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Abstract Functional connectivity measured from resting

state fMRI (R-fMRI) data has been widely used to examine

the brain’s functional activities and has been recently used

to characterize and differentiate brain conditions. However,

the dynamical transition patterns of the brain’s functional

states have been less explored. In this work, we propose a

novel computational framework to quantitatively charac-

terize the brain state dynamics via hidden Markov models

(HMMs) learned from the observations of temporally

dynamic functional connectomics, denoted as functional

connectome states. The framework has been applied to the

R-fMRI dataset including 44 post-traumatic stress disorder

(PTSD) patients and 51 normal control (NC) subjects.

Experimental results show that both PTSD and NC brains

were undergoing remarkable changes in resting state and

mainly transiting amongst a few brain states. Interestingly,

further prediction with the best-matched HMM demon-

strates that PTSD would enter into, but could not disengage

from, a negative mood state. Importantly, 84 % of PTSD

patients and 86 % of NC subjects are successfully classi-

fied via multiple HMMs using majority voting.

Keywords fMRI � Temporal dynamics � Functional

connectome � PTSD

Introduction

The brain’s functional connectivity constructed via neuro-

imaging data such as resting state fMRI (R-fMRI) has

attracted many researchers’ attention in recent years.

Functional connectivity not only offers a macroscopic

description of the functional segregation and integration

within the brain (Sporns et al. 2005; Williams 2010;

Kennedy 2010; Biswal et al. 2010; Dijk et al. 2010; Hag-

mann et al. 2010), but also can be used to characterize and

differentiate brain conditions (Lynall et al. 2010; Li et al.

2013a; Dickerson and Sperling 2009; Stebbins and Murphy

2009; Liang et al. 2011; Binnewijzend et al. 2012). In

many previous R-fMRI based connectivity studies (Lynall

et al. 2010; Dickerson and Sperling 2009; Zhang et al.

2013), the functional connectivity or connectome has been

widely assumed to be temporally stationary, that is, the

whole scan session’s R-fMRI data is used for measuring

the functional connectivity or connectome. However, there

are growing evidences (Li et al. 2013b; Chang and Glover

2010; Smith et al. 2012; Li et al. 2014; Gilbert and Sigman

2007) indicating that functional brain activities are under

temporally dynamic changes at different time scales. At a

basic level, recent neuroscience studies suggested that the

functional activity of any cortical area is subject to top-

down influences of attention, expectation, and perceptual

tasks (Gilbert and Sigman 2007). For instance, each cor-

tical brain area runs different ‘‘programs’’ according to the
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context and to the current perceptual requirements (Gilbert

and Sigman 2007). Specially, the dynamically changing

functional interactions among structural connections from

higher- to lower-order brain areas and intrinsic cortical

circuits mediate the moment-by-moment functional state

changes in the brain (Gilbert and Sigman 2007). Brain is

still very active in resting state, due to the unconstrained

behaviors or conscious mentations, which might include

mind wandering, visual imagery and etc. (Fox and Raichle

2007). Therefore, the functional brain connectivity is still

undergoing considerable dynamic changes within time

scales of seconds to minutes (Li et al. 2013b; Chang and

Glover 2010; Smith et al. 2012; Li et al. 2014; Gilbert and

Sigman 2007) in resting state, and that dynamic changes in

connectivity cannot be ignored when analyzing brain

connectivity in resting state.

Recently, neuroscience and neuroimaging researchers

have begun to study the brain’s functional dynamics based

on functional connectivities/connectomics (Li et al. 2013b;

Chang and Glover 2010; Smith et al. 2012; Li et al. 2014;

Gilbert and Sigman 2007; Bassett et al. 2011; Ekman et al.

2012). For instance, Li et al. (Li et al. 2014) modeled the

moment-by-moment functional state switching in the brain

by a finite state machine (FSM) in their work. However, the

FSM in Li et al. (Li et al. 2014) is limited to describe the

temporally dynamic transition patterns of the brain’s

functional connectivities, and it hasn’t quantitatively

characterized the intrinsic stochastic relationships among

those temporally dynamic brain states. It is important to

note that Eavani et al. (Eavani et al. 2013) utilized HMM to

learn the dynamic functional connectivity networks with

the observations of the R-fMRI time series. While in this

work, we aim to model the dynamics of functional brain

states (FBSs) with the observations of the dynamical

functional connectomes. Given that R-fMRI is an indirect

measurement of the brain’s function (Biswal 2012; Rich-

iardi et al. 2011), it is reasonable to postulate that the true

brain state is not directly visible, but the R-fMRI derived

functional connectomics that are dependent on the true

brain states are visible. Therefore, in this work, we employ

the powerful methods of HMMs to characterize and ana-

lyze the hidden brain states and their temporally dynamic

transition patterns in the brain based on R-fMRI derived

functional connectomics.

Motivated by the dynamic transition patterns of the brain’s

functional connectomics (Li et al. 2014) and inspired by

indirect measurement of the FBSs by using functional con-

nectomes (Biswal 2012; Richiardi et al. 2011), in this work, we

propose a novel computational framework to stochastically

characterize the dynamic transition patterns of the FBSs via

HMMs learned from the dynamical functional connectomes,

which are derived via a sliding time window approach (Allen

et al. 2012; Li et al. 2014). Here, our recently developed and

publicly released 358 DICCCOL (Dense Individualized and

Common Connectivity based Cortical Landmarks) landmarks

(Zhu et al. 2013) are employed as the network nodes for

connectivity mapping. The neuroscience basis is the ‘‘con-

nectional fingerprint’’, that is, each cytoarchitectonic area

possesses a unique set of extrinsic inputs and outputs, which

largely determine the functions that the area can perform

(Passingham et al. 2002). Each DICCCOL is optimized to

possess maximal group-wise consistency of DTI-derived fiber

shape patterns (Zhu et al. 2013). Therefore, those DICCCOLs

possess intrinsically-established structural and functional

correspondences across different individuals and populations,

and offer a generic brain reference system for integrating and

comparing function connectomes across individuals and

populations. The applicability of the computational frame-

work has been demonstrated by applying it to the R-fMRI

dataset of 44 PTSD patients and 51 NC subjects. Experimental

results have suggested that both PTSD and NC brains were

undergoing remarkably dynamical changes and mainly

transiting amongst several brain states. Interestingly, further

prediction with the best-matched HMM for PTSD demon-

strates that PTSD would enter into, and could not disengage

from, a negative mood state (Holtzheimer and Mayberg 2011).

Moreover, we treated the combination of any two HMMs, one

from NC and the other from PTSD, as a classifier for classi-

fying PTSD patients from NC subjects. Results demonstrated

that 84 % of PTSD patients and 86 % of NC subjects were

successfully classified via multiple classifiers with majority

voting (Ruta and Gabrys 2005; Kittler et al. 1998).

Conceptually, the major methodological contributions of

this work are two folds. First, the adopted HMM provides

an effective probabilistic modeling framework to stochas-

tically characterize the hidden FBSs inferred from the

observed time-varying functional connectomics in the

fMRI data. The HMMs learned from the R-fMRI data can

offer insights into the functional dynamics of the brain.

Second, the application of the HMMs in a multimodal

PTSD dataset has identified important and meaningful

phenomena and principles, which could not be revealed by

our previous studies (Li et al. 2014). In particular, the

HMMs can be potentially used as neuroimaging biomark-

ers for differentiation and classification of PTSD patients in

the future. The rest of the paper is organized as follows.

‘‘Materials and Methods’’ section details the dataset and

the modeling methods including FCS construction and

HMM inference. Experimental results on a multimodal

DTI/R-fMRI PTSD dataset and their neuroscience inter-

pretation are presented in ‘‘Results’’ section. ‘‘Discussion

and Conclusion’’ section provides discussions on limita-

tions and future direction of this work, and concludes this

work. Notably, an early abstract of this methodology on

ADHD data was presented in the 2013 IEEE EMBS con-

ference on Neural Engineering (Jinli et al. 2013).
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Materials and Methods

Overview

The computational framework is composed of three main

parts and seven steps, as summarized in Fig. 1. The three

main components are: Step 1: functional connectome state

(FCS) construction from the R-fMRI dataset; Steps 2–5:

HMM modeling including FCS clustering, HMM learning

and HMM decoding; Step 6–7: PTSD classification

including FCS labeling and PTSD classification via mul-

tiple HMMs using majority voting. Details of these three

main parts and seven steps will be described in details in

the following sections.

Data Acquisition and Preprocessing

We used the DTI and R-fMRI datasets of 95 adult subjects

including 44 PTSD patients and 51 NC subjects (Li et al.

2014). The datasets were acquired using a 3T GE MRI

scanner in West China Hospital, Huaxi MR Research

Center, Department of Radiology, Chengdu, China, under

IRB approvals, with the following parameters. R-fMRI:

number of slices, 30; matrix size, 64 9 64; slice thickness,

4 mm; field of view (FOV), 220 mm; repetition time (TR),

2 s; total scan time, 400 s. DTI: number of slices, 50;

matrix size, 256 9 256; slice thickness, 3 mm; field of

view (FOV), 240 mm; DWI volumes, 15; b-value, 1000.

The preprocessing steps for multimodal DTI and

R-fMRI datasets can be found in our previous publications

(Zhu et al. 2013). After preprocessing, the 358 consistent

DICCCOL landmarks, which have been proved to be

consistent and reproducible over 240 brains and provide

the structural substrates for functional connectome map-

ping, are predicted in the DTI data via maximizing the

group-wise consistency of white fiber connection patterns.

Briefly, DICCCOL prediction consists of three steps: the

initial landmarks selection, the optimization of landmark

locations and the determination of group-wise consistent

DICCCOLs (Zhu et al. 2013). Then we co-register the

R-fMRI images into the DTI space using FSL FLIRT. At

last, the R-fMRI BOLD time series are extracted by

averaging in a small neighborhood (3 mm radius) for each

DICCCOL.

Functional Connectome State Construction

The FBS is indirectly characterized by a large-scale func-

tional connectivity matrix, denoted as functional connec-

tome state (FCS). The pairwise functional connectivity is

defined as the Pearson correlations between the windowed

R-fMRI time series signals extracted from any two nodes

out of the 358 DICCCOL ROIs (regions of interest). In

order to capture the dynamics of FCSs, a sliding time

window approach (Li et al. 2013b, 2014; Allen et al. 2012)

was applied to segment the R-fMRI time series Xi from the

Fig. 1 Block diagram of the

computational framework

composed of three main parts

and seven steps. (1) FCS

construction via a sliding time

window on the R-fMRI time

series signals; (2) The symbolic

observation sequences

generation via a two-stage

hierarchical clustering i.e., FCS

clustering; (3) The CFCS

derivation via calculating the

average of those FCSs

belonging to the same cluster

after FCS clustering; (4) HMM

learning based on the symbolic

observation sequences; (5) The

symbolic hidden sequences

decoding from the two best-

matched HMMs for NC and

PTSD; (6) FCS labeling based

on the Euclidean distance

between the FCS and CFCSs;

(7) Classification of PTSD

patients from NC subjects via

multiple HMMs using majority

voting
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i-th DICCCOL into temporal segments TSi,t at the time

point t, with the window length l:

TSi;t ¼ Xi;ptjt� pt\t þ l
� �

; ð1Þ

where Xi,pt is the value of R-fMRI time series Xi at time

point pt. Since we have already achieved relative good

FSMs to describe FCS transition patterns with the win-

dow length of 14 in our previous study (Li et al. 2014),

the window length l is also set as 14 in this work. Then,

the functional connectivity between the i-th and j-th

DICCCOLs at time point t can be evaluated as the

Pearson correlation Ri,j,t between the segments TSi,t and

TSj,t:

Ri;j;t ¼ corr TSi;t; TSj;t

� �
; FCSt ¼ Ri;j;tji; j 2 ð1; 358Þ

� �

ð2Þ

Thus, each FCS is characterized by a 358 9 358 sym-

metrical functional connectivity matrix. To have a compact

representation of FCS, we defined the cumulative func-

tional connectivity strength (FCSstre) to represent FCS for

computation purpose:

FCSstre ¼
X358

1

Ri;j;t ð3Þ

Therefore, the FCS (358 9 358) matrix is converted

into a representative connectivity vector (358 9 1), and

thus each FCS has a connectivity matrix representation and

a compact connectivity strength representation. Because of

the intrinsically established correspondences of the

DICCCOL landmarks across individual brains (Zhu et al.

2013), the FCSs in different windows and across different

brains can be readily pooled and integrated for further

processing. An example of the FCS construction and its

dynamics transition pattern is illustrated in Fig. 2. As the

time window sliding, the dynamic FCS transition pattern of

each subject is captured.

Fig. 2 Demonstration of functional connectome state (FCS) con-

struction with the sliding time window. a Visualization of the publicly

available 358 DICCCOL landmarks with two randomly selected

ROIs, named ROI#1 and ROI#2. b R-fMRI time series signals,

named X1 and X2, extracted from ROI#1 and ROI#2 respectively.

c–e Visualization of the functional connectivities within the three

time windows marked by red dotted lines in b color-coded by their

correlation value. f Visualization of temporally varying patterns of

FCSs (Color figure online)
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HMM Modeling Based on Temporally Dynamic FCSs

Briefly, the modeling algorithm contains the following two

steps: FCS clustering and HMM learning. In order to learn

two independent HMM sets for NC and PTSD respectively

for characterization and differentiation PTSD patients from

NC subjects, the dataset is divided into two independent

subsets, one including all the NC subjects, the other

including all the PTSD patients.

FCS Clustering

In this work, FCS is considered as an indirect measurement

of brain state. Different FCSs in different time windows and

across different individuals may indirectly measure the same

brain state. In order to identify those FCSs which indirectly

measure the same brain state and label them with the same

symbolic observation state, we applied the hierarchical

clustering based on the average link method (Murtagh 1983;

Jain et al. 1999) to the FCS sequences of NC and PTSD.

Then the symbolic observation sequences corresponding to

the FCS sequences are obtained (Fig. 2f), based on which

we learn the HMMs (Rabiner 1989; Stratonovich 1960).

Hierarchical clustering is a non-parametric and effective

method to classify the brain’s functional connectivity

(Cordes et al. 2002; Li et al. 2009) and assumes very little in

the way of data characteristics or of a priori knowledge on

the part of the analysis (Murtagh 1983). In this work, the

distance between FCSs is measured via the Euclidean dis-

tance between them (Jain et al. 1999; Cordes et al. 2002).

In our dataset, there are 51 NC subjects and 44 PTSD

patients, each subject has 186 FCSs obtained by using the

sliding time window length of 14 (Li et al. 2013b, 2014).

The sliding time window length was determined experi-

mentally and it has been shown in our previous work (Li

et al. 2014) that within a reasonable range, the connectivity

and its dynamics would not be affected by the choice of the

length value. Totally, there are 9486 FCSs for NC and 8184

FCSs for PTSD. As a result, the distance matrices in the

hierarchical clustering are relatively huge, with the

dimensions of 9,486 9 9,486 for NC and 8,184 9 8,184

for PTSD. Due to the limited computating resources, we

adopted a two-stage hierarchical clustering approach. At

first stage, we applied the hierarchical clustering on the

individual 186 FCSs of each subject (Fig. 3a). Then the

average of those FCSs which belong to the same cluster is

calculated, denoted as FCSC (FCS cluster):

FCSC ¼ 1

Ni

X

FCSt2clusteri

FCSt ð4Þ

here Ni is the number of FCSs within the cluster

i. After the first-stage hierarchical clustering, the

number of FCSs is reduced to the total number of

clusters in each subject. Subsequently, we applied the

hierarchical clustering to the two collections of FCSCs

of NC and PTSD separately (Fig. 3b), and the average

of the clusters are calculated again, named as common

FCSs (CFCSs). Since each FCS has a connectivity

matrix representation and a compact connectivity

strength representation, we can also derive a connec-

tivity matrix representation and a compact connectivity

strength representation for each CFCS. (During the

hierarchical clustering, we utilized the compact con-

nectivity strength representation of FCS.)

In on our previous study (Li et al. 2014), the FCS

sequence of each subject was manually segmented into

15–25 quasi-stable states. Thus, the optimal number of

clusters during the first-stage hierarchical clustering is

estimated in the range of 15–25 and determined by the

Bayesian Information Criterion (BIC) (Schwarz 1978).

While the optimal number of clusters in the second-stage

hierarchical clustering is also the number of observations in

HMM and the number of CFCSs, and will be discussed

later. The two-stage hierarchical clustering in FCS clus-

tering is illustrated in Fig. 3. As shown in Fig. 3, FCSi
(a) of

a specific subject a is clustered into the cluster FCSCl
(a)

after the first-stage hierarchical clustering. FCSCl
(a) is then

clustered into the cluster CFCSj after the second-stage

hierarchical clustering. Therefore, after the two-stage

hierarchical clustering, FCSi
(a) is projected into CFCSj.

FCSi
(a) and CFCSj are considered to indirectly measure the

same brain state and labeled as the same symbolic obser-

vation state j.

HMM Learning

A HMM is typically characterized by the following 5

elements (Rabiner 1989; Stratonovich 1960): the number

of hidden states, N; the number of observations, M; the

transition matrix, A; the emission matrix, B; and the initial

parameter p. The latter three elements indicate the com-

plete parameters of a HMM, which are usually notated as:

k ¼ A;B; p½ �. Here, the HMM with N hidden states and M

observations is denoted as: HMMðM;NÞ.
After the two-stage FCS clustering, a symbolic obser-

vation sequence can be derived for every individual sub-

ject. Due to the limited R-fMRI scans (400 s) that may not

statistically sufficiently cover the whole brain state transi-

tion space, a single observation sequence may be insuffi-

cient to learn HMMs. Thus, we use the two joint multiple

observation sequences to learn HMMs (Rabiner 1989), one

include all the observation sequences of 51 NC subjects

and the other include all the observation sequences of 44

PTSD patients, denoted as:
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Onc ¼ Oð1Þnc ; Oð2Þnc ; Oð51Þ
nc

n o
ð5Þ

and

Optsd ¼ O
ð1Þ
ptsd; O

ð2Þ
ptsd; O

ð51Þ
ptsd

n o
ð6Þ

where Onc
(i) and Optsd

(j) are the observation sequences of the i-

th NC subject and the j-th PTSD patient respectively.

Given the HMM with the parameters k ¼ A;B; p½ �
learnt from the observation sequence O = O1O2���OT, the

likelihood of the observation sequence under the HMM can

be calculated by using the forward–backward algorithm to

evaluate how well the learnt HMM matches the given

observation sequence (Rabiner 1989; Stratonovich 1960),

as follows:

L Ojkð Þ ¼
X

allQ

L OjQ; kð ÞL Qjkð Þ

¼
X

q1;q2;���qT

pq1
bq1
ðO1Þaq1q2

bq2
ðO2Þ � � � aqT�1qT

bqT
ðOTÞ

ð7Þ

where p is the probability of the initial, and aqtqtþ1
is the

transition probability from state qt to state qt?1. Here,

bqt
ðOtÞ is the emission probability of the observed state Ot

at state qt, and T is the length of the observed (O) and

hidden (Q) sequence. A larger L(O|k) suggests that the

learnt HMM can better describe the given observation

sequence. When N and M are both equal to 1, which means

all the FCSs are projected into the same CFCS, the L(O|k)

would reach its maximum 1, which is not the goal in this

work. On the other hand, a larger N and M suggests that we

are using more CFCSs to characterize the FBSs, i.e., there

are more hidden states and observations in HMM. Thus, on

average, aqtqtþ1
and bqt

ðOtÞ will both become smaller,

resulting in a smaller L(O|k), which is also against our goal

in this work. Therefore, the trade-off between the values of

N and M, and L Ojkð Þ, must be made. With the premise that

the R-fMRI derived FCSs are dependent on the true brain

states, we evaluated the values of N and M both in the

range of 15–25, just as in the first-stage hierarchical

clustering.

In this work, we learn HMMs by using the Baum-Welch

algorithm with the random and nonzero initial parameter

(Rabiner 1989). The Baum-Welch algorithm is only able to

find a local maximum, not a global maximum (Nianjun Liu

et al. 2004). Thus, the HMMs learnt by using this method

are highly dependent on the initial parameter. To overcome

this problem, in this work, we generate multiple initial

parameters, each of which is used to learn a HMM, and the

best matched HMM, i.e., with the highest likelihood, is

chosen.

Classification of PTSD via HMMs

A FCS sequence can be constructed using the sliding time

window approach for each subject. Based on the above

methods in ‘‘HMM Modeling Based on Temporally

Dynamic FCSs’’ section, a CFCS set can be obtained after

the two-stage hierarchical clustering and a HMM set can be

learned, for PTSD and NC respectively. Given a specific

test subject with a FCS sequence, we aim to classify the

test subject as a PTSD patient or a NC subject by exam-

ining which of the HMMs for PTSD or NC can better

describe the FCS sequence of the test subject, i.e., by

comparing the likelihood of the FCS sequence of the test

subject under the HMMs of PTSD, HMMptsdðM;NÞ, and

NC, HMMncðM;NÞ. The classification method is illus-

trated in Fig. 4.

To compute the likelihood of the FCS sequence of the

test subject based on Eq. (7), we should generate the

symbolic observation sequence corresponding to the FCS

sequence first, i.e., FCS labeling. The FCS sequence is

labeled based on the Euclidean distances between FCS and

CFCSs. For example, if the distance between the i-th FCS

of subject a, FCS
ðaÞ
i , and the j-th common FCS of NC,

CFCS
ðncÞ
j , is the smallest one among all the distances

between FCS
ðaÞ
i and CFCSðncÞ, FCS

ðaÞ
i is considered as

Fig. 3 Demonstration of FCS

clustering. The FCS clustering

contains two clustering steps:

a The first-stage hierarchical

clustering on the individual 186

FCSs of each subject. b The

second-stage hierarchical

clustering on all the averaged

clusters after the first-stage

hierarchical clustering. The blue

line shows that FCSi
(a) is projected

into CFCSj and labeled as the

symbolic observation j (Color

figure online)
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another indirect measurement of the brain state which is

indirectly measured by CFCS
ðncÞ
j , and then labeled as the

symbolic observation j. The same strategy is also per-

formed between FCS
ðaÞ
i and CFCSðptsdÞ. After FCS label-

ing, two symbolic observation sequences corresponding to

the FCS sequence, OðncÞ and OðptsdÞ, can be obtained

(Fig. 4a). Then, two likelihood, LncðOjkÞ and LptsdðOjkÞ,
which evaluate how well the HMMs for NC and PTSD can

describe the FCS sequence, can be calculated by using the

forward–backward algorithm (Fig. 4b) for classification

purpose based on the following criteria. If Lnc

(O|k) \ Lptsd(O|k), which means that HMMptsd(M, N) can

better describe the FCS sequence of the test subject, the test

subject is classified as a PTSD patient. On the contrary, if

Lnc(O|k) [ Lptsd(O|k), the test subject is classified as a

NC subject. The test subject cannot be classified when

Lnc(O|k) = Lptsd(O|k), which is very unlikely to happen

actually but is possible theoretically. In our application, we

had Lnc(O|k) = Lptsd(O|k) for all subjects.

Results

In this section, we designed and performed a series of

experiments to evaluate the HMMs (‘‘Hidden Markov

Models Learnt for NC and PTSD’’ section) and apply

them on a multimodal DTI/R-fMRI dataset of PTSD for

classification purpose (‘‘Classification of PTSD and NC

via Multiple HMMs Using Majority Voting’’ section).

Also, we examined the effect of the number of hidden and

observed states in HMM (‘‘Studies on the Effect of the

Number of Hidden and Observed States in HMM’’ sec-

tion) and the effect of the number of observation

sequences for HMM learning (‘‘Studies on the Effect of

the Number of Observation Sequences for HMM Learn-

ing’’ section).

Hidden Markov Models Learnt for NC and PTSD

As described in ‘‘Functional Connectome State Construc-

tion’’ section, 51 observation sequences for NC and 44

observation sequences for PTSD were generated after FCS

clustering, based on which we further learnt 121 HMMs for

NC and another 121 HMMs for PTSD, with N and M both

in the range of 15-25. The logarithm likelihood of the

multiple observation sequences under each HMM was

calculated and shown in Fig. 5. The logarithm likelihood of

the multiple observation sequences of NC subjects reaches

its local maximum at M of 16 and N of 21 (Fig. 5a), while

the logarithm likelihood of the multiple observation

sequences of PTSD patients reaches its local maximum at

M of 16 and N of 24 (Fig. 5b).

Here, in order to quantitatively measure the transition

patterns of the FBSs, we defined the number of the frequent

states (NFS) and the degree of the transition patterns

(DTP). For convenience, we use the compact notation

QTP = (NFS, DTP) to indicate the quantitative property of

the transition patterns (QTP). A state is considered as a

frequent state if its occurrence in the transition patterns is

greater than 1/8 of the total states. In this work, the value of

1/8 was determined experimentally. In the experiment, we

tried the value of 1/n (n = 5, 6,…, 10). We empirically

chose the number of 1/8 that achieved relatively significant

result, in which there was at least one identified most fre-

quent state in the transition patterns decoded from every

learnt HMM. The DTP is just for counting the transitions,

defined as:

DTPðkÞ ¼
XT�1

i¼1

DTPi;iþ1; whereDTPi;iþ1

¼ 1; ifstatei 6¼ stateiþ1

0; ifstatei ¼ stateiþ1

�
; ð8Þ

where statei is the ith state in the transition patterns and

k denotes the subject index.

Fig. 4 The method for

classification of PTSD via

HMMs. a The FCS sequence of

a specific test subject is labeled

based on the Euclidean

distances between FCSs and

CFCSs, resulting in two

symbolic observation

sequences. b The likelihood of

the two observation sequences

under their corresponding HMM

are calculated, based on which

the specific test subject is

classified as a PTSD patient or a

NC subject
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As shown in Fig. 5, HMMncð16; 21Þ and

HMMptsdð16; 24Þ were the two best-matched HMMs, from

which the underlying temporally dynamic transitions pat-

terns of the FBSs were decoded by using the Viterbi

algorithm, as shown in Fig. 6. The results in Fig. 6 dem-

onstrate that the FBSs undergo remarkably temporally

dynamic changes (Fig. 2f) in resting state, in agreement

with previous studies (Li et al. 2013b; Chang and Glover

2010; Smith et al. 2012; Li et al. 2014; Gilbert and Sigman

2007; Majeed et al. 2011). Interestingly, the FBSs of NC

subjects were mainly transiting amongst three frequent

states (Fig. 6a), while the FBSs of PTSD patients were

mainly stay in one state (Fig. 6b). The functional connec-

tome patterns (Signature FCSs) characterizing those four

most frequent FBSs were derived by averaging those FCSs

that emitted the same underlying brain state and shown in

Fig. 7. Our neuroscience interpretation is that NC brains

tend to transit amongst two strongly-connected states and a

relatively weakly connected state (Fig. 7a–c). In contrast,

PTSD brains mainly stay in a strongly-connected state that

involves the cingulate gyrus (Fig. 7d), which is believed to

be involved in neural circuitries of PTSD (Francati et al.

2007). These results suggest that subjects wandered in and

out of various cognitive states during the R-fMRI scan,

without any control over the subject’s stimulus or envi-

ronment. It is interesting that PTSD brains tend to stay in

one state and seem to be unable to disengage from it.

Moreover, the most frequent state in the transition patterns

of PTSD is also an absorbing state in the Markov chain

contained in HMMptsdð16; 24Þ, which would be discussed

in the following subsection.

Notably, the Markov chain contained in the

HMMncð16; 21Þ is an ergodic, random walk, recurrent and

regular one (Rabiner 1989; Stratonovich 1960). The state

transition probabilities in HMMncð16; 21Þ converged after

approximately 100 further prediction steps, and the

equilibrium probabilities of the 21 underlying FBSs of

NC subjects in HMMncð16; 21Þ were shown in Fig. 8.

However, the state transition probabilities in

HMMptsdð16; 24Þ converged much more slowly than the

ones in HMMncð16; 21Þ, which hadn’t converged after

15,000 prediction steps, as shown in Fig. 9. After con-

vergence, there was an absorbing state (Fig. 7d, h), which

suggested that the brains of PTSD patients tend to keep in

that state after a long time R-fMRI scan. Due to the loud

noise during the R-fMRI scan, it seemed impossible for

subjects to become drowsy, even fall asleep. One possible

interpretation is that PTSD patients become anxious or

depression and tend to stay in that state, which reflects the

previous hypothesis that brains with psychiatric conditions

can be defined as the tendency to enter into, and inability

to disengage from, a negative mood state (Holtzheimer

and Mayberg 2011).

Classification of PTSD and NC via Multiple HMMs

Using Majority Voting

First, to infer a robust and reproducible classification

results, the commonly used n-fold cross validation strategy

(n = 10) was adopted. The 44 PTSD patients and 51 NC

subjects were equally divided into 10 portions (some por-

tions may include one more patient or control). The cross-

validation training set was subsequently constructed by

sequentially combining nine portions, and the remaining

was treated as the testing set. From ‘‘Hidden Markov

Models Learnt for NC and PTSD’’ section, we have known

that the likelihood of the observation sequences of NC and

PTSD both reached their maxima with 16 observations.

Therefore, we used the combinations of any two HMMs,

one from NC and the other from PTSD, both with 16

observations and the number of hidden states in the range

Fig. 5 The logarithm likelihood of the multiple observation

sequences of NC in a, and PTSD in b. The logarithm likelihood of

the multiple observation sequences of NC reaches its local maximum

at M of 16 and N of 21, where is highlighted by the red arrow in a,

while the one of the multiple observation sequences of PTSD reaches

its local maximum at M of 16 and N of 24, where is highlighted by the

red arrow in b (Color figure online)
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of 15-25, as classifiers. Thus, there were 121 classifiers for

each fold. To get a better the classification accuracy, we

combined these classifiers by using majority voting (Ruta

and Gabrys 2005; Kittler et al. 1998) based on the premise

that each classifier provides complementary information

about the characteristics and difference of PTSD. A subject

is considered as a PTSD patient when he/she is classified as

a PTSD patient by more than half classifiers. On average,

37 PTSD patients out of 44, i.e., 84 %, and 44 NC subjects

out of 51, i.e., 86 %, were successfully classified, as shown

in Fig. 10. This classification accuracy is substantially

better than the results reported in (Li et al. 2014) sug-

gesting the superiority of the proposed HMMs and classi-

fication methods.

Studies on the Effect of the Number of Hidden

and Observed States in HMM

In this experiment, we chose two best-matched HMMs by

the maximum likelihood of the multiple observation

sequences, to decode the underlying dynamic transition

patterns of the FBSs. In order to investigate the effect of

the relative number of hidden states and observations

during HMM learning, we also decoded the underlying

dynamic transition patterns of the FBSs from other HMMs

not only the two best-matched HMMs, and the quantitative

properties of them for NC and PTSD were shown in

Tables 1 and 2, respectively. The results suggested that all

of the underlying transition patterns were similar, i.e., the

Fig. 6 The joint multiple underlying temporally dynamic transition

patterns of the FBSs for NC in a, and for PTSD in b, with the

quantitative properties of (3, 181.4) and (1, 27.2). The temporally

dynamic transition patterns in each area that split by the red line

represented the dynamic transition patterns of an individual subject.

For better illustration, we enlarged part of the transition patterns of

NC in c, and PTSD in d (Color figure online)
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underlying FBSs were mainly transiting amongst a few

frequent states or mainly stayed in one state, and the brains

of both NC and PTSD were under dynamic changes in

resting state. Moreover, the PTSD brains mainly stayed in

one state (Table 3), suggesting that PTSD could be char-

acterized by the tendency to enter into, and more inability

to disengage from, a negative mood state (Holtzheimer and

Mayberg 2011).

Studies on the Effect of the Number of Observation

Sequences for HMM Learning

As discussed in ‘‘Functional Connectome State Con-

struction’’ section, in order to cover larger brain state

transition space and learn better matched HMMs, we used

joint multiple observation sequences for HMM learning.

In this experiment, we tried to learn HMMs by using

different numbers of observation sequences and then to

study the underlying dynamic transition patterns of the

FBSs. Here, the number of hidden states, N, and the

number of observations, M, were also in the range of

15–25, as used in ‘‘Hidden Markov Models Learnt for NC

and PTSD’’ section. The evaluated numbers of observa-

tion sequences were 1, 2, 4, 8 16, 32 and 40. The best-

matched HMMs learnt from a specific number of obser-

vation sequences were also determined by the maximum

likelihood of the observation sequences. Then we calcu-

lated the quantitative properties of the underlying

Fig. 7 Visualization of the 358 9 358 functional connectome pat-

terns of the 3 most frequent SFCSs of NC in a–c, and the most

frequent SFCS of PTSD in d, and visualization of the functional

connectome patterns of the above 4 most frequent SFCSs on cortical

surfaces in e–h. DICCCOL ROIs are marked as green spheres on the

cortical surface, and the functional connectivities between ROIs are

shown as red edges connecting those spheres

Fig. 8 The equilibrium

probabilities of the 21

underlying FBSs of NC subjects

in HMMncð16; 21Þ after 100

further prediction steps
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transition patterns decoded from the best-matched HMMs

which were learnt from a given number of observation

sequences, as shown in Table 3. Meanwhile, we also tried

to classify PTSD patients and NC subjects via those

HMMs based on the same methods in ‘‘HMM Modeling

Based on Temporally Dynamic FCSs’’ section. The results

of classification were also shown in Table 3. These results

demonstrated that the more observation sequences we

used for HMM learning, the more subjects can be clas-

sified successfully.

Fig. 9 The probabilities of the 24 underlying FBSs of PTSD patients in HMMptsdð16; 24Þ after 10,000 prediction steps in a, 15,000 prediction

steps in b, and 40,000 prediction steps in c

Fig. 10 The classification result of multiple combinations of

HMMncð16;NÞ and HMMptsdð16;NÞ using majority voting. The red

bar indicates the votes that are classified as NC subject. The blue bar

indicates the votes that are classified as PTSD patient. a 44 NC

subjects won more than half votes that are classified as NC subjects.

For example, the first subject won 89 votes that are classified as a NC

subject and 32 votes that are classified as a PTSD patient. Through

majority voting, the first subject is classified as a NC subject. b 37

PTSD patients won more than half votes that are classified as PTSD

patients (Color figure online)
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Discussion and Conclusion

In this work, we indirectly characterized the FBS by a

large-scale functional connectivity matrix which was

defined as the Pearson correlations between the windowed

R-fMRI time series extracted from pairs of DICCCOL

ROIs (Zhu et al. 2013). With the sliding time window, an

FCS sequence of each brain was modeled and derived.

After FCS clustering, we transformed the FCS sequence of

each brain into a symbolic observation sequence, based on

which we further learnt the HMMs to characterize the

dynamic transition patterns of the FBSs.

Furthermore, the hidden parts of the HMMs were

decoded and analyzed, and substantial and meaningful

dynamic transition patterns of the FBSs of both NC and

PTSD were discovered. The two best-matched HMMs were

chosen by the maximum likelihood of the multiple obser-

vation sequences of NC and PTSD respectively, to decode

the underlying temporally dynamic transition patterns of

the FBSs. The results demonstrate that the FBSs undergo

dynamic changes in resting state, in agreement with pre-

vious studies (Li et al. 2013b; Chang and Glover 2010;

Smith et al. 2012; Li et al. 2014; Gilbert and Sigman 2007;

Majeed et al. 2011). On average, 84 % of PTSD patients

and 86 % of NC subjects were successfully classified via

multiple HMMs using majority voting, which is substan-

tially better than previously reported results (Li et al.

2014).

Additionally, the Markov chains contained in the two

best-matched HMMs were analyzed and meaningful results

of further predictions with the Markov chains were dis-

covered. Further predictions with the best-matched HMM

for PTSD revealed that there was an absorbing state in the

Markov chain, which means the PTSD brains tend to keep

in one state in the future. The FCSs and FCS transition

modeling with HMMs in our work for PTSD are consistent

Table 1 The QTP of brain state transitions of NC with different values of N and M

N 15 16 17 18 19 20 21 22 23

M

15 (3, 181.4) (2, 181.4) (3, 181.3) (1, 1.4) (2, 180) (1, 2.1) (1, 4.8) (2, 181.4) (1, 3.4)

16 (2, 181.4) (2, 181.4) (2, 181.2) (1, 21.7) (2, 181.4) (2, 181.4) (3, 181.4) (2, 181.4) (1, 3.5)

17 (1, 3.3) (1, 5) (1, 4.7) (1, 3.3) (2, 178.3) (1, 5.6) (1, 6) (2, 178.3) (1, 3)

18 (2, 178.3) (1, 3.7) (1, 23.1) (4, 178.3) (1, 3.3) (5, 176.6) (1, 4.6) (2, 178.2) (1, 4.1)

19 (2, 178.1) (1, 4.1) (1, 7.5) (3, 178.2) (1, 2.4) (2, 178.2) (6, 178) (3, 178.1) (5, 178.2)

20 (2, 178.2) (1, 2.3) (1, 2.4) (1, 10.4) (2, 177.3) (3, 178.2) (2, 178.1) (2, 178.2) (5, 178.1)

21 (2, 178.2) (2, 178) (2, 178.2) (1, 3.3) (1, 4.1) (2, 176.8) (3, 178) (2, 178.2) (3, 177.4)

22 (2, 178.2) (1, 2.4) (4, 176.5) (1, 4) (1, 3.4) (3, 178.1) (1, 4.7) (1, 6.1) (1, 5.1)

23 (3, 178.1) (1, 4.5) (1, 3.9) (1, 5) (2, 177.9) (1, 5.8) (1, 4.3) (3, 177.6) (2, 178)

24 (4, 178.1) (1, 3.4) (3, 177.8) (1, 3) (1, 4.4) (1, 3.3) (2, 178.1) (1, 3.3) (1, 6.7)

25 (1, 4.2) (3, 177.8) (1, 3.5) (2, 177.8) (1, 2.6) (1, 2.7) (5, 177.8) (5, 177.8) (3, 177.5)

Table 2 The QTP of brain state transitions of PTSD with different values of N and M

N 15 16 17 18 19 20 21 22 23

M

15 (3, 177.7) (1, 3) (1, 2.5) (1, 2.2) (1, 2.7) (1, 1.9) (3, 178.4) (3, 177.8) (1, 2.6)

16 (1, 3.9) (1, 2.7) (1, 3.4) (4, 177.8) (1, 9.9) (2, 177.1) (1, 3.5) (1, 2.4) (3, 177.8)

17 (2, 177.7) (1, 3.2) (3, 177.7) (3, 177.6) (1, 2.9) (2, 177.7) (3, 177.5) (1, 2.7) (2, 176.3)

18 (2, 173.9) (2, 173.8) (1, 5.9) (2, 173.9) (1, 4) (3, 173.9) (1, 6.8) (5, 172.7) (1, 4)

19 (2, 173.3) (2, 173.9) (1, 5.3) (2, 173.7) (1, 4.1) (1, 6.5) (1, 6.3) (2, 173.7) (3, 171.9)

20 (1, 4.1) (1, 5.2) (2, 173.8) (2, 159.1) (1, 3.8) (3, 170) (2, 173.2) (3, 173.7) (1, 2.7)

21 (1, 10) (2, 173.1) (2, 7.8) (2, 173.9) (1, 5.6) (3, 173.7) (1, 4.9) (1, 3.8) (3, 173.9)

22 (1, 5.3) (3, 173.5) (2, 177) (4, 173.6) (2, 173.6) (1, 6.1) (1, 5.2) (1, 6) (1, 6.1)

23 (2, 173.4) (1, 4.5) (1, 7.1) (1, 2.4) (3, 172.9) (1, 4.2) (1, 5.9) (1, 4.2) (1, 12.1)

24 (3, 173.5) (2, 173.7) (1, 6) (1, 9.1) (1, 4) (1, 4.5) (4, 173.7) (1, 7.1) (1, 3.7)

25 (2, 172.3) (1, 5) (1, 8.3) (1, 4) (1, 3.1) (1, 8.1) (1, 5.4) (1, 5.7) (1, 5.1)
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with the brain state models in the PTSD study, which

abstract brain functional connectivity as FBSs and repre-

sent mental status by a finite state transition space. In

particular, our work presents a computation framework for

modeling and representing the FBS dynamics via HMMs,

providing direct support to the characterization and dif-

ferentiation for psychiatric conditions.

In this study, we premise that FCS is an indirect mea-

surement of FBS, and that different FCSs in different time

windows and across different individuals may indirectly

measure the same brain state. Therefore, we applied the

hierarchical clustering to identify those FCSs which indi-

rectly measure the same brain state, and then assigned them

to the same symbolic observation state. We applied HMM

learning to the symbolic observation sequences derived via

the two-stage hierarchical clustering, rather than the FCS

sequences directly. It should be mentioned that the reason

why we adopted a two-stage hierarchical clustering strat-

egy is due to limited commutating resource. For example,

when we tried to apply the hierarchical clustering with the

9,486 9 9,486 distance matrix in matlab on a computer

with 16 GB memory, it still raised the error of ‘‘out of

memory’’. Notably, the dynamic transition patterns of

FBSs decoded from the two best-matched HMMs provided

evidence to our premise that different FCS in different time

windows and across different individuals indirectly mea-

sure the same brain state.

The work presented in this work can be further

improved and enhanced in the future in the following

aspects. First, in this work, we modeled the dynamic

transition patterns of the FBSs via first-order HMMs, which

are the simplest ones. Actually, the human brain is very

complex, and there exist high-order dependencies between

brain states, i.e., not only the current state determines how

the brain transit to the next state, but also the previous

states would affect the transition. By utilizing high-order

HMMs in the future, we could be able to better model and

characterize the temporally dynamic transitions of the brain

states, reveal more phenomena and principles, and provide

a more comprehensive way to understand the dynamics of

the FBSs. Second, as the functional roles of DICCCOLs are

discovered, we could analyze more biological meanings of

those SFCSs. Third, besides PTSD, we plan to apply the

similar HMMs to model and represent the functional brain

dynamics in other scenarios such as during task perfor-

mance and under natural stimulus, and in other brain

conditions such as the psychiatric disorders of depression

and bipolar disorders.
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