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Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the func-
tional activities of the human brain during task-free and task-performance periods, respectively. How-
ever, due to the difficulty in strictly controlling the participating subject’s mental status and their
cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an
R-fMRI/T-fMRI scan truly reflects the participant’s functional brain states during task-free/task-perfor-
mance periods. This paper presents a novel computational approach to characterizing and differentiating
the brain’s functional status into task-free or task-performance states, by which the functional brain
activities can be effectively understood and differentiated. Briefly, the brain’s functional state is repre-
sented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on
358 consistent cortical landmarks across individuals, and then an effective sparse representation method
was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance
states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are sub-
stantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped,
suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance
brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional acti-
vation detections in different groups, and our results revealed unexpected task-performances of some
subjects. This work offers novel insights into the functional architectures of the brain.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) techniques have
been widely used to study the functional activities and cognitive
behaviors of the brain in recent years. Generally, fMRI studies
can be differentiated into various categories based on the stimulus
used, e.g., resting state fMRI (R-fMRI) (task-free) (Raichle et al.,
2001; Fox and Raichle, 2007) and task-based fMRI (T-fMRI) (task-
performance) (Linden et al., 1999; Heeger and Ress, 2002; Calhoun
et al., 2001; Koshino et al., 2005; Gailard et al., 2004). For these
fMRI studies, the quality of fMRI data is vital because it strongly
influences the reliability of conclusions inferred from the fMRI data
(Simmons et al., 1999; Stocker et al., 2005). During fMRI scans,
there are several factors which may affect the fMRI data qualities
(Stocker et al., 2005), such as fMRI hardware related factors, exper-
imental designs, and participating subject’s issues (e.g., motion,
lack of attention or any other unexpected cognitive behaviors
which are not related to the experimental designs). A variety of
fMRI data quality control studies have focused on fMRI imaging
quality, which already made significant contributions to the qual-
ity assurance of fMRI data (Simmons et al., 1999; Foland and Glo-
ver, 2004; Stocker et al., 2005; Friedman and Glover, 2006).
Furthermore, there were many studies that aimed to optimize
and improve experimental designs, especially in event-related task
fMRI studies (Anders 1999; Wager and Nichols, 2003; Savoy, 2005;
Amaro and Barker, 2006). These task-based experimental designs
were expected to provide a statistically meaningful contrast be-
tween the neuronal activity at task-performance and the back-
ground condition. In addition, the reliability and variability of the
results based on fMRI data were investigated and analyzed in a
variety of papers (McGonigle et al., 2000; Specht et al., 2003;
Schuyler et al., 2010).

An important but underexplored issue in T-fMRI/T-fMRI is how
to ascertain the performance of the participating subject’s func-
tional brain behaviors during fMRI scans. It is an ideal case that
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1 For interpretation of color in Figs. 1, 5 and 6, the reader is referred to the web
version of this article.
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researchers design experimental fMRI paradigms appropriately
such that participating subjects collaboratively pay close attention
and strictly responds to stimulus events. However, it is difficult to
strictly control every subject’s mental status and cognitive behav-
iors all the time during fMRI scan sessions. As a consequence, the
analysis results derived from fMRI data based on the assumption
that every participating subject was strictly complying with the
experimental design could be doubtful to some extent, due to
the critical lack of effective approaches that can accurately assess
the performance of the participant during fMRI scans. For instance,
if a participating subject’s brain was actively thinking during R-
fMRI scans, how different this R-fMRI data will be from other strict
resting state fMRI data acquired during task-free states? Similarly,
if a participating subject’s brain was in resting state, that is, not fol-
lowing the administered task-performance paradigm, how differ-
ent this T-fMRI data will be from other strict task-based fMRI
data acquired during task-performance states? If these differences
are substantial, can we quantitatively characterize and automati-
cally differentiate those unreliable R-fMRI/T-fMRI data from strict
R-fMRI/T-fMRI data? The answers and possible solutions to these
questions can significantly enhance our understanding of the func-
tion mechanisms of the brain and help us better monitor and con-
trol the quality of R-fMRI/T-fMRI data in the subsequent
quantitative analysis, e.g., inference of resting state networks
(RSNs), functional connectivity analysis, and task-based functional
region localization.

In response to the above unanswered questions, this paper pre-
sents a novel computational framework to characterize the brain’s
task-free and task-performance functional states by learning from
both R-fMRI and T-fMRI datasets. Our computational pipeline is
composed of three major components. First, the structural connec-
tome of each subject is constructed via our recently developed and
validated 358 Dense Individualized and Common connectivity-
based Cortical Landmarks (DICCCOL) (Zhu et al., 2013) based on
DTI data. Second, a sliding window approach was employed to con-
struct each subject’s temporally varying functional connectomes
based on the structural connectome and coincident fMRI data,
which was further interactively divided into quasi-stable seg-
ments. Third, we represent the brain’s functional status by a set
of whole-brain quasi-stable connectome patterns (WQCPs), and
then apply the Fisher discriminative dictionary learning (FDDL)
sparse coding approach (Yang et al., 2011) to learn the atomic con-
nectome patterns (ACPs) of both task-free and task-performance
states from large-scale temporally segmented WQCPs. Essentially,
the integration and pooling of many WQCPs from different brains
are enabled by the DICCCOL system (Zhu et al., 2013), which pro-
vide intrinsic structural and functional correspondences across dif-
ferent individuals and populations. Consequently, the WQCPs from
the different temporal segments of multiple brains can be readily
pooled and effectively compared via sparse coding and representa-
tion methods, which will learn the most descriptive atomic pat-
terns in forming a combined meaningful dictionary to represent
and discriminate those WQCPs. Therefore, the major methodolog-
ical novelties of this paper lie in the DICCCOL-based structural/
functional connectome construction and the sparse coding and
representation of functional brain states.

The computational pipeline has been applied on two separate
multimodal DTI/R-fMRI/T-fMRI datasets of 26 healthy adolescents
and 37 healthy adults. Our experimental results demonstrated
that the learned ACPs for R-fMRI and T-fMRI datasets are substan-
tially different, as expected, and that the ACPs learned from inde-
pendent R-fMRI datasets of healthy adolescents and adults are
quite reproducible. Importantly, a certain portion of ACPs were
overlapped between the two datasets, suggesting that some par-
ticipating subjects were not in the expected task-free/task-perfor-
mance states during the R-fMRI/T-fMRI scans and should be
considered as potential outliers in the following steps of data
analysis. As examples, some potential outlier WQCP segments
from the T-fMRI dataset within resting state ACP patterns were
further examined. Our activation detection results on T-fMRI
datasets demonstrated that the subjects with outlier resting state
ACPs have almost no group activation regions, while the subjects
without outlier resting state ACPs exhibit consistent task-related
activations. This result suggests that the ACP patterns could be
potentially used to infer whether the participating subjects were
following the administered experimental tasks or not during T-
fMRI scans. In general, our experimental results revealed interest-
ing phenomena of the regularity, diversity and dynamics of func-
tional connectomes in task-free and task-performance states.
Notably, an early short version of this methodology was presented
in the MICCAI 2012 conference (Zhang et al., 2012).
2. Materials and methods

2.1. Overview

The flowchart of the proposed computational framework is
summarized in Fig. 1. First, the 358 consistent DICCCOL land-
marks that have been discovered and validated in our recent
study (Zhu et al., 2013) are located in the DTI data of each brain
(green bubbles1 in the left panel of Fig. 1) via an effective func-
tional landmark prediction approach (Zhang et al., 2012; Zhu
et al.,2013). After pre-processing (Zhu et al., 2011b, 2013), both
R-fMRI and T-fMRI images are co-registered into the DTI space
using FSL FLIRT, and the representative R-fMRI/T-fMRI time series
in each DICCCOL were extracted (Fig. 1(1)). Second, by using a slid-
ing time window approach (Li et al., 2013), the dynamic functional
connectivity time series between each pair of DICCCOLs are mea-
sured and thus the time-varying functional connectomes are con-
structed (Zhu et al., 2013). Furthermore, the cumulative
functional connectivity strength of each landmark with all other
DICCCOLs at each time point is summed, and the functional con-
nectome is thus compactly represented by a column as shown in
Fig. 1(2). Third, as extensive observations show that the functional
connectome strengths are relatively stable in a continuous time
period, therefore, they are interactively segmented into quasi-sta-
ble segments (called WQCP above), which form a set of WQCP
training samples (Fig. 1(3)). Fourth, the WQCP samples from both
R-fMRI and T-fMRI datasets were pooled together for sparse repre-
sentation and classification via the Fisher discriminative dictionary
learning (FDDL) method (Fig. 1(4)) (Yang et al., 2011) and a set of
representative ACPs were obtained. Finally, each WQCP segment is
classified to one ACP and the distributions of ACPs can be exam-
ined at the individual and population levels, as illustrated in
Fig. 1(5).
2.2. Data acquisition and pre-processing

Two populations including 26 healthy adolescents (ages 11–17)
and 37 healthy adults (ages 23–46) were recruited in Sichuan, Chi-
na, under the IRB approvals of the Second Xiangya Hospital and the
Central South of University. Multimodal DTI/R-fMRI/T-fMRI data-
sets for each participant were acquired on a 3T MRI scanner in
West China Hospital, Huaxi MR Research Center, Department of
Radiology, Chengdu, China. Acquisition parameters were as
follows: DTI: 256 � 256 matrix, 3 mm slice thickness, 240 mm
FOV, 50 slices, 15 DWI volumes, b-value = 1000; fMRI: 64 � 64
matrix, 4 mm slice thickness, 220 mm FOV, 30 slices, TR = 2 s. The



Fig. 1. The flowchart of our computational framework. (1) R-fMRI/T-fMRI signal extraction for each DICCCOL; (2) Construction of functional connectomes; (3) Interactive
segmentation of WQCP training samples; (4) FDDL sparse learning and classification. (5) Examination of the distributions of ACPs at the individual and population levels.
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pre-processing of DTI data included brain skull removal, motion
correction and eddy current correction (Zhu et al., 2011b). After
that, streamline fiber tracking was conducted via the MedINRIA
(http://www-sop.inria.fr/asclepios/software/MedINRIA/). Then,
white matter (WM) and grey matter (GM) tissue segmentation
were performed on DTI data via the approaches in Liu et al.
(2007). The cortical surface was reconstructed based on the WM
tissue map using the marching cubes algorithm (Liu et al., 2008).
Pre-processing steps of the R-fMRI data include brain skull re-
moval, motion correction, spatial smoothing, temporal pre-whiten-
ing, slice time correction, global drift removal, and band pass
filtering (0.01 Hz–0.1 Hz) (Li et al., 2010). Notably, we used the
DTI image space to define connectome nodes and fMRI data was
mapped to the DTI space. Our rationale is that both fMRI and DTI
use EPI (echo planar imaging) sequences, and their geometric distor-
tions tend to be similar (Li et al., 2010). As a result, the misalignment
between DTI and fMRI images is much less than that between T1 and
fMRI images (Li et al., 2010). To ensure a good mapping of fMRI data
to DTI space, we applied the anatomical and connectional constraints
(Li et al., 2010) in the mapping process.

In addition to the above DTI and R-fMRI datasets, visual block-
based T-fMRI data for the adolescent group and auditory block-
based T-fMRI data for the adult group were acquired using similar
scan parameters as those in R-fMRI. The visual task paradigm was
designed as follows (Fig. 2a). Each block contains a 30 s rest period
and a 20 s task period when video stimuli were presented to the
Fig. 2. Illustrations of block-based task paradigm designs. (a
scanned subject (Zhang et al., 2012). Here, the ‘‘fix’’ represents fix-
ation on a ‘‘+’’ sign for 10 s, Nu represents neutral video, Ne repre-
sents negative video showing earthquake scenes, Po represents
positive video showing the rescue and encouraging scenes of the
earthquake rescue, and R indicates resting state for 30 s (including
8 s in the beginning as one sentence on the screen for informing
the subject to make a choice and 22 s for fixation on a ‘‘+’’ sign). To-
tally, this paradigm lasts 440 s.

The paradigm design of the auditory task is illustrated in Fig. 2b.
There are three blocks in total and in each block the subject lis-
tened to either neutral story (the first and third block) or earth-
quake story (the second block), and then followed by 30 s
imagination according to which story they had just listened to
and then another 60 s of resting state period. The pre-processing
steps of T-fMRI data are similar to those in Zhu et al. (2011b).

2.3. DICCCOL-based structural connectome

In order to construct functional connectomes, we used the dense
map of 358 consistent DICCCOL landmarks reported in Zhu et al.
(2013)to construct structural connectomes. The visualizations of all
of these 358 DICCCOLs have been released online at: http://dicc-
col.cs.uga.edu. One example of 358 DICCCOLs distributed on a cortical
surface is shown here in Fig. 3. As the 358 DICCCOLs are very consis-
tent and reproducible, e.g., replicated across over 240 brains (Zhu
et al., 2013), they can be quite accurately predicted in the DTI data
) Visual task paradigm and (b) auditory task paradigm.

http://dicccol.cs.uga.edu
http://dicccol.cs.uga.edu


Fig. 3. (a) An example of 358 DICCCOL landmarks on a cortical surface and (b) an example of DICCCOL-based structural connectome.
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of individual brains. For a new subject with DTI data, we first warp
the brain to the template via FSL FLIRT and obtain the initial loca-
tions of 358 DICCCOL landmarks in the subject. Similarly, we ex-
tract the white matter fiber bundles emanating from the small
regions around the neighborhood of each landmark, and each
neighbor region will serve as the candidate for landmark optimiza-
tion. Also, the fiber bundles of the candidate landmarks of the sub-
ject will be represented via the trace-maps (Zhu et al., 2011a,
2013). For each landmark to be optimized in the testing brain,
the trace-map distances between the candidate landmarks and
the DICCCOL landmarks in the template subjects are measured.
The predicted location of each DICCCOL in the new brain is deter-
mined by selecting one candidate landmark that has the least
group-wise fiber connection variance (Zhu et al., 2013). Thus,
based on the DTI data of each subject, we can predict 358 DICCCOL
landmarks, which offer the structural substrates for the construc-
tion of structural connectomes. Here, the fiber connection strength
between any pair of 358 DICCCOLs is used as the connectome edge
(Zhu et al., 2013), which is shown in Fig. 3b as an example. It should
be noted that we used the same number of DICCCOL landmarks in both
groups of R-fMRI and T-fMRI datasets in order to ensure that their con-
nectome patterns can be integrated and compared in the following
sections.

2.4. Whole-brain quasi-stable connectome patterns (WQCPs)

After all of the 358 cortical landmark locations were predicted
in each subject’s brain, the fMRI time series for each landmark
can be extracted from both of the R-fMRI and T-fMRI datasets (Sec-
tion 2.2). To investigate the temporal dynamics of the large-scale
functional connectomes in task-free and task-performance states,
a sliding time window approach (Li et al., 2013) was applied here.
Specifically, for each time point t, the functional connectivity (FC)
between each pair of DICCCOLs (i and j) is defined as follows:

FCi;j ¼ PearsonCorrelationðWi;WjÞ; FCi;j ¼ 0 if i ¼ j ð1Þ

Wi ¼ ½si;t ; si;tþ1; . . . ; si;tþl�1�
Wj ¼ ½sj;t ; sj;tþ1; . . . ; sj;tþl�1�

ð2Þ

where Wi and Wj represent the fMRI time series with l-time-points
window length of DICCCOL i and DICCCOL j respectively, where l was
set to 14 volumes in this study; si,t and sj,t are the corresponding fMRI
signal strengths of DICCCOL i and DICCCOL j at the time point t; l is
the length of the time window. FC is measured using the absolute
value of Pearson correlation coefficient between the two windowed
fMRI signals Wi and Wj at each time point. Then, the dynamic func-
tional connectivity time series between each pair of landmarks are
obtained, which can be represented by a 3D 358 � 358 � time
matrix.

To have a compact representation of the functional connectome,
the cumulative connectivity strength of each landmark is mea-
sured by summing the absolute value of all the functional connec-
tivities between this landmark and all of the other landmarks.
This operation converts the functional connectome matrix
(358 � 358) at each time point into a representative connectome
vector (358 � 1). Thus, we obtained a 2D temporally dynamic func-
tional connectome matrix for each participant (see Fig. 4). In Fig. 4,
the horizontal axis represents time points and the vertical axis is
the cumulative functional connectivity strength of each landmark,
which is color-coded by the color-bar on the right. From this figure,
it can be clearly observed that the connectome strength keeps rel-
atively stable in a continuous time period. Therefore, the dynamic
connectome matrix can be temporally segmented into a series of
whole-brain quasi-stable connectome patterns (WQCPs), which
were implemented interactively in this study. The manual segmen-
tations were performed and cross-validated by two experts. Since the
functional connectome pattern within each WQCP is quasi-stable,
each WQCP segment is averaged among the time axis, resulting
in a single WQCP vector. Then, all the WQCP segments and vectors
from both R-fMRI and T-fMRI data of each subject were pooled to-
gether as training samples, and then were represented using sparse
coding methods in Section 2.5. Notably, in this paper, the above
methodologies were first applied on the R-fMRI and visual T-fMRI
dataset of the adolescent participants, and then on the adult R-
fMRI and auditory T-fMRI dataset, respectively.
2.5. Fisher discriminative dictionary learning for sparse representation
of WQCP

In recent years, sparse representation of signals has attracted
significant attention in applications such as signal separation (Li
et al., 2004; Starck et al., 2005), signal denoising (Elad and Aha-
ron, 2006), signal classification (Huang and Aviyente, 2006;
Wright et al., 2009; Zhang and Li, 2010; Ramirez et al., 2010;
Yang et al., 2010) and image restoration (Mairal et al., 2008;
Ranzato et al., 2006). It has been widely recognized that sparse
coding exhibits very good performance in image analysis, espe-
cially in image classification (Wright et al., 2009). Basically, sparse
coding aims to search for the most compact representation of the
signal in terms of a sparse linear combination of atoms in an



Fig. 4. The dynamic functional connectivity strength time series and WQCP segments (separated by dash black lines) from two fMRI datasets. (a) A resting state fMRI case and
(b) a visual T-fMRI case. The horizontal axis of each image represents time points and the vertical axis represents the cumulative functional connectivity strength time series
of each DICCCOL.
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over-complete dictionary. In sparse representation, the perfor-
mance heavily depends on the quality of the dictionary. A critical
issue is that the number of atoms of a dictionary can be very big,
which increases the coding complexity and may not fully exploit
the discriminative information hidden in the training samples
(Yang et al., 2011). Many dictionary learning methods (e.g., Aha-
ron et al., 2006; Rodriguez and Sapiro, 2007; Mairal et al., 2008;
Pham and Venkatesh, 2008; Zhang and Li, 2010; Ramirez et al.,
2010; Yang et al., 2010) have been proposed for the purpose of
learning an over-complete dictionary from the training samples,
over which the given signal could be well represented. Actually,
to reconstruct the signal accurately is not enough for signal clas-
sification, during which the discrimination of the representation
for the given signal classes is also very important (Huang et al.,
2006). Thus, both the reconstruction and discrimination terms
were considered in the recent sparse coding based classification
studies. This paper adopted an effective Fisher discriminative dic-
tionary learning (FDDL) based sparse representation methodology
(Yang et al., 2011) and tailored it for extracting atomic connec-
tome patterns (ACPs) of functional brain states from the original
combined WQCP samples. In general, the FDDL employs the Fish-
er discrimination criterion to learn a structured dictionary com-
posed of small class-related sub-dictionaries. During the
learning process, the sparse coding coefficients were trained to
not only have small within-class scatter but also have large be-
tween-class scatter. Each sub-dictionary was formed finally to
well represent the training samples from the corresponding class
but have poor representation ability for samples from other clas-
ses. Thus, both the reconstruction error and the coding coefficient
will be discriminative when finished.

Here, the learned dictionary is denoted by D = [D1, D2, . . . , Dc],
where Di is the sub-dictionary corresponding to the class i, and c
is the total number of classes learned. Di has the dimension of
358 � Ni, where Ni is the size of the ith sub-dictionary which varies
across sub-dictionaries. The sum of the size of all sub-dictionaries is
equal to the total number of WQCP samples. An example visualization
of the sub-dictionaries is shown in Supplemental Fig. 5. A = [A1, A2, -
. . ., Ac] represents all training WQCP vector samples, where Ai is the
sub-set of the training WQCP vector samples belonging to the class
i. In addition, X = [X1, X2, . . ., Xc] represents the coding coefficient
matrix of A over D. The sub-dictionaries is initialized by the results
from K-means clustering on the WQCPs for a rough estimation of the
data distribution. Then the FDDL model is represented as follows:

JðD;XÞ ¼ arg min
ðD;XÞ
frðA;D;XÞ þ k1kXk1 þ k2f ðXÞg ð3Þ
FDDL aims to generate a comprehensive over-complete dictionary
through updating the dictionary and the coding coefficients. It tries
to minimize the total sum of three items: the first term r(A, D, X) is
called the discriminative fidelity term, the second term ||X||1 is the
sparsity constraint and the last term f(X) is a Fisher discrimination
constraint imposed on the coefficient matrix. k1 and k2 are scalar
parameters for trade-off between discriminative fidelity, sparsity, and
discrimination capability. The value of them (0.01 and 0.02) are exper-
imentally determined by minimizing the overall error variance during
the training stage. The detailed information of the parameter selection
is listed in Supplemental Table 1. The first discriminative fidelity
term can be written by the following:

rðAi;D;XiÞ ¼ kAi � DXk2
F þ kAi � DiX

i
ik

2
F þ

Xc

1¼1
j–i

kDjX
j
ik

2
F ð4Þ

where Xi ¼ ½X1
i ; . . . Xj

i; . . . ; Xc
i � and Xj

i is the coding coefficient of Ai

over Dj. The first term on the right of Eq. (4) indicates that the dic-
tionary D should have good representation ability of Ai. Meanwhile it
is expected to well represent Ai by Di (the second term) but not by
Dj(j – i) (the last term).

f ðXÞ ¼ trðSWðXÞÞ � trðSBðXÞÞ þ gkXk2
F ð5Þ

SWðXÞ ¼
Xc

i¼1

X

xk2Xi

ðxk �miÞðxk �miÞT ð6Þ

SBðXÞ ¼
Xc

i¼1

niðmi �mÞðmi �mÞT ð7Þ

The discriminative coefficient term f(X) is introduced here to make
the dictionary discriminative for the training samples and it is
achieved by minimizing the within-class scatter SW(X) and maxi-
mizing the between-class scatter SB(X) of X, and the parameter g is
set to 1 for both algorithm convex and maximizing the discriminability
as described in Yang et al., 2011. The expressions of SW(X) and SB(X)
are also given in Eq. (6) and Eq. (7), where mi and m are the mean
vectors of Xi and X respectively, and ni is the number of samples
in Ai. The last term kXk2

F is an elastic term used to make f(X) convex
and stable and g is a parameter. The detailed optimization procedures
of FDDL model and the discussion of local minimum were presented in
Yang et al., 2011.

Considering that the FDDL methodology takes account of both
reconstruction capability and discriminative capability of the
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training samples, both the reconstruction error and the coding
coefficient discriminative power should also be considered in the
classification scheme to obtain more accurate results. Specifically,
when D is learned, there are two classifiers that can be used: global
classifier (GC) and local classifier (LC) via coding the given samples
over the learned dictionary. This study adopted the GC to perform
the sparse coding learning and classification of WQCP samples. For
one input WQCP vector sample y, first, the sparse coding coeffi-
cients can be obtained by solving the following:

a
_
¼ arg min

a
fky� Dak2

2 þ ckak1g ð8Þ

where a
_
¼ ½a1

_
;a2
_

; . . . ;ac
_
� and ai

_
is the coefficient vector linked to

the Di. c is a constant parameter. Then, the sample y is attributed
to the class, the sub-dictionary associated with which has the min-
imum representation error defined by:

ei ¼ ky� Di ai
_
k2

2 þw � k a
_
�mik2

2 ð9Þ

where the first term is the reconstruction error using class i; and the
second term is the distance between a

_
and mi, which is the learned

mean vector and w is a constant.
This study used and tailored the above FDDL methodology to

train the combined task-free and task-based WQCP vector samples
to achieve a compact and meaningful dictionary. In particular, each
sub-dictionary or class is associated with an ACP. The total number
of ACPs (and thus sub-dictionaries) is experimentally set to be 16. The
number was determined based on the experiments of trying different
numbers (9–20) of ACPs used in the training stage. In each experiment
with a unique number of ACPs, the Bayesian Information Criteria (BIC)
(Schwarz, 1978) was obtained by the following equation:

BIC ¼ n lnðr2
e Þ þ k lnðnÞ ð10Þ

where r2
e is the summed variance of each sub-dictionary, n is the

total number of segments used for the training, and k is the number
of sub-dictionaries. As the error variance is monotonically decreasing
as more sub-dictionaries are used for the training, the number
of sub-dictionaries could be determined by the optimal k that mini-
mizes the BIC value. The BIC values could be found in Supplemental
Fig. 3.

Afterward, we used the GC to classify the WQCP vector samples
into 16 ACP patterns and acquired the distributions of all WQCPs
for both task-free and task-performance samples in each ACP. Fi-
nally, each ACP pattern is described and represented by the aver-
aged center of all of the WQCP segments and vectors belonging
to this pattern.

3. Results

In this section, we applied the methods in Sections 2.3–2.5 on
the datasets in Section 2.2, and qualitatively and quantitatively
examined the ACPs derived from R-fMRI and visual T-fMRI datasets
in Sections 3.1–3.2. The potential outliers detected in the quantita-
tive analyses were further examined via both group-wise and indi-
vidual activation detections from T-fMRI datasets in Section 3.3.
The reproducibility of the learned ACPs and their distributions in
the first dataset was assessed via an independent auditory T-
fMRI/R-fMRI dataset in Section 3.4. Finally, comparison of the FDDL
method with non-discriminative dictionary learning model is provided
in Section 3.5.

3.1. Visual evaluation of ACPs in R-fMRI and T-fMRI datasets

Both R-fMRI and visual T-fMRI data of 26 adolescents were ana-
lyzed following the steps in Sections 2.3–2.5. First, by using the
method in Section 2.3, the 358 consistent DICCCOL landmarks for
each subject were predicted and located based on DTI data. Then,
according to the methods in Section 2.4, the dynamic functional
connectome strength matrices were calculated and interactively
segmented, and thus we obtained a collection of totally 1149
WQCP segments and corresponding averaged WQCP vectors. Spe-
cifically, there were 474 samples from R-fMRI data and 675 sam-
ples from visual T-fMRI data. Subsequently, all of the 1149
samples were trained and classified by the FDDL method in Sec-
tion 2.5. Finally, a structured combined dictionary containing 16
sub-dictionaries corresponding to 16 ACPs was learned and each
WQCP sample was assigned into one ACP. The visualizations of these
16 sub-dictionaries are shown in Supplemental Fig. 5.

We visualized all of these 16 ACPs using their averaged WQCP
centers in Fig. 5a. For each WQCP vector sample (358 � 1), it is
associated with an averaged 358 � 358 functional connectome ma-
trix by averaging all the 358 � 358 functional connectome matri-
ces in the corresponding WQCP segments. The functional
connectome strength of each ACP was calculated by averaging all
the 358 � 358 functional connectivities of each WQCP sample
associated with it, i.e., each WQCP center. Fig. 5a shows the visual-
ization result of the 16 ACP patterns represented by sixteen
358 � 358 functional connectome matrices, and the top 100 high
functional connectivity pairs between DICCCOLs in each ACP in
Fig. 5a are visualized on the cortical surface in Fig. 5b. It should
be noted that the ACPs #1–9 in the red frame in Fig. 5a contain
the WQCPs dominantly from the visual T-fMRI data, while the ACPs
#11–16 in the blue frame primarily include the WQCPs from R-
fMRI data. It is evident that the ACPs learned from visual T-fMRI
and R-fMRI datasets are remarkably different. This result suggests
that it is feasible to employ functional connectomes to characterize
and differentiate the functional brain activities in task-perfor-
mance and task-free states, which is the underlying hypothesis of
this work. Notably, though the ACPs in visual T-fMRI data are quite
variable (Fig. 5a), the top high functional connectivities in these the
ACPs tend to localize in the visual cortex, as highlighted by the red
arrows in Fig. 5a and b. This result is quite reasonable given that
the visual task administered to the subjects is expected to signifi-
cantly stimulate the vision system. Furthermore, the variable ACPs
(#1–9 in Fig. 5a and b) also suggest the complex patterns of func-
tional connectomes during visual task performance, which merits
further investigation in the future.

Interestingly, the ACPs in the resting state (#11–16 in Fig. 5a
and b) are even more variable and dynamic than those in task-per-
formance state. For instance, in ACP #11 the whole functional con-
nectome is strongly connected (yellow and red colors in Fig. 5a),
while in ACP #15 the whole functional connectome is weakly con-
nected (cyan and blue colors in Fig. 5a). In contrast, in ACP #12 and
#14, certain sub-networks are more strongly connected (Fig. 5a).
This observation is consistent with recent literature reports that
resting state functional networks undergo remarkable temporal
dynamics as seen in R-fMRI data (e.g., Chang and Glover, 2010; Li
et al., 2013; Smith et al., in press), although the characterizations
and mechanisms of those temporal dynamics are unknown to date.
Despite the variable patterns of functional ACPs in resting state, the
top high functional connectivities within the ACPs of task-free
state tend to be localized in the default mode network (Raichle
et al., 2001; Fox and Raichle, 2007), as illustrated by the yellow cir-
cles in Fig. 5b.

To further explore the neuroscience interpretation of the ACPs
in Fig. 5a, the functional connectivities with strength over 0.5 in
each ACP were visualized on the cortical surfaces in Supplemental
Fig. 1. In Supplemental Fig. 1, 358 DICCCOL landmarks are repre-
sented by an inner ring of color-coded nodes, connections are rep-
resented by edges, and 22 most commonly used functional
networks are represented by 22 outlier rings of colored nodes. Each
colored node in each ring of 358 nodes stands for a functional



Fig. 5. Sixteen ACP patterns in both R-fMRI and T-fMRI datasets. (a) Representation of each ACP by the averaged 358 � 358 functional connectomes. It is a compact
representation of task-free and task-performance states. (b) Visualization of the top 100 high functional connectivity pairs between two DICCCOLs on the cortical surface.
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network. The visualizations in Supplemental Fig. 1 further confirm
the findings in Fig. 5, as discussed above. In particular, these results
demonstrate that functional connectome is an effective approach
to representation and characterizations of functional brain activi-
ties in both task-free and task-performance states, which is one
of the major methodological contributions of this work.

3.2. Quantitative analysis of ACPs in R-fMRI and T-fMRI datasets

To quantitatively describe the ACPs, the distributions of both
task-free and visual task-performance WQCP samples classified
to those 16 ACPs are shown in Fig. 6. The horizontal axis indexes
the 16 ACPs discriminated by the learned FDDL dictionary. Num-
bers 1–16 corresponds to the sixteen patterns of ACP in Fig. 5.
The vertical axis represents the percentages of WQCP samples dis-
tributed in each ACP for task-free (indicated by blue circles in
Fig. 6) and visual-task-performance (indicated by red squares in
Fig. 6) datasets respectively. From Fig. 6, it can be clearly observed
that the task-free and task-performance periods show quite differ-
ent distribution patterns. In total, there are 94.2% of task-perfor-
mance WQCP samples distributed in ACPs #1–9, while there are
97.5% task-free WQCP samples distributed in the ACPs #11–16,
which implies that ACPs #1–9 (in the red frame in Fig. 5) contain
dominantly the task-performance patterns and ACPs #11–16 (in
the blue frame in Fig. 5) primarily include task-free ACP patterns.
For ACP #10 (Fig. 5a), the task-free and task-performance WQCP
samples overlap, as highlighted by the black arrow in Fig. 6. The
percentages of ACP #10 in both resting-state and task-performance
WQCPs are less than 3%. It is interesting that the functional con-
nectivities in ACP #10 are globally high, as shown by Fig. 5a(10).
The neurobiological basis of this highly active functional connec-
tome pattern remains to be elucidated in the future. From a tech-
nical perspective, these overlapping WQCP samples impose
significant difficulty to decide which functional state (task-free or
task-performance) they belong to, and thus we consider them as
an uncertain pattern in the following steps of data analysis.

In terms of the distributions of ACP #10 in individual subjects,
we found 11 WQCP samples in 8 resting state subjects and 2 WQCP
samples in 2 visual task-based subjects which were classified into
the uncertain ACP #10 pattern. Fig. 7 shows four examples with
ACP #10 WQCP segments from both T-fMRI and R-fMRI datasets.
The top two are from visual T-fMRI subjects and the bottom two
come from R-fMRI subjects. Similar to Fig. 4, the horizontal axis
of Fig. 7 is time points and the vertical axis represents the func-
tional connectivity strength of the 358 DICCCOL landmarks. It
should be noted that each WQCP segment corresponding to ACP
#10 is marked by the black dash line box in Fig. 7. These patterns
showcase the co-existence of ACP #10 in both task-free and task-
performance states in Fig. 6, and further confirm the quite high glo-
bal functional connectivity among different DICCCOLs in
Fig. 5a(10). Interestingly, the time points of ACP #10 occurrences
in Fig. 7a and b are quite different even though the subjects are ex-
pected to follow the same block-based task paradigm. This result
demonstrates that it is difficult to control the participating sub-
ject’s mental status and/or cognitive behaviors during task-perfor-
mance and that it is risky to assume that the participant would
strictly follow the administered task paradigm, which is the under-
lying hypothesis of this work. Instead, the data-driven functional
connectome modeling and analysis proposed in this work can be
very helpful to reveal and characterize the functional brain states



Fig. 5 (continued)

Fig. 6. The distributions of R-fMRI and T-fMRI WQCP samples in 16 ACPs. The
horizontal axis represents each ACP pattern. The vertical axis represents the
corresponding percentages of R-fMRI or T-fMRI WQCP samples distributed in each
ACP.
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and their dynamics in either task-performance or task-free
conditions.

In addition to the shared ACP pattern #10 among task-free and
task-performance states, we further investigated the potential
outliers in both resting state and task-performance WQCP samples.
For instance, there is one WQCP sample in a task-free subject, but it
was clustered into the ACP #4, which is considered as one task-
performance ACP. In total, we found 37 WQCP segments (out of to-
tally 675 task-performance WQCP samples) in 17 subjects that
were clustered into various task-free ACPs, i.e. ACP#11–16, as
shown by the red squares in the right side of Fig. 6 (highlighted
by the yellow arrows). Fig. 8 shows examples of the detected po-
tential outlier WQCP segments of the 17 subjects with patterns
#11–16, as marked in black boxes in Fig. 8. The quantitative sum-
maries of these potential outlier patterns are provided in Table 1
and the ACP index distribution of the outlier WQCPs is provided in
Supplementary Table 3. These results imply that the participants
in our experiments exhibited relatively good resting-state perfor-
mance for high quality R-fMRI data, but they did not perform
equally well in visual task experiments, in that 17 of them exhib-
ited resting state ACP patterns during the task-performance scans.
This result suggests that these subjects might not follow the
administered visual tasks quite well in certain periods during the
T-fMRI scans, which is one of the underlying premises of this work.



Fig. 7. WQCP samples with ACP pattern #10 in task-performance ((a) and (b)) and resting state ((c) and (d)). The ACP pattern #10 is highlighted by the dashed black boxes in
(a)-(d).
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Thus, we should take additional caution when analyzing the task-
based fMRI datasets of these 17 subjects, e.g., in T-fMRI activation
detections, which will be further discussed in Section 3.3.

3.3. Examination of outlier WQCPs and T-fMRI data

According to our analysis results in Section 3.2, there are certain
WQCP segments in 17 subjects that were classified to the resting
state ACP patterns. We hypothesize that this discrepancy might be
due to the fact that these subjects were not well following the
administered task paradigms and/or were performing different
task-unrelated cognitive behaviors during the scans. In this case, if
we use these subjects’ T-fMRI datasets to conduct activation detec-
tion according to the designed task paradigm, it is very likely to ob-
tain unexpected activation results, such as very little or even no
group active regions due to their unexpected task-performance dur-
ing scans. To test this hypothesis, the methodology of T-fMRI activa-
tion detection using the FSL FEAT tool was applied on our visual T-
fMRI dataset as follows. First, according to our analysis results in
Section 3.2, the two subjects who had the uncertain pattern ACP
#10 were discarded and the other datasets were divided into two
groups: 8 subjects exhibiting expected task-performance patterns
(ACPs #1–9 in Fig. 5a) and 16 subjects showing unexpected task-
performances detected by our methods (those have WQCP seg-
ments in ACPs #11–16). Then, the activation detection experiments
were performed on the two groups separately. Meanwhile, the T-
fMRI activation detection results for individual subjects were also
acquired via FSL FEAT. For comparison purpose, the whole-group
activation detection result containing all 24 subjects was also ob-
tained. Therefore, each individual activation detection result and
three group-wise activation detection results (two divided groups
and one whole-group) were obtained for comparison. It should be
mentioned that three contrasts including NU (watch neutral vid-
eos), NE (watch negative videos of earthquake) and PO (watch posi-
tive rescue scenes after earthquake), as mentioned in Section 2.2,
were considered for T-fMRI activation detections. The activation
detection results are shown in Fig. 9. In Fig. 9a–c show three group
activation detection results using the NU contrast for the whole 24-
subject group, the 8-subject group with expected task-performance,
and the 16-subject group with unexpected task-performances,
respectively. It can be easily seen that the 16-subject group
(Fig. 9c) with outlier WQCP segments has no activation regions at
all, which demonstrates that there are no corresponding and consis-
tent visual activations detected among these subjects. However, in
the other 8-subject group’s and 24-subject group’s activation re-
sults, certain group-wise consistent activation patterns were de-
tected, as shown in Fig. 9a and b. In addition, two sample t-tests
were performed on the GLM regression results (beta value) from the
16-subjects in the with-outlier group and the 8-subjects in the with-
out-outlier group, where the samples space is the voxels collection.
The test result showed that there is significant difference between the
with-outlier group and without-outlier group with p-value = 0.05, indi-
cating that the group activation results are significantly different. These
T-fMRI activation detection results strongly support our hypothesis
that the 16 subjects with outlier resting state ACP patterns might
not strictly follow the administered visual task paradigms during
their scans, compared to other 8 subjects. Fig. 9d and e (above the
yellow dash line) provide two typical individual activation detec-
tion results from the 16-subject group, and Fig. 9f and g (below
the yellow dash line) show two individual activation results from



Fig. 8. The detected potential outliers in task-performance subjects with ACPs #11–16, totally 17 subjects. The horizontal axis of each image is time points and the vertical
axis is the functional connectivity strength of 358 DICCCOLs. The WQCP segments with ACPs #11–16 were marked by different black lines as shown in the last image.
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Table 1
The numbers and percentages of subjects with detected outlier ACP patterns for task-
free and task-performance respectively.

ACP index Rest Task
Number/percent Number/percent

Pattern #1 0 –
Pattern #2 0 –
Pattern #3 0 –
Pattern #4 1/3.8% –
Pattern #5 0 –
Pattern #6 0 –
Pattern #7 0 –
Pattern #8 0 –
Pattern #9 0 –
Pattern #10 8/30.8% 2/7.7%
Pattern # 11 – 1/3.8%
Pattern #12 – 4/15.4%
Pattern #13 – 4/15.4%
Pattern #14 – 3/11.5%
Pattern #15 – 11/42.3%
Pattern #16 – 3/11.5%
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8-subject group. It can be easily observed that the two subjects from
the 16-subject group show completely different activation results,
e.g., the top one is almost not activated (very little red regions) while
the bottom one is almost activated in the whole brain (large-scale
red and yellow regions). These huge variations from one to another
across the 16-subject group with outlier WQCP segments lead to no
group activation results at all (Fig. 9c). However, the subjects from
other expected task-performance groups have consistent activation
regions, which finally show meaningful group-wise activation re-
sults (e.g. the regions marked by the green circles in Fig. 9a and b
and the green arrows in Fig. 9f and g). The results in Fig. 9 demon-
strate that functional connectomes and the derived ACPs/WQCPs
are effective approaches to representing and characterizing the
functional brain activities in task-free and task-performance states.
Interestingly, similar results were found in the T-fMRI activation
detection results using the contrast NE (very little group-wise acti-
vation regions in the 16-subject group in Supplemental Fig. 2) and
contrast PO (no group-wise activation regions inthe16-subject
group in the Supplemental Fig. 2).

This result further demonstrates that those participating sub-
jects with outlier WQCP segments exhibited substantially more
variable brain activities that much less follow the administered
task paradigms, and that the functional connectomes and ACP/
WQCP are effective in characterizing and differentiating the func-
tional brain activities in task-performance and task-free states.
Furthermore, the experimental results in this section strongly sup-
port our hypothesis that participating subjects do not necessarily
follow the administered tasks and inclusion of their T-fMRI data
could substantially alter the group-wise activation detection
results.

3.4. Reproducibility study

To examine the reproductive of our methods, a separate R-fMRI
and auditory T-fMRI datasets from 37 adult participants (Sec-
tion 2.2) were analyzed using the same methods in Section 2.3–
2.5. First, 656 resting state WQCP segments and 807 auditory task
based WQCP segments were obtained, which were then pooled to-
gether for the FDDL training and learning (Section 2.5). Here, the
number of ACPs is also set to be 16 (the same as the visual
T-fMRI/R-fMRI dataset in Sections 3.1–3.3) for comparisons. Simi-
larly, we obtained the distribution histograms of both resting state
samples and auditory task-based WQCP samples in the 16 ACP pat-
terns (Fig. 10). In Fig. 10, the horizontal axis represents each ACP,
which was generated by the learning and classification procedures
of FDDL from the combinations of task-free and auditory
task-based WQCP training samples. The vertical axis represents
the percentages of both resting state and auditory task-based
WQCPs in each pattern. From this figure, it can be clearly seen that
the resting state and auditory task based learning results exhibit
similar ACP pattern distributions as those R-fMRI and visual T-fMRI
results (Fig. 6) in Section 3.2. The numbers and percentages of sub-
jects with outlier ACP patterns are provided in Supplemental Table 2.

Since the visual tasks and auditory tasks are quite different, the
reproducibility study here only focuses on the resting state ACPs
for detailed analysis. In Fig. 10, there are also totally 6 ACP patterns
#11–16 that correspond exactly to the resting state patterns, as
illustrated by the blue dots and curve. This result suggests the good
reproducibly of our methods and FDDL clustering results in two
independent R-fMRI/T-fMRI datasets of different age populations
(adolescents and adults). Notably, it is interesting that there are
about 13.1% of the resting state WQCPs correspond to ACP #1 that be-
longs to the auditory task-performance. The visualization of the func-
tional connectome and highly connected pairs are provided in
Supplemental Fig. 6. It turns out that some DICCCOLs in the auditory
cortex are highly connected in ACP #1, suggesting that the participat-
ing subjects might have sporadic auditory responses even during rest-
ing state because of the constant external sound stimulus in fMRI
scans.

Furthermore, the 6 resting state ACP patterns were also visual-
ized by the 358 � 358 functional connectome matrix of each ACP
center (see images in Fig. 11, labeled by ‘‘adult’’). Interestingly,
we found that the two sets of resting state ACP patterns acquired
from the adolescent group (Section 3.1, labeled by ‘‘adolescent’’
in Fig. 11) and the adult group (this section, labeled by ‘‘adult’’ in
Fig. 11) look very similar, and each pattern here corresponds to
one resting state ACP in Fig. 5a (#11–16). These results provide
strong evidence that the methods presented in this paper have
good reproducibility in different R-fMRI/T-fMRI datasets. The cor-
responding relationships of each resting state ACP between two
different R-fMRI datasets were summarized in Fig. 11 and the per-
centages of each pattern are also marked below each sub-figure.
Notably, the minor difference between the R-fMRI histograms in
Figs. 6 and 10 is that the bins of ACPs #15–16 and ACPs #12–13
are swapped in these two histograms, suggesting the minor differ-
ence of WQCP percentages in two R-fMRI datasets (please see the
exact percentage provided at the bottom of each sub-figure in
Fig. 11). This minor difference might be due to the normal popula-
tion variation or the difference in the numbers of training samples,
which merits future investigations using larger scale datasets.

3.5. Comparison with non-discriminative dictionary learning model

In order to further demonstrate the effectiveness of the discrim-
inative dictionary learning algorithm and the validity of the ACPs,
we applied another dictionary learning and sparse coding model
on the same dataset. The Online Dictionary Learning model, intro-
duced in Mairal et al. (2010), has the similar iterative learning pro-
cess as in the FDDL model used in this work. One key difference
between these two models is that the cost function to be mini-
mized in the online dictionary learning model does not have the
discriminative fidelity term r as in the FDDL model. Thus, the
non-discriminative model would not aim to maximize the differ-
ence between the learned sub-dictionaries. We used the non-dis-
criminative dictionary learning model to identify 6 ACPs on the
resting-state WQCPs from the adolescent subjects using the similar
process described in Section 2.5. The patterns of the six ACPs were
then compared with the ACPs #11 to #16, which were also sup-
posed to be the representative patterns of resting-state data from
the adolescent subjects. The visualization of the comparison is
shown in Fig. 12. It could be observed from the visualizations that
the patterns of ACPs identified by non-discriminative dictionary



Fig. 9. The activation detection results of different groups and individuals, voxels are color-coded by their z-value according to the color bars. (a) The whole-group result with 24
subjects; (b) The 8-subject group with expected task-performances; (c) The 16-subject group with potential outliers in task-performances detected by our methods; (d) and
(e) show two example individual activation results from the 16-subject group; (f) and (g) show two example individual activation results from the 8-subject group. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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learning method are in rough correspondence with those by the
FDDL method. However, the ACPs identified by the non-discrimi-
native model are similar to each other, especially between ACP
#1 and #3. Moreover, the ACP corresponding to the first sub-dic-
tionary obtained by the non-discriminative model takes a
dominant proportion over the whole dataset (77%), indicating the
possibility that there could be certain WQCPs mislabeled to the
ACP #1 due to the similarity across the ACPs. This comparison
experiment justifies the usage of discriminative dictionary learning
method in this work.



Fig. 9 (continued)

Fig. 10. The distributions of R-fMRI and auditory T-fMRI WQCPs in 16 ACPs. The
meaning of the horizontal axis and the vertical axis is similar to that in Fig. 6.
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4. Discussion and conclusion

This paper presents a novel computational framework for
quantitative characterization of task-free and task-performance
functional brain states via sparse representation of a set of
whole-brain quasi-stable connectome patterns (WQCPs). Our
methodological contributions lie in the following three aspects.
First, the large-scale consistent, robust and reproducible DICCCOL
landmarks, which possess structural and functional correspon-
dence across individuals and populations, offer a common and
individualized brain reference system for functional connectome
analysis. As a result, the different snapshots of temporally varying
patterns of functional connectomes within a short period of
fMRI scans (6–8 min) from different brains can be aggregated,

modeled and characterized at the population level. Without the

inter-subject correspondences established by the DICCCOL system,
it would be very challenging to perform quantitative modeling and



Fig. 11. The correspondences between resting state ACPs obtained from the adolescent participants (Section 3.1, labeled as ‘‘adolescent’’) and the adult participants (this
section, labeled as ‘‘adult’’), respectively. The percentages of ACPs in each population are also provided at the bottom of each sub-figure.
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analysis of functional connectomes at the population level. Second,
the temporally dynamic functional connectomes were segmented
into large number of quasi-stable WQCPs, which are deemed to
better describe the temporal behaviors of the brain’s functional
activities during R-fMRI/T-fMRI scans. The WQCPs effectively deal
with the natural dynamics of brain functions, while ensuring that
the ACP patterns are learned and clustered from relatively homo-
geneous training samples. This methodology warrants that the de-
rived ACPs are both descriptive and representative. Third, the FDDL
spare coding methodology was adopted and employed to effec-
tively learn the ACP patterns and to represent the temporal WQCPs
of both resting state and task-performance datasets through learn-
ing a combined and comprehensive dictionary from original WQCP
training samples. The learned ACPs not only possess compact
sparse representation of functional connectome patterns, but also
have better discrimination capability across those patterns. In gen-
eral, these methodologies provide a general framework to assess
the functional connectomes and their dynamics in different R-
fMRI/T-fMRI studies and for different populations in the future.
The interesting phenomena and novel neuroscience insights ob-
tained from our experimental results lie in the following four as-
pects. First, the learned ACPs for R-fMRI and T-fMRI datasets are
substantially different, which reveals the dissimilar, intrinsic func-
tional connectome states of the human brain in the task-free and
task-performance conditions. The quantitative characterization
and visualization of those ACPs offered novel insights into the
functional brain interactions and dynamics. Second, a certain por-
tion of overlapping ACPs between R-fMRI and T-fMRI datasets were
detected and examined, and the results suggested that the partic-
ipating subjects with outlier ACPs might not be in the expected
task-free/task-performance states during R-fMRI/T-fMRI scan ses-
sions. These results provide a starting point for future elucidations
of the mechanisms of different functional connectome patterns in
various functional brain states. Third, the participating subjects
showing resting state ACP patterns (potential outliers) during task
scans almost have no group-wise activation regions compared to
other groups, which strongly supports our hypothesis that subjects
do not necessarily follow the administered task paradigms. These



Fig. 12. The correspondences between ACPs obtained by the FDDL model used in this work and the non-discriminative dictionary learning model. The first and third rows
showing the FDDL results are the same as the visualizations in Fig. 11.
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results alert researchers that additional caution should be paid to
perform group-wise T-fMRI activation detections and according
quality assurance procedures should be considered. Fourth, similar
ACP patterns learned from the large-scale WQCP segments of two
independent R-fMRI/T-fMRI datasets of two age populations con-
firmed the reproducibility of our analysis pipeline and results.
These results suggest that the ACPs truly reflect the common func-
tional connectome patterns and distributions, and effectively char-
acterize the possible functional brain states. This study provides
important implications in deciphering the temporal transition pat-
terns of those ACPs and the underlying mechanisms in the future.

The current studies reported in this paper could be potentially
enhanced and expanded in the following directions. First, the cur-
rent DICCCOL system only contains 358 consistent cortical land-
marks, which is still far from covering all functional brain regions
and representing all possible functional connectome patterns.
One of our ongoing works is to significantly expand the current
DICCCOLs by adding anatomy guidance during the landmark ini-
tialization and optimization, thus achieving potentially many more
consistent landmarks across individuals and populations. Then, the
structural and functional connectomes (Zhu et al., 2013) could be
substantially enhanced. Second, current WQCP segments were
averaged along the time domain to obtain a WQCP vector, for the
purposes of the normalization of temporal domains and the reduc-
tion of complexity in ACP learning. In the future, we plan to further
examine the temporal characterizations of the WQCPs and their
dynamical transition patterns. Therefore, more details about the
temporal dynamics of functional connectomes will be elucidated.
Third, due to the lack of effective automated algorithms to detect
the temporal change points of functional connectome patterns,
our current studies were still based on interactive segmentation
of WQCPs. Supplemental Fig. 7 shows a pilot study for comparison
of automatic and manual segmentation of WQCPs. It is clear that the
automatic segmentation and manual segmentation are largely in
agreement in abrupt change points such as those highlighted by the
red arrows. However, automatic segmentation tends to have more
subtle and ambiguous change points such as those highlighted by
the black arrows. In the future, we plan to develop and validate novel
accurate change point detection algorithms that can effectively
determine the temporal transition points of those functional
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connectomes along the temporal domain. As a result, the proposed
ACP learning and WQCP segmentation procedures could be possi-
bly applied on large-scale multimodal DTI/R-fMRI/T-fMRI datasets
to further replicate and validate the findings reported in this work.
Finally, the current WQCPs and ACPs were learned from healthy
brains and we have not done any studies in datasets from neuro-
logical or psychiatric diseases. We plan to apply the methods in
this paper to multimodal DTI/R-fMRI/T-fMRI datasets of brain dis-
eases such as Alzheimer’s disease and Schizophrenia.

In summary, it has been shown in this study that structural con-
nectomes constructed from DTI data can provide the structural
substrates from the derivation of functional connectomes from T-
fMRI/R-fMRI datasets. The functional connectomes and their repre-
sentative patterns have provided important insights into the func-
tional activities of the human brain in task-performance and task-
free states based on multimodal R-fMRI/T-fMRI datasets. Our stud-
ies have demonstrated that structural and functional connectomes
are powerful approaches to studying the human brain function. We
envision that the public release of connectome and connectomics
tools (e.g., Zhu et al., 2013; Li et al., 2013; Li et al., 2012) will offer
unique and exciting opportunities for the neuroimaging field to
examine the structures and functions of the brain and their rela-
tionships. Furthermore, the structural and functional connectomes
will provide enabling approaches to examining the large-scale
functional interactions and dynamics (Sun et al., 2012) in the
healthy and diseases brains in the near future.
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