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Abstract A relatively underexplored question in fMRI is
whether there are intrinsic differences in terms of signal com-
position patterns that can effectively characterize and differ-
entiate task-based or resting state fMRI (tfMRI or rsfMRI)
signals. In this paper, we propose a novel two-stage sparse
representation framework to examine the fundamental differ-
ence between tfMRI and rsfMRI signals. Specifically, in the
first stage, the whole-brain tfMRI or rsfMRI signals of each
subject were composed into a big data matrix, which was then
factorized into a subject-specific dictionary matrix and a
weight coefficient matrix for sparse representation. In the sec-
ond stage, all of the dictionary matrices from both tfMRI/
rsfMRI data across multiple subjects were composed into an-
other big data-matrix, which was further sparsely represented
by a cross-subjects common dictionary and a weight matrix.
This framework has been applied on the recently publicly
released Human Connectome Project (HCP) fMRI data and
experimental results revealed that there are distinctive and
descriptive atoms in the cross-subjects common dictionary
that can effectively characterize and differentiate tfMRI and
rsfMRI signals, achieving 100 % classification accuracy.
Moreover, our methods and results can be meaningfully
interpreted, e.g., the well-known default mode network

(DMN) activities can be recovered from the very noisy and
heterogeneous aggregated big-data of tfMRI and rsfMRI sig-
nals across all subjects in HCP Q1 release.

Keywords Task-based fMRI . Resting-state fMRI . Sparse
coding . Online dictionary learning

Introduction

Functional magnetic resonance imaging (fMRI) based on
blood-oxygen-level dependent (BOLD) techniques has been
widely used to study the functional activities and cognitive
behaviors of the brain based on the induced stimulus by tasks,
i.e., task fMRI (tfMRI) (Worsley and Friston 1995; Worsley
1997; Linden et al. 1999; Heeger and Ress 2002; Calhoun
et al. 2011) or during task-free resting-state, i.e., resting state
fMRI (rsfMRI) (Raichle et al. 2001; Fox and Raichle 2007).
To infer meaningful neuroscientific patterns within fMRI data,
various computational/statistical methods have been pro-
posed, including the widely-used general linear model
(GLM) for tfMRI (Friston et al. 1994; Worsley 1997), inde-
pendent component analysis (ICA) for rsfMRI (McKeown
et al. 1998), as well as many other methods, including
wavelet algorithms (Bullmore et al. 2003; Shimizu et al.
2004), Markov random field (MRF) models (Descombes
et al. 1998), mixture models (Hartvig and Jensen 2000),
autoregressive spatial models (Woolrich et al. 2014), and
Bayesian approaches (Luo and Puthusserypady 2007). In the-
se methods, GLM is one of the most widely used methods due
to its effectiveness, simplicity, robustness, and wide availabil-
ity (Friston et al. 1994; Worsley 1997; Lv et al. 2014a, b).

However, a relatively underexplored question in tfMRI and
rsfMRI is whether there exists intrinsic, fundamental
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differences in signal composition patterns which can effective-
ly characterize and differentiate these two types of fMRI sig-
nals. As task-based fMRI is widely adopted to identify brain
regions that are functionally involved in a specific task perfor-
mance, while resting state fMRI is used to explore the intrin-
sically functionally segregation or specialization of brain
regions/networks (Logothetis 2008), such differences could
inspire better understanding for the organization and origina-
tion of the brain cognitive functioning. Also, determining
whether participants are focusing on task during task scan or
being rest during resting state scan could be very crucial for
the further analysis. As far as we know, there are at least three
challenges in addressing the above question. Firstly, the vari-
ability of fMRI signals across brain scans and across individ-
ual subjects could be remarkable. Despite the success of using
GLM-based framework in analyzing individual brain activa-
tion patterns (e.g., Worsley and Friston 1995; Bullmore et al.
1996; Woolrich et al. 2001), it has been challenging to derive
consistent fMRI activation patterns across different brains and
populations due to the huge variability between individuals
(Brett et al. 2002; Mueller et al. 2013). Many research studies
have been done to investigate the individual variability in
brain imaging, and it has been shown that there are several
major sources of variability (which are often mixed): 1) the
variability in the structure and its corresponding functionality
between individual brains, as it has been shown that the stan-
dardized parcellation of the brain still poses a major difficulty
in terms of function and microanatomy (Brett et al. 2002); 2)
the variability of each individual’s response to the external
stimulus during tfMRI scanning, as well as their variability
during resting-state, which are even more significant. For in-
stance, it has been reported that there is significant and sub-
stantial variability in the shape of responses collected across
subjects, and even across multiple scans of a single subject
(Aguirre et al. 1998; Barch et al. 2013; Steinmetz and Seitz
1991); 3) and consequently, the variability in the spatial dis-
tribution of the activation patterns obtained by GLM and/or
functional networks inferred by network analysis could be
even larger, as mentioned in the literature (McGonigle et al.
2000; Handwerker et al. 2004).

Secondly, the amount of whole-brain, voxel-wise fMRI
signals from multiple subjects could be immense. For exam-
ple, high-resolution tfMRI scans from the recently publicly
released Human Connectome Project (HCP) has around 150,
000–200,000 time series signals for one subject during a sin-
gle task/resting-state scan (Barch et al. 2013). In total, for Q1
release of HCP data, there are around 10,200,000–13,600,000
time series signals for all 60 subjects of a single task. As this
dataset includes 7 tasks and 1 resting state scans, the total size
will grow to 81 million. The memory capacity on a server/
workstation level can barely handle such a great amount of
data. Also, there would be many more subjects involved if we
aim to conduct a cross-population study. Therefore, eventually

we would need a scalable computational framework with the
capacity of handling the big-data of fMRI signals to any avail-
able size to obtain meaningful groupwise result.

Thirdly, there are a variety of noise sources in fMRI sig-
nals. During fMRI scans, several factors including scanner
instability, experiment design deficits, and effects of suscepti-
bility of high fields may all lead to noise (Stocker et al. 2005;
Hu and Norris 2004). For an individual subject, head motion,
lack of attention, and other factors that are not related to the
experiment design could also introduce noise (Stocker et al.
2005). There have been various studies focused on fMRI im-
aging quality with enormous techniques developed for the
signal de-noising and artifact removal (Simmons et al. 1999;
Foland and Glover 2004; Stocker et al. 2005; Friedman and
Glover 2006). However, it has been rarely explored if big-data
analytic strategies such as dictionary learning and sparse rep-
resentation could potentially effectively deal with such a vari-
ety of noise from the entire brains of multiple subjects.

Inspired by the successes of using sparse representation in
pattern recognition (Mairal et al. 2009; Kreutz-Delgado et al.
2003; Aharon et al. 2006; Lewicki and Sejnowski 2000;
Wright et al. 2010) and in brain functional imaging analysis
(Lee et al. 2011; Li et al. 2009, 2012; Yamashita et al. 2008;
Lv et al. 2014a, b; Li et al. 2013), in this paper, we propose a
novel two-stage sparse representation framework to obtain a
groupwise characterization of fMRI signals obtained during
various tasks (or during resting-state), which have the capa-
bility of addressing the abovementioned three challenges.
Specifically, for the first challenge, the sparse-constrained
dictionary learning method has been algorithmically shown
to be capable of identifying the representative components
from the given fMRI dataset as the activation maps from the
fMRI study usually have little overlap (Daubechies et al.
2009). Further, proposed framework would put the represen-
tative dictionary matrix from each individual into the same
space established by the common dictionary learned at the
second stage, thus dealing with the inter-subject variability
problem for analysis without losing individual information.
For the second challenge, the two-stage framework applies a
divide-and-conquer scheme by first reducing the data of each
individual to its dictionary-based representation, and then ag-
gregating the reduced data into a new input to learn the
groupwise dictionary. Using the HCP Q1 dataset as an exam-
ple, after the first stage, we would learn 400 dictionary atoms
from 150,000 to 200,000 signals for each of the 60 subjects
(Lv et al. 2014a), while the sparsity constraint imposed on the
learning process ensures that the learned dictionaries could
cover the major information of the massive number of signals.
Thus, at the second stage, the input would be of a much-
reduced size (400*60), and we can learn a common dictionary
of all the subjects at ease, compared with the computational
load of decomposing 10,200,000–13,600,000 signals. For the
third challenge, as the sparse representations learned at the
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first stage capture the most prominent temporal activities and
their corresponding spatial organization patterns of the brain
functional signal, the individual dictionaries, which serve as
the input of the second stage dictionary learning, essentially
have been de-noised, since in most cases noise signals are
temporally inhomogeneous and spatially scattered.

The organization of this paper is as follows: in the method
section we introduce our two-stage dictionary learning frame-
work with a running example. Then the result section provides
the accuracy of classification on task/resting-state fMRI data,
which serves as the main verification of the proposed frame-
work. After that, we provide the spatial/temporal characteri-
zation of three types of the common functional components
obtained by the framework, which are the main new findings
of our work.

Materials and methods

Overview

The computational flowchart of the proposed framework is
summarized in Fig. 1, and a running example of the frame-
work applied on the combined dataset of working memory
(WM) and resting-state (RS) fMRI is illustrated in Fig. 2. In

the first stage (Fig. 1a), we apply the dictionary learning
method on the whole-brain tfMRI and rsfMRI signals from
each subject (in both training and testing datasets) to learn
dictionaries Dt (from tfMRI) and Dr (from rsfMRI) with the
corresponding loading coefficients αt and αr, and the ex-
ample results are shown in Fig. 2b. In this work, each atom
in the learned dictionary along with its loading coefficient
would be termed as Bfunctional component^, since it is
considered as a functional basis that constitutes the whole
brain activities. Then the dictionaries Dt and Dr learned at
the first stage from half of the entire subjects (i.e., training
dataset) would be aggregated into one single matrix S*
(Fig. 1b, with an example in Fig. 2c), which serves as the
input for the second-stage dictionary learning to infer a
new, groupwise common dictionary D* and loading coeffi-
cient α* (Figs. 1c and 2d). Atoms in the common dictionary
and their estimated spatial maps are then termed as
Bcommon functional component^, as they are inferred
groupwise and constitute the functional activity variation
for all subjects involved. Further, the most discriminative
atoms in the common dictionary would be selected by ana-
lyzing the loading coefficients α* as classification features
(Fig. 1f, illustrated in Fig. 2e). The selected common func-
tional components are then used to train a support vector
machine (SVM) for the classification of the dictionaries

Fig. 1 Overview of the two-stage dictionary learning scheme: a First-
stage dictionary learning routine for each individual subject and for each
task type (blue: fMRI data obtained during task, red: fMRI data obtained
during resting-state). αt

1 denotes the loading coefficients obtained from
the tfMRI of subject1 etc. b Construction of the second-stage dictionary
learning input S* and sparse coding input S*test. c Second-stage

dictionary learning performed on S* to obtain D* (common dictionary)
and α*. d Using D* for the sparse coding on S*test, obtaining α*test. e
Estimation of the spatial re-maps of common functional components. f
Calculating ROAvector by analyzing α*, then performing classification-
based feature selection. g Training SVM. h Applying SVM on α*test for
the classification of the testing dataset
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learned from the half of subjects (i.e., testing dataset) dur-
ing the classification stage, as in Fig. 1g–h.

Data acquisition and preprocessing

The dataset used in this work comes from the Human
Connectome Project Q1 release (Barch et al. 2013; Van Essen
et al. 2013). The acquisition parameters of tfMRI data as fol-
lows: 90×104 matrix, 220 mm FOV, 72 slices, TR=0.72 s,
TE=33.1 ms, flip angle=52°, BW=2290 Hz/Px, in-plane
FOV=208×180 mm, 2.0 mm isotropic voxels. For tfMRI
images, the preprocessing pipelines included motion correc-
tion, spatial smoothing, temporal pre-whitening, slice time
correction, global drift removal. For more detailed data acqui-
sition and preprocessing, refer to (Barch et al. 2013; Van Essen
et al. 2013). rsfMRI data were acquired with the same EPI
pulse sequence parameters as T-fMRI (Smith et al. 2013).
The time length of each task and resting state are shown here:
resting state (1200 frames), working memory (405 frames),
gambling (253 frames), motor (284 frames), language (316
frames), social cognition (274 frames), relational processing
(232 frames), emotion processing (176 frames). As there are
60 subjects in the released dataset, in this work half (30) of the

subjects were used for training (i.e., common dictionary learn-
ing and feature set constructing), while data from the other
half were used for testing (i.e., classification). When used as
dictionary learning input, signals on each voxel are normal-
ized to have unit l2-norm for both tfMRI and rsfMRI data.

Two-stage dictionary learning

First-stage dictionary learning method

In the first stage, the effective online dictionary learning algo-
rithm (Mairal et al. 2009) is adopted to learn a dictionary with
sparsity constraint from the whole-brain fMRI signals from
grey and white matter voxels (with time length t and voxel
number n) of each subject from both the training and testing
datasets. The algorithm would learn a meaningful and over-
complete dictionary D consisting of k atoms (m>t, m<<n) to
represent S with the corresponding sparse loading coefficient
matrix α, as each signal in S is supposed to be represented by
the most relevant atoms in the learned dictionary. Specifically,
for the fMRI signal set S=[s1,s2,…sn]ϵℝ

t×n, the loss function
for the dictionary learning algorithm to minimize is defined in
Eq. (1) with a l1 regularization that yields to a sparse constraint

Fig. 2 A running example
illustrating the two-stage
dictionary learning framework
using WM/rs fMRI dataset: a
fMRI signals from WM (in blue)
and resting-state (in red), from a
total of 30 subjects; bDictionaries
(upper time series plot) and
loading coefficients (lower spatial
maps) obtained from the first
stage dictionary learning. Each
type of data from each subject
would obtain 400 dictionaries and
corresponding loading
coefficients; c Aggregation of all
learned dictionaries; d Common
dictionaries (left) and their
loading coefficients (right)
obtained from the second stage
dictionary learning, over a total
number of 50; e Spatial maps of
the common functional
components estimated using
Eq. (3). The color-coded ROA
vector of common functional
components are shown below,
selected components are
highlighted by yellow circles
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to the loading coefficient α (constrained by non-negativity),
where λ is a regularization parameter to trade-off the regres-
sion residual and sparsity level:

minDϵℝt�k ;αϵℝk�n

1

2
jjS−DαjjF þ λjjαjj1;1 ð1Þ

To prevent D from arbitrarily large values which leads to
trivial solution of the optimization, its columns d1,d2,……dk
are constrained by Eq. (2).

C≜ Dϵℝt�k s:t: ∀j j ¼ 1;…k; dTj d j≤1
n o

ð2Þ

In brief, dictionary learning can be rewritten as a matrix
factorization problem for both D and α, and we use the effec-
tive online dictionary learning methods in (Mairal et al. 2009)
to derive the solution by iteratively updating D and α in
Eq. (1) during the optimization. It should be noted that we
employ the same assumption as in previous studies, (Li et al.
2009, 2012; Lee et al. 2011, 2013; Oikonomou et al. 2012;
Abolghasemi et al. 2013) that the atomic components (which
are dictionary atoms in D in our work) involved in each
voxel’s fMRI signal are a few major ones, and the neural
integration of those components is linear. In this work, the
value of λ and dictionary size m were determined experimen-
tally (λ=0.1, k=400) (Lv et al. 2014a, b). After the dictionary
learning, the resulting D matrix contains the temporal varia-
tion of each atomic basis component of the functional brain,
while the corresponding sparse loading coefficient matrix α
contains the spatial distribution of each component, both illus-
trated in Fig. 2b.

Based on the dictionary learning results of each individual
brain, our next major task is to obtain a groupwise character-
ization that could reveal the distinctive organization patterns
between the brains’ fMRI data under different conditions.

Second-stage dictionary learning and common functional
components re-mapping

In this stage, all the learned dictionaries from tfMRI and
rsfMRI are aggregated together to form a multi-subject,
multi-type matrix S* of dimension t×(2kp), where p is the
number of subjects in the dataset in Fig. 2c. Note that in
HCP dataset, rsfMRI data has a longer temporal length than
tfMRI data for all tasks and so does the learned dictionaries.
Thus we truncated the learnedDr to make them have the same
length with Dt, thus enabling the aggregation of the dictionar-
ies from different task types. S* would then be used as the
input for the second-stage dictionary learning analysis based
on the same method as introduced previously (λ=0.1,m=50),
aiming at obtaining a groupwise common dictionary D* and
the corresponding loading coefficients α* (constrained by
non-negativity). Compared with the original fMRI data which

are defined on the whole brain voxels of each subject, our
proposed two-stage framework achieves a huge size reduction
while still maintaining the major functional characterization
for each individual. More importantly, noise and undesired
voxel-wise signal fluctuations are largely removed in S*, thus
we can ensure that most of the common functional compo-
nents can represent the groupwise consistent functional activ-
ities, and their differences are from the intrinsic features of
functional brain activity patterns. As the common dictionaries
are defined on the groupwise aggregated dictionaries, it is then
important to estimate their spatial maps over the brain (i.e.,
spatial re-mapping). In this work, the re-mapping is achieved
by first aligning all the brains into the same template using
linear registration. The aligning procedure first registered the
averaged frames of fMRI data into the MNI standard space of
each individual subject, then the transform matrix obtained
from the registration was applied to the loading coefficient
matrix α of that subject, transformed it into α’. In this study,
we had tried both linear and non-linear registration methods
and obtained similar results for the re-mapping. Then the
spatial map of the i-th common functional component
(ReMapi) is obtained by:

ReMapi ¼
Xp

x¼1

Xk

y¼1

α
0
x;ytask

⋅α*
i; x−1ð Þkþy þ

Xp

x¼1

Xk

y¼1

α
0
x;y

resting
⋅α*

i; pþx−1ð Þkþy

 !
=2kp

ð3Þ

where α’
x,y, task is the loading coefficient matrix of the y-th

dictionary (over the total of k) of the x-th subject (over the
total of p) obtained from the first stage dictionary learning on
tfMRI, after registration to the template, α’

x,y, resting is the
loading coefficient matrix of the rsfMRI result, after registra-
tion to the template, andα*

i is the value of their corresponding
loading coefficient for the i-th common dictionary from the
second stage dictionary learning. In other words, the spatial
maps of the common components are the weighted average
from each individual component of each subject. Several sam-
ple spatial mapping results (ReMap) are showns in Fig. 2e.

Feature selection on common functional components

As discussed above, the common dictionaries D* and their
corresponding loading coefficients α* obtained at the
second-stage dictionary learning capture the groupwise char-
acteristics of both types of the input fMRI data. Further, the
row vectors in the loading coefficients α* indicate the weight
of the corresponding common dictionary’s activation in each
atom in S*. An example α* matrix obtained from the WM/
resting-state fMRI datasets is visualized in Fig. 2d. The [i, j]-th
cell in α* indicates how the i-th common dictionary is acti-
vated in the j-th atom in S*. As the composition of S* is
known in the training dataset (the pattern is illustrated in
Fig. 1b: dictionaries from tfMRI and rsfMRI are put into S*
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in turn), for the i-th common dictionary we can obtain its Ratio
of Activation (ROA) by:

ROAi ¼ log
α i; jð Þ
�� ��

0
; jth column belongs to tfMRI

α i; jð Þ
�� ��

0
; jth column belongs to rsfMRI

ð4Þ

Thus the ratio is obtained by counting the number of non-
zero entries of the row vector in S* which have been labeled as
tfMRI or rsfMRI. A sample ROA vector for all 50 common
components is visualized in Fig. 2f and color-coded by the
ratio value, where a higher ratio (e.g., B4.0^ in red) indicates
the specific common dictionary is e (4.0)=52 times more in-
volved in tfMRI than in rsfMRI, while a lower value (green)
indicates the opposite. ROA value approaching 1 (white) in-
dicates that the specific component is nearly equally activated
in both tfMRI and rsfMRI. Based on the ROAvector, we can
then select the components that are specific to either tfMRI or
rsfMRI by a high absolute value of ROA (i.e., on the two ends
of the ROA vector).

In order to quantitatively define the exact set of the com-
mon functional components reflecting the underlying data
composition, we design a data-driven algorithm based on
the premise that the loading coefficient of the selected com-
ponents shall have the maximum capacity in classifying the
data. To test this premise, the algorithm would split α* into
two halves consisting of equal number of subjects (i.e.,
columns). Then we would use only one row from the first
half of α* which corresponds to the highest ROA value to
train a Support Vector Machine (SVM) based on the
LIBSVM toolbox (Chih and Chih 2011), establishing the
relationship between the composition of common compo-
nents (i.e., loading coefficients) and the composition of raw
data (i.e., task/rs labels). Then we would use the trained
SVM to classify the same rows of the second half of α*.
After storing the classification accuracy, which is defined
by the proportion of columns in α* that has been classified
into the correct label, we would iteratively employ more
rows in α* sorted by their absolute ROA values as the fea-
ture inputs, thus selecting more features for the SVM

training and classification. In this way, the feature set (i.e.,
selected common functional components) could be deter-
mined by minimizing the classification error.

Sparse coding of the testing dataset and classification

For the purpose of verification of the proposed framework, we
performed the classification analysis on the testing dataset
which constitutes half of the total subjects. Before analyzing
the testing dataset, the loading coefficients of the previously
selected common functional components in the training
dataset would be used to train an SVM in a similar way as
in Feature selection on common functional components part.
Note that the same first-stage dictionary learning has been
performed on the testing dataset as shown in the right panel
in Fig. 1a. We could aggregate the individually-learned dictio-
naries from the testing dataset into S*testing, similar to the
formation of S* in Second-stage dictionary learning and com-
mon functional components re-mapping part. Then the com-
mon dictionary D* obtained from the training dataset would
be used to sparsely code S*testing by solving a typical l-1 reg-
ularized LASSO problem (Fig. 1d) to obtain its corresponding
loading coefficients αtesting:

ℓ αtesting

� �
≜ min

αtestingϵℝ
m�n

1

2
jjStesting−D*αtestingjjF þ λjjαtestingjj1;1

ð5Þ

α*testing has the similar implications with α*, and the differ-
ence between them is that α* and D* were learned simulta-
neously from the training dataset utilizing an optimization
routine, while α*testing is the deterministic LASSO solution
of projectingD* on a new dataset. As the tfMRI/rsfMRI com-
position pattern inαtesting is unknown, the trained SVMwould
be used to classify the rows in α*testing that correspond to
feature selection results to obtain the labels of the columns
in α*testing. Thus the link between training and testing dataset
is established by the fact that both of their individual dictio-
naries learned during the first stage are sparsely coded by the
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Fig. 3 Number of components
selected for the classification (x-
axis) vs. component-wise
classification accuracy (y-axis),
using SVM-based classification
method (top panel) and Naïve
Bayesian-based classification
method (bottom panel)
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same common dictionary D*, making the rows in α* and α-
*testing corresponding to the same common functional compo-
nents. After obtaining the classification result of the labels of
the m number of functional components in each fMRI dataset
from each subject (i.e., component-wise result), our next goal
is to classify the type of that dataset (i.e., subject-wise result),
as the dataset constituted by thosem functional components of
each subject has only one label. In this work, we used a simple
scheme by comparing the number of components belonging
to either task or resting-state in the given dataset, and then do
the classification according to the majority voting rule.

Results

By using the HCP dataset described in Data acquisition and
preprocessing, we combined each of the tfMRI data obtained
from seven different tasks with one rsfMRI data, forming the
seven combined datasets including emotion/rsfMRI, gambling/
rsfMRI, language/rsfMRI, motor/rsfMRI, social/rsfMRI,
relational/rsfMRI and working memory/rsfMRI. Then we ap-
plied the proposed framework on the seven combined datasets.
In all the datasets, tfMRI and rsfMRI can be effectively differ-
entiated, and the intrinsic spatial/temporal pattern underlying
such difference could be characterized by the learned common
functional components. In this work, we categorized the func-
tional components into three types: task-evoked components,
high-frequency components, and resting-state components. In
most of the following sections, we would use the combined
working memory (WM) tfMRI/rsfMRI dataset as an example
to showcase our results, while the results from the other six
tasks can be found in the supplemental materials.

Classification results on testing dataset and feature selection

As described in BFeature selection on common functional
components^ section, we used classification accuracy on
half of the training data as the criteria for determining the
exact portion of common functional components that would
be used for the classification on the testing dataset. The
component-wise accuracy plot obtained from WM/rsfMRI
data using different numbers of features (i.e., components)
and two different classification methods (SVM and Naïve
Bayesian) is shown in Fig. 3. It can be seen that when the
number of features used was small, the classification per-
formance is only slightly better than random guess. As
more components were used, the accuracy increased mono-
tonically and then reached the maximum at 16 for both
classification methods. As the performance would not
change much afterwards, we could conclude that the addi-
tional components employed did not contribute much to the
differentiation power, thus totally 16 components were se-
lected as the features for classification.

After the feature selection in each of the seven combined
task/rsfMRI datasets, we classified their corresponding testing
datasets following steps in Sparse coding of the testing dataset
and classification part, and the subject-wise results are sum-
marized in Table 1. It can be seen that the classification accu-
racies are very high: tfMRI data from all the 30 subjects have
been classified correctly, rsfMRI data from all the 30 subjects
also have been classified correctly using both SVM-based and
Naïve Bayesian-based classification methods. The results
demonstrate that there exists fundamental differences between
the component composition of tfMRI and rsfMRI, while the
common functional components (i.e., features for the classifi-
cation input) learned by the proposed model has the capability
for uncovering and characterizing such differences from the
large and noisy groupwise data.

In Table 1, the first row shows the number of common
functional components used for the classification by feature
selection. The second row shows the percentage of tfMRI
dataset of all 30 subjects that has been classified to the
correct label. Similarly, the third row shows the percentage
of rsfMRI dataset classified to the correct label. To further
investigate the effect of the regularization parameter λ val-
ue on the classification results, we have tested the frame-
work on the same WM/rsfMRI dataset with various λ
values, the final classification accuracies are shown in

Table 1 Subject-wise classification accuracies for 7 tasks

Emotion /rsfMRI Gambling /rsfMRI Languange /rsfMRI Motor /rsfMRI Social /rsfMRI Relational /rsfMRI WM /rsfMRI

#Components 24 18 20 21 23 22 16

tfMRI 100 % 100 % 100 % 100 % 100 % 100 % 100 %

rsfMRI 100 % 100 % 100 % 100 % 100 % 100 % 100 %

Table 2 Classification accuracies onWM task / resting-state fMRI data
using various dictionary size and λ values for the second stage dictionary
learning

λ value 0.5 0.8 0.1 0.15 0.25 0.35

Accuracy for
classification
of tfMRI

100 % 100 % 100 % 97 % 97 % 87 %

Accuracy for
classification
of rsfMRI

93 % 90 % 100 % 87 % 43 % 77 %
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Table 2. The results show that the classification accuracy
would be relatively stable within a stable range, especially
for the performance on tfMRI dataset. However, extreme
larger λ value would lead to a loading coefficient matrix
(i.e., input feature for classification) that is too sparse,
which decreases the differentiation capability of the fea-
tures and reduces the classification accuracy. Also, the
classification accuracies of 7 task/rsfMRI datasets using
reduced dictionary size of 25 in the second stage dictionary
learning are listed in Table 3. The results shown that al-
though the tfMRI dataset could be identified accurately
using smaller dictionary size (and consequently less num-
ber of features to use), dataset from rsfMRI could not be
successfully distinguished from certain tasks, indicating the
importance of the framework to effectively cover the whole

component space by using a sufficiently large common dic-
tionary size during the learning.

Task-evoked common functional components

The most prominent and intuitive common functional compo-
nents obtained by our framework is the task-evoked type.
In the working memory task, there is an example component
that belongs to this category, with very high ROA values of
4.1 and it has been selected for the classification. The spatial
distributions of this component is very similar to the results
from groupwise GLM activation detection applied on the
tfMRI of WM task from the 30 subjects in training dataset,
as shown Fig. 4a and b, where the spatial overlapping rate
between (a) and (b) are 89.5 %. Its time series, plotted in

Table 3 Subject-wise classification accuracies for 7 tasks using reduced dictionary size of 25 for second stage dictionary learning

Dictionary size=25 Emotion /rsfMRI Gambling /rsfMRI Languange /rsfMRI Motor /rsfMRI Social /rsfMRI Relational /rsfMRI WM /rsfMRI

tfMRI 100 % 100 % 93 % 100 % 100 % 100 % 100 %

rsfMRI 87 % 70 % 57 % 93 % 100 % 57 % 83 %

Fig. 4 Example task-evoked
common functional component
from WM/RS dataset. a: volume
map of the component; b volume
map of the corresponding contrast
map by groupwise GLM; c:
component mapped on inflated
cortical surface; d groupwise
GLM result mapped on inflated
cortical surface; e time series of
the components (blue), task
design contrast curve of WM task
(yellow); f: frequency spectrum of
the components (red), frequency
spectrum of the contrast curve
(green)
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Fig. 4e, are correspondent with the task design contrast curves
(correlation value: 0.6653). Further, the frequency spectrum of
its time series (Fig. 4f) is highly concentrated on the task
design frequency. Based on the spatial, temporal, frequency-
domain characteristic and its sole presence in tfMRI, we can
be assured that our framework could identify task-evoked
functional component in the large scale combined fMRI data.
More results could be found in supplemental materials (Sup-
plemental Figs. 1–6).

Resting-state domain common functional components

Opposite to the task-evoked components, there is one resting-
domain common functional component with the lowest ROA
value=−1.1 (i.e., the most frequently activated in rsfMRI) in
the WM/RS dataset. As visualized in Fig. 5a, its spatial map
largely resembles the widely-reported default mode network
(DMN) (Raichle et al. 2001). We had also applied the
groupwise independent component analysis (ICA) on the
same dataset and obtained similar pattern, as shown in
Fig. 5b. It should be noted that as no low-pass filtering has
been applied in HCP rsfMRI pre-processing, the dominance
of lower frequency in the component spectrum (Fig. 5f) is a

valid characterization of the resting-state brain functional ac-
tivation pattern, rather than from the filtering artifact (spatial
overlapping rate with ICA resting-state map: 83 %). More
results could be found in supplemental materials (Supplemen-
tal Figs. 7–12).

High frequency common functional components

Besides the two traditional types of common functional com-
ponents described above, several of the identified components
from various tasks are immensely activated in tfMRI data, yet
exhibit diverse spatial/temporal patterns, compared with the
common knowledge of brain regions that are responding to
tasks. One characteristic shared by those components is the
dominance of high frequency in their spectrum (bottom panel
of Fig. 6). It is interesting that components from various
datasets have almost the same frequency domain characteris-
tics and very similar spatial distribution, even though the task
design and time length are all different in these datasets. By
examining the spatial map of those components in Fig. 6, it
could be found that in all the three tasks (WM, emotion and
gambling) the ventral posterior cingulate cortex is consistently
activated, which receives inputs from thalamus and neocortex,

Fig. 5 Example resting-state
common functional component
from WM/RS dataset. a: volume
map of the component; b volume
map of the corresponding
groupwise ICA result; c:
component mapped on inflated
cortical surface; d groupwise ICA
result mapped on inflated cortical
surface; e time series of the
component; f: frequency
spectrum of the component
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and projects to the entorhinal cortex via cingulum. Being an
integral part of the limbic system, this area has been reported
to be involved with associative learning (Maddock et al.
2001), memory retrieval (Nielsen et al. 2005), as well as emo-
tion formation and processing (Maddock et al. 2003), which
explains its significant presence during those tasks. Unlike
resting-state networks which have been reported to be at pres-
ence in different tasks with similar spatial distribution (e.g.,
DMN) (Raichle et al. 2001), the common functional compo-
nents shown in Fig. 6 only activate during their respective
tasks but rarely during resting-state, thus largely excluding
the possibility that these two components belong to the tradi-
tional resting-state network. Also, these components could not
be identified by traditional activation detection method due to
the high-frequency nature of their temporal pattern (third panel
in Fig. 6), although these components only activated
during the task and were highly related to tfMRI data (all with
ROA value of infinity). While in our two-stage dictionary
learning framework such components are very obvious and

could be robustly identified. More results could be found in
supplemental materials (Supplemental Figs. 13–16).

Discussion and conclusion

By using the HCP public tfMRI/rsfMRI datasets, we have
presented a novel two-stage sparse representation framework
to examine the intrinsic differences in tfMRI/rsfMRI signals.
The major methodological novelty of the two-stage sparse
representation is that the framework can effectively remove
the noise and undesired voxel-wise signal fluctuations, effi-
ciently deal with the big-data (a matrix of millions times hun-
dreds data points), and infer distinctive and descriptive com-
mon dictionary atoms that can well characterize and differen-
tiate tfMRI/rsfMRI signals in task performance and resting
state. In addition, the results also suggest that our two-stage
sparse representation method can effectively recover the
DMN activities from the very noisy and heterogeneous

Fig. 6 High frequency common functional components identified from
three datasets: aWM/RS, b Emotion/RS, and c Gambling/RS. First (top)
panel: volume maps of the components; second panel: component
mapped on inflated cortical surface; third panel: time series of the

components; fourth (bottom) panel: frequency spectrums of the
components (red), frequency spectrums of the contrast curves are
shown in green
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aggregated big-data of tfMRI and rsfMRI signals across all
subjects in HCP Q1 release. The applications of this frame-
work on seven HCP tfMRI datasets and one rsfMRI dataset
have demonstrated promising results. In the future, we plan to
better interpret other dictionary atoms in two stages and apply
this framework to clinical fMRI datasets to elucidate possible
alterations of functional activities in brain disorders.
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