth data to partially validate the proposed
approaches. For instance, if the proposed approaches can
detect a majority of the simulated brain state changes, it can
be considered as a strong evidence of effectiveness and
accuracy of the methods.

Furthermore, the neuroscience interpretations of the
revealed functional state dynamics and their applications in
studying brain diseases/conditions should be investigated in
the future. For example, the functional connectivity and
interaction patterns within each quasi-stationary temporal
segment should be assessed and compared. In addition, the
temporal transition patterns of these functional interactions
should also be studied to better understand the possible
functional state space of the brain. Finally, the proposed
FCV model and functional brain state change approaches
will be applied to assess different brain diseases/conditions
such as Alzheimer’s disease and Schizophrenia, which
might be associated with abnormal functional brain dynam-
ics (Hu et al. 2011). We envision that better modeling and
characterization of the functional brain dynamics will sig-
nificantly advance our understanding of the working mech-
anisms of the brain in health and diseases.
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