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ABSTRACT 

 

A relatively underexplored question in fMRI is whether 

there are intrinsic differences in terms of signal composition 

patterns that can effectively characterize and differentiate 

task-based and resting state fMRI (tfMRI or rsfMRI) 

signals. In this paper, we propose a novel two-stage sparse 

representation framework to examine the fundamental 

difference between tfMRI and rsfMRI signals. In the first 

stage, subject-wise whole-brain tfMRI and rsfMRI signals 

are factorized into dictionary matrix and the corresponding 

loading coefficients via dictionary learning method. In the 

second stage, dictionaries learned at the first stage across 

multiple subjects are aggregated into the matrix which serve 

as the input for another round of dictionary learning, 

obtaining groupwise common dictionaries and their loading 

coefficients. This framework had been applied on the 

recently publicly released Human Connectome Project 

(HCP) data, and experimental results revealed that there 

exist distinctive and descriptive atoms in the groupwise 

common dictionary that can effectively differentiate tfMRI 

and rsfMRI signals, achieving 100% classification accuracy. 

Moreover, certain common dictionaries learned by our 

framework have a clear neuroscientific interpretation. For 

example, the well-known default mode network (DMN) 

activities can be recovered from the heterogeneous and 

noisy large-scale groupwise whole-brain signals. 

 

Index Terms— tfMRI, rsfMRI, sparse representation, 

classification, big data 

 

1. INTRODUCTION 
 

Functional magnetic resonance imaging (fMRI) based on 

blood-oxygen-level dependent (BOLD) techniques has been 

widely used to study the functional activities and cognitive 

behaviors of the brain based on the induced stimulus by 

tasks, i.e., task fMRI (tfMRI) [1-3] or during task-free 

resting-state, i.e., resting state fMRI (rsfMRI) [4-5]. To infer 

meaningful neuroscientific patterns within fMRI data, 

various computational/statistical methods have been 

proposed, including the widely-used general linear model 

(GLM) for tfMRI [2, 6], independent component analysis 

(ICA) for rsfMRI [7], as well as many others methods 

including wavelet algorithms [8], Markov random field 

(MRF) models [9], Bayesian approaches [10] and etc.   

However, a relatively underexplored question in tfMRI 

and rsfMRI is whether there are intrinsic, fundamental 

differences in signal composition patterns that can 

effectively characterize and differentiate these two types of 

fMRI signals. As far as we know, there are at least three 

challenges in addressing the above question. Firstly, the 

variability of fMRI signals across brain scans and across 

individual subjects could be remarkable. Secondly, the 

amount of whole-brain, voxel-wise fMRI signals from 

multiple subjects could be immense. For example, high-

resolution tfMRI scan from the recently publicly released 

Human Connectome Project (HCP) has around 150,000-

200,000 time series signals for one subject during a single 

task/resting-state scan [15]. In total, for Q1 release of HCP 

data, there are around 10,200,000-13,600,000 time series 

signals for all 68 subjects of a single task. Thirdly, there are 

a variety of noise sources in fMRI signals. During fMRI 

scans, several factors including scanner instability, 

experiment design deficits, and effects of susceptibility of 

high fields may all lead to noises. For an individual subject, 

head motion, lack of attention and other factors that are not 

related to the experiment design could also introduce noises. 

Inspired by the successes of using sparse representation in 

pattern recognition [11, 12] and in functional brain imaging 

analysis [13, 14], we propose a novel two-stage sparse 

representation framework to obtain a groupwise 

characterization of fMRI signals obtained during both task 

and resting-state, which could address the abovementioned 

three challenges and have the capability of effectively 

classifying datasets from task and resting-state.   

 

2. METHOD 

 

2.1. Data acquisition and preprocessing 

 

The dataset used in this work was obtained from the Human 

Connectome Project Q1 release [15]. The acquisition 

parameters of tfMRI data are: 90×104 matrix, 220mm FOV, 

72 slices, TR=0.72s, TE=33.1ms, flip angle = 52°, 

BW=2290 Hz/Px, in-plane FOV = 208×180 mm, 2.0mm 

isotropic voxels. For tfMRI images, the preprocessing 

pipelines included motion correction, spatial smoothing, 
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temporal pre-whitening, slice time correction, global drift 

removal. More detailed data acquisition and preprocessing 

could be referred to [15], rsfMRI data were acquired with 

the same EPI pulse sequence parameters as tfMRI [16].  

In this work, we have split the total 68 subjects in the 

Q1 release into two equal subsets. One set would be used for 

the training process, which includes two-stage dictionary 

learning and training of the classifier. The other set (testing) 

would only go through the first-stage dictionary learning, 

then we applied common dictionaries and the inferred 

features obtained from training set on the testing set for the 

classification and verification. 

 

 
Figure 1. Illustration of the first-stage dictionary learning process. 

Left panel: individual whole brain voxel-wise fMRI data; Middle 

panel: dictionary matrix D as time series learned from the input; 

Right panel: corresponding loading coefficient α learned 

simultaneously with D as spatial maps.  
 

2.2. Two-stage dictionary learning 

 

In the first stage, the online dictionary learning algorithm 

[11] is adopted to learn a dictionary with sparsity constraint 

from the whole-brain fMRI signals (with time length t and 

voxel number n) from fMRI datasets during each task (and 

resting-state) of each subject. The algorithm would learn a 

meaningful and over-complete dictionary D consisting of k1 

atoms (k1>t, k1<<n) to represent input data with the 

corresponding sparse loading coefficient matrix α. 

Specifically, for the fMRI signal set S=[s1,s2,…sn]ϵR
t×n

, the 

loss function for the dictionary learning algorithm to 

minimize is defined in Eq. (1) with a l1 regularization that 

yields to a sparse constraint to the loading coefficient α, 

where λ is a regularization parameter to trade-off the 

regression residual and sparsity level: 

𝐦𝐢𝐧
𝑫𝝐ℝ𝒕×𝒌,𝜶𝝐ℝ𝒌𝟏×𝒏 

𝟏

𝟐
||𝐒 − 𝑫𝜶||𝑭 + 𝝀||𝜶||𝟏,𝟏 

 

(1) 

To prevent D from being arbitrarily large which leads to 

trivial solution of the optimization, its columns d1, d2 … dk 

are constrained by Eq. (2): 

𝑪 ≜ {𝑫𝝐ℝ𝒕×𝒌𝟏   𝒔. 𝒕.   ⩝ 𝒋 = 𝟏, … 𝒌𝟏, 𝒅𝒋
𝑻𝒅𝒋 ≤ 𝟏}   (2) 

The optimization procedure is done by iteratively updating 

D and α in Eq. (1). It should be noted that we employ the 

same assumption as in previous studies [17] that the atomic 

components (which are dictionary atoms in D) involved in 

each voxel’s fMRI signal are a few major ones and the 

neural integration of those components is linear. The value 

of λ and dictionary size k1 were determined experimentally 

in our previous studies (λ=0.1, k=400) [13, 14]. After the 

dictionary learning, the resulting D matrix contains temporal 

variation of each atomic basis functional component of 

fMRI data, while the corresponding sparse loading 

coefficient matrix α contains the spatial distribution of each 

component. A sample visualization showing the result of 

first-stage dictionary learning is shown in Fig. 1. 

 

Based on the first-stage dictionary learning results, our 

next goal is to obtain the groupwise characterization of the 

dictionaries that could reveal the distinctive organization 

patterns between fMRI data under different conditions (in 

this work, task vs. resting-state). Thus we combine the 

dictionaries obtained from each tfMRI with the dictionaries 

obtained from the one rsfMRI data across all subjects in the 

training set, forming one multi-subjects, across task/rest, 

combined data matrix S* of dimension t×(2k1p), p is the 

number of subjects in the dataset. Note that in HCP dataset, 

rsfMRI data has a longer time length than tfMRI data for all 

tasks and so does the learned dictionaries. So the 

dictionaries learned during resting-state are truncate to the 

same length with their task counterparts. S* would then be 

used as the input for the second-stage dictionary learning 

based on the same algorithm as used in the first-stage, where 

the parameters are λ=0.1, k2=50, aiming at obtaining a 

group-wise common dictionary D* and the corresponding 

loading coefficients α*, which could reflect the groupwise 

temporal and spatial organization patterns of the given 

dataset (in this case, the combined tfMRI/rsfMRI data). 

Compared with the original fMRI data which are defined on 

the whole brain voxels, our two-stage framework achieves a 

huge size reduction while still maintaining the major 

functional characterization for each individual. More 

importantly, noises and undesired voxel-wise signal 

fluctuations are largely removed in S*, thus we can ensure 

that most of the common dictionaries can represent the 

groupwise consistent functional activities, and their 

differences are more likely to be originated from the 

intrinsic features of functional brain activity patterns. As the 

common dictionaries are learned from the dictionary space, 

rather than the original voxel space, we need to estimate 

their spatial maps over the brain by first aligning all the 

brains into the same template using linear registration, thus 

transforming each α into α’. Then the spatial map of the i-th 

common dictionary could be obtained by: 

∑ ∑ 𝜶𝒙,𝒚
′

𝒌𝟏

𝒚

∙ 𝜶𝒊,(𝒙−𝟏)𝒎+𝒚
∗

𝒑

𝒙

 

 

 (3) 

where α’x,y is the loading coefficient matrix of the y-th 

dictionary (over the total of k1) of the x-th subject (over the 

total of p) obtained from the first stage dictionary learning 

registered to the template, and α*i,,xm+y is the loading 

coefficient value of the y-th dictionary of the x-th subject for 

the i-th common dictionary from the second stage dictionary 

learning. In other words, the spatial maps of the common 

dictionaries are the weighted average of the loading 
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coefficient each individual dictionary of each subject. The 

spatial map of one sample common dictionary, along with 

its time series is visualized in Fig. 2. 
 

 
Figure 2. Visualization of the procedure to obtain the spatial map 

of one sample common dictionary. The corresponding row in α* of 

the i-th common dictionary is highlighted by the red block. 

 

 
Figure 3. Illustration of the classification pipeline. 
 

2.3.  Sparse coding of the testing data and classification 

 

For the purpose of verification of the proposed framework, 

we performed the classification analysis on the testing 

dataset. Firstly, we use loading coefficient of common 

dictionary α* to train an SVM, establishing the relationship 

between the common dictionary composition of the 

dictionary learned from the first-stage with the type of 

dataset it is coming from (tfMRI or rsfMRI). Then the 

common dictionary D* is used to sparse code (solving an l1-

regularized LASSSO problem) the dictionaries learned at 

the first-stage from the testing dataset, obtaining the loading 

coefficients of common dictionaries in the testing set α*test. 

Thus the relationship between training and testing dataset is 

established by the fact that both of their individual 

dictionaries learned during the first stage are sparsely coded 

by the same common dictionary D*, making the rows in α* 

and α*test corresponding to the same common dictionary. 

The rationale that we can project the dictionaries learned 

from the training dataset to the testing dataset of the same 

task is because they are from the same population and 

supposed to share the common underlying basis functional 

activation pattern. α*test would be classified by the trained 

SVM, an illustrative diagram of the whole classification 

scheme is shown in Fig. 3. After obtaining the classification 

results of the dictionaries in each fMRI dataset from each 

subject (i.e. dictionary-wise classification), we would use a 

simple majority voting strategy to determine the label of that 

dataset (i.e. dataset-wise classification), as the dataset 

constituted by those dictionaries shall have only one label.  

 

3. RESULTS 

 

By using the HCP dataset described in section 2.2, we 

combined each of the tfMRI data from seven different tasks 

with the same rsfMRI data, forming seven combined 

datasets including emotion/rsfMRI, gambling/rsfMRI, 

language/rsfMRI, motor/rsfMRI, social/rsfMRI, 

relational/rsfMRI and working memory/rsfMRI for each 

subject. Then we applied the proposed framework on the 

seven combined datasets. In all the datasets, tfMRI and 

rsfMRI can be effectively differentiated with dataset-wise 

classification accuracy of 100%. The results demonstrate 

that there exist fundamental differences between the 

component composition of tfMRI and rsfMRI, while the 

intrinsic spatial/temporal pattern underlying such difference 

could be characterized by the learned common dictionaries 

from the large and noisy group-wise data. There are two 

types of common dictionaries that have been learned from 

the propose two-stage dictionary learning framework: task-

evoked components and resting-state components. Quite 

naturally they also played the key role in differentiating the 

tfMRI/rsfMRI dataset, which would be illustrated below. 

 

3.1. Task-evoked common functional components 

 

The most prominent and intuitive common dictionaries 

obtained by our framework are the task-evoked components. 

Here we will use the results from two tasks as examples to 

showcase their characteristics. In both the working 

memory/rsfMRI and emotion/rsfMRI combined datasets, 

there exists task-evoked component with very high 

percentage of presence (89.5% and 79.97%, respectively) in 

tfMRI, and similar spatial distributions were obtained from 

group-wise GLM activation detection applied on the tfMRI 

of Emotion or WM task from the 34 subjects in training 

dataset, as shown in Fig. 4(a) and (b). Their time series, 

plotted in Fig. 4(c), are correspondent with the task design 

contrast curves (Pearson correlation value: 0.6653 and 

0.6679). Similar results were also obtained from the other 5 

tasks in the HCP dataset. Based on the spatial and temporal 

characteristic and its sole presence in tfMRI, we can be 

assured that our framework could effectively identify task-

evoked functional component from the combined fMRI 

data. 

Aggregated dictionaries from both tfMRI and rsfMRI 

of p subjects in training dataset

D1
t D1

rs Dp
t Dp

rsD2
t D2

rs …

D* α*×
sparse coding

second-stage

dictionary learning

Aggregated dictionaries 

from both tfMRI and 

rsfMRI from p subjects in 

testing dataset

α*test

train SVM 

based on 

task/RS 

label

SVM

Classification
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Figure 4. Example task-evoked common dictionaries from WM/RS 

(top panel) and Emotion/RS (bottom panel) dataset. (a): volume 

map of the common dictionaries; (b) volume map of the contrast 

maps obtained by group-wise GLM; (c): time series of the 

common dictionaries (blue), task design contrast curve (yellow);  
 

3.2. Resting-state components 

 

Opposite to the task-evoked components, there exist resting-

state components with high presence in rsfMRI (75%, 82%) 

both in the emotion/RS and WM/RS dataset. As visualized 

in Fig. 5(a), their spatial map largely resembles the widely-

reported default mode network (DMN) [4]. We had applied 

the group-wise independent component analysis (ICA) on 

the same dataset, certain components obtained by ICA were 

found to have the spatial pattern, as shown in Fig. 5(b) 

(spatial overlapping rate with ICA resting-state map: 83% 

and 79.97%, respectively).  

 

 
Figure 5. Example resting-state common dictionaries from 

Emotion/RS (top panel) and WM/RS (bottom panel) dataset. (a): 

volume map of the common dictionaries; (b) volume map of the 

contrast maps obtained by group-wise GLM; (c): time series of the 

common dictionaries (blue), task design contrast curve (yellow).  

4. CONCLUSION 

We have presented a novel two-stage sparse representation 

framework to examine the intrinsic differences in 

tfMRI/rsfMRI signals. The major methodological novelty of 

the two-stage sparse representation is that the framework 

can effectively remove the noises and undesired voxel-wise 

signal fluctuations, efficiently deal with the big-data (a 

matrix of millions times hundreds data points), and infer 

distinctive and descriptive common dictionary atoms that 

can well characterize and differentiate tfMRI/rsfMRI signals 

in task performance and resting state. The applications of 

this framework on seven HCP tfMRI datasets and one 

rsfMRI dataset have demonstrated promising results. In the 

future, we plan to better interpret other dictionary atoms and 

apply this framework to clinical to elucidate possible 

alterations of functional activities in brain disorders.  
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