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ABSTRACT 

Structural and functional brain connectivity has been extensively 
studied via diffusion tensor imaging (DTI) and functional MRI 
(fMRI) in recent years. An important aspect that has not been 
adequately addressed before is the connectivity state change in 
structurally-connected brain regions. In this paper, we present an 
intuitive approach that extracts feature vectors describing the 
functional connectivity state of the brain with the guidance of DTI 
data. The general idea is that the functional connectivity patterns of 
all of the fiber-connected voxels within the brain are concatenated 
into a feature vector to represent the brain’s state, and brain state 
change points are determined by the abrupt changes of the vector 
patterns calculated by the sliding window approach. Our results 
show that we can detect meaningful critical brain state change time 
points in task-based fMRI and natural stimulus fMRI data. In 
particular, the detected brain state change points in task-based 
fMRI data well corresponded to the stimulus task paradigm given 
to the subjects, providing validation to the proposed brain state 
change detection approach. 

Index Terms - fMRI, DTI, functional connectivity, brain state 
 

1. INTRODUCTION 
Recent neuroscience research suggests that the function of any area 
of the cerebral cortex, including that of primary visual cortex, is 
subject to top-down influences of attention, expectation, and 
perceptual task [1]. For instance, the function of any cortical area is 
not fixed, and each cortical area runs different ‘‘programs’’ 
according to context and to the current perceptual requirements [1]. 
Therefore, dynamic interactions between connections from higher- 
to lower-order cortical areas and intrinsic cortical circuits mediate 
the moment-by-moment functional switching in brain [1], and thus 
providing the neuroscience basis of brain state change. 

In this paper, we present a brain state change detection 
approach based on the functional connectivity patterns of DTI-
derived white matter fibers. Our basic premise is that axonal fibers 
obtained from DTI data are the structural substrates of functional 
connectivity between brain regions, and thus provide a natural 
anatomical localization for inference of functional connectivity. 
Therefore, we measure the correlation of fMRI time series of two 
ends of a fiber [2] to define the functional connectivity between the 
voxels it connects. The functional connectivity patterns of all of the 
white matter fibers within the whole brain are concatenated into a 
feature vector to represent the brain’s state, called Connectivity 
State Vector (CSV), and the brain state change points can be 
determined by the abrupt changes of the CSV patterns calculated 
by the sliding window approach in the time series. 
 

2. RELATED LITERATURE 
There have been a variety of studies in the literature that tackled 
the problem of brain state change detection. For instance, statistical 
methods such as HEWMA has been applied on fMRI signals to 
detect BOLD signal state change in response to stimulus [5] [6], 
and the results have been related to brain state change. Brain 
networks have been reported to form and disappear during certain 
tasks, and the Temporal Clustering Analysis (TCA) approach was 
developed to detect the dynamic behavior of brain state changes 
[7], [8]. Also, brain state change has been discussed from a sensory 
processing perspective, and the brain will go through a succession 
of states when performing a task, with each state serving as the 
source of top-down influences for the subsequent states [1].  

In our study, brain state is defined as the specific organization 
of brain’s functional connectivity [9], in order to perform the 
corresponding task. Brain state changes are the brain’s dynamics in 
response to external stimulus and/or previous brain states. For 
instance, in cognitive binding process, different regions in the 
inferior temporal cortex may dynamically synchronize to finish a 
task of object recognition [1]. Quantitative characterization and 
visualization of these time-dependent dynamics of functional 
networks can possibly elucidate important temporal attributes of 
functional connections that cannot be revealed by static brain 
network connectivity analysis. Hence, in this paper, we adopt a 
network-based approach [11] and utilize the whole brain functional 
connectivity pattern to represent brain state. 

 
3. METHODOLOGY  
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Fig.1 Demonstration of the algorithmic pipeline. The steps are as 
follows: (1) brain tissue segmentation (gray matter (GM) and white 
matter (WM)) and fiber tractography using DTI data; (2) fMRI to 
DTI space registration; (3) structurally-connected GM (SCGM) 
voxel pairs identification; (4) fMRI signal extraction at each GM 
voxel in SCGM; (5) applying sliding window to fMRI signals; (6) 
functional connectivity calculation within each sliding window; (7) 
feature vector construction for each sliding window. 
 

The algorithmic pipeline  is composed of seven steps and is 
summarized in Fig. 1. The identification of dynamical brain state 
change is based on two key techniques: 1) We used white matter 
fibers to guide the identification of meaningful functional 
connectivity of gray matter voxels, and only functional 
connectivity of gray matter voxel pairs (Step 3 in Fig. 1) that are 
connected by white matter fibers are considered to be elements of 
the CSV vector. This constraint greatly reduces the vector size 
from , n being the total number of gray matter voxels 
to , m being the total number of fibers. 2) We use dynamic 
sliding window (Step 5 in Fig. 1) to obtain transitions between 
time points by using the sliding window, rather than analyzing the 
single correlation between whole time series of two voxels [12]. As 
a result, the dynamic nature of brain networks can be captured. 
Additionally, we compare the similarities between the CSV vectors 
obtained from different time ranges to detect the critical brain state 
change points. The details of the 7 steps are in the below sections.  
 
3.2. Data acquisition and preprocessing  
Three types of fMRI data were analyzed in this study: OSPAN 
working memory tasked-based fMRI data [13], resting-state fMRI 
data [12] and natural-stimulus fMRI data [13]. In the OSPAN 
working memory tasked-based scan [13] [14], five subjects were 
scanned and fMRI images were acquired on a 3T GE Signa 
scanner. Acquisition parameters were as follows : fMRI: 64x64 
matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=1.5s, 
TE=25ms, ASSET=2. Each participant performed a modified 
version of the OSPAN task (3 block types: OSPAN, Arithmetic, 
and Baseline) while fMRI data was acquired. In the natural 
stimulus fMRI scan [13], we randomly selected video shots from 
the TRECVID 2005 database [18], which were presented to the 
subjects during their scans. The acquisition parameters were as 
follows: dimensionality 128*128*60*240, spatial resolution 
2mm*2mm*2mm, TR 5s, TE 25ms, and flip angle 90. In the 
resting state fMRI scan [12], nine volunteers were scanned in a 3T 
GE MRI system. Resting state fMRI data were acquired with 
dimensionality 128*128*60*100, spatial resolution 
2mm*2mm*2mm, TR 5s, TE 25ms, and flip angle 90 degrees. DTI 
data were acquired using the same spatial resolution as the resting 
state fMRI data; parameters were TR 15.5s and TE 89.5ms, with 
30 DWI gradient directions and 3 B0 volumes acquired. 
Preprocessing steps are referred to [12, 13, 15]. 
 
3.3. Functional connectivity measurement based on 
structurally connected gray matter voxels (SCGM pairs)  
We define the structural connectivity based on the tracked white 
matter fibers from DTI images and mapped fMRI signals onto the 
gray matter volume using the similar methods in [12]. Denote the 
set of all gray matter voxels as  , , then the structural 
connectivity (sc) is defined as: 

 

Examples of gray matter voxel pairs which are connected by 
fiber are displayed in Fig. 2(a). Since fMRI time series data has 
been transformed into the DTI space, we extract fMRI time series 
signal in each GM voxel and thus we can compute functional 
connectivity for any pair of GM voxels (Fig. 2(b)).  

To capture the dynamic functional connectivity strength in the 
temporal domain, we defined the functional connectivity in each 
specific time interval from  in Eq. (2): 

 

Assume that there are totally  time points, with time window 
size as S, and apply a sliding time window 

. Denote the set of fiber-connected gray matter pairs as 
 and the size as . 

The order of elements in SCGM was maintained by indexing all 
in the set SCGM. As demonstrated in Fig. 2(b) and 2(c), 

different states (time window) have different functional 
connectivities. Our extensive observation from the data is that this 
strength is very dynamical along the time axis (e.g., in Fig. 3). To 
capture the connectivity state at each specific time window, we 
generated the CSV connectivity state feature vector   defined 
at , consisting of m (m is the total number of fibers in the 
whole brain) element with

, which is  similar to the idea used in [16]. This  feature 
vector contains all connectivity strength measurements in a time 
window  for all fiber-connected GM voxel pairs. 
 

 
Fig.2 (a) A few SCGM pairs (gray matter voxel pairs connected by 
fiber) are displayed. Red boxes are gray matter voxels, and curves 
are fibers that connect pairs of GM voxels. Only 23 randomly 
selected SCGM pairs and 23 fibers connecting them are displayed 
for visualization purpose. Two circled voxels are structurally 
connected and has high functional connectivity at state A (Fig. 2(b)) 
and low functional connectivity at B (Fig. 2(c)); the yellow curve 
is the fiber connecting these two GM voxels. (b) Highly correlated 
fMRI time series from two circled voxels in state A. (c) fMRI time 
series from same voxels in state B which has low connectivity.  

By applying threshold  to all elements in  and fill with 0 if 
 and 1 if , we constructed another state 

feature vector . With a sliding window, we obtained  state 
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vectors for both .  can be 
viewed as a set of unweighted edges in state i of the functional 
networks. Both vectors are very useful for capturing the brain state 
change behavior. In Fig. 3, 253 (corresponds to time point) state 
feature vectors, with vector length of 91509 (corresponds to fiber 
number) are displayed, where we can observe clear state change 
points, suggesting the effectiveness of our CSV model for 
representation of brain state. 

  

 
Fig.3 (a) DTI fibers. Five connections are highlighted. (b) 
Functional connectivities of five SCGM pairs changing along the 
time axis. The range is -1.0 to 1.0. (c) Combined CSV vectors  
from applying a sliding window. Matrix is 

 having each CSV state vector as a 
column.  

3.4. Constructing similarity matrix between CSV feature 
vectors for brain state change detection 
We propose to detect brain state change by examining the temporal 
change of CSV vectors. To compare CSV vector similarity 
between connectivity states from  and from , we 
compare similarity between  and  (or between  and . 
To measure the similarity between  and , the Pearson 
correlation coefficient of two CSV vectors is used. Figure 4 shows 
the symmetric matrix having similarity measurements of all 

pairs of CSV vectors. To measure similarity between  and 
 , we used  norm for distance measure. So similarity is 

defined as . Fig. 4 shows an 
example of the similarity matrix for pairs of CSV vectors. 
(point  represent , and point  represent ).  

If the brain state within a time period is stable, we will have 
high similarity between  and  when , meaning that 

there is overlap between time window  and . 
On the other hand, if the brain state is not stable, there should be 
low similarity between  and  when . Hence, if there 
is brain state change, we can detect the critical point having low 
similarity with overlapping window and high similarity with less or 
non-overlapping window (Fig. 4). That is, the brain state change 
could be identified as the abrupt change in the similarity matrix. It 
should be noted that the CSV represents all of the fibers in the 
whole brain, and thus the brain state change shown in Fig. 4 
reflects the global functional connectivity change in the brain.  

 
Fig.4 Similarity matrix between CSV feature vectors, showing 
clear boundaries that represent brain state changes.  
 

4. EXPERIMENTAL RESULTS 
In this section, we applied the approaches in section 3 on three 
datasets to evaluate and validate the proposed framework. The first 
experiment used task-based fMRI data to validate the brain state 
change detection results as there are benchmark block-based 
stimuli in task-based paradigm. In the second experiment, we used 
the proposed framework to investigate brain state changes in 
resting state and under natural stimulus. The third experiment 
compared our approach with the TCA method in [7].  
4.1. Results on task-based fMRI data 
We applied the approaches in section 3 on the working memory 
task-based fMRI data [13] [14]. We have tried window size from 
11 to 35 time points and only two window sizes 11 and 23 are 
chosen for display purpose in this paper. Using window size 23, 
there were totally 248 overlapping windows and corresponding 
CSV vectors obtained from the task-based fMRI data. The CSV 
vectors of one randomly selected subject are shown in Fig. 5. 
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Fig.5 CSV vector visualization over time. (a) Matrix with as 
columns. (b) Matrix with as columns. 

 
From Fig. 5, we can see abrupt changes (marked by colored 

lines) between CSV feature vectors, which corresponds to our 
premise that the human brain goes through a series of state changes 
when performing different tasks. Such trend can be more clearly 
seen in the similarity map in Fig. 6, where each cell corresponds to 
the similarity between each pair of CSV feature vectors (the 
diagonal line is the correlation of a feature vector with itself) and 
the color of each cell represents the value of correlation. From the 
correlation map, boundaries of CSV feature vector changes, 
represented by blue columns in Fig. 6, can be clearly identified. 
Intuitively, the difference between the CSV feature vectors is 
caused by the change of global brain connectivity at a specific time, 
which is just the brain state change according to our definition. 
Also, there are several boxes with relatively high correlation in Fig. 
6, indicating that functional connectivity will remains relatively 
constant for a period of time, until another stimulus comes. 

 
Fig.6 Alignment between CSV feature vector similarity map and 
the integrated OSPAN stimulus function. Blue areas correspond to 
brain state changes. 

 
We averaged all of the elements in the CSV vector into a 

global value by equal weights, and represented the dynamics of 
global CSV value as a brain state curve. In Fig. 7, the global CSV 
value curve is displayed along with the OSPAN task stimulus 
curve. We can see that the global CSV value curve, which 
indicates the functional synchronization level of the whole brain, is 
in quite close correspondence with the stimulus curve. We 
integrated the sliding window stimulus function  (Fig. 7(a)) to 
obtain  for each CSV vector (Fig. 7(b)). Whenever the 
brain was under steady stimulus state or baseline state, the global 
CSV state curve reaches the peak (they are highlighted in yellow 
and green bubbles in Fig. 7 respectively). When in transitional 
state, the overall functional connectivity magnitude changes 
dramatically. In addition, we generated m (total number of fibers in 
the brain) random connections between any GM voxel pairs and 
measured their CSV curves (green curve in Fig. 7(b)). And the 
randomly connected GM voxels have significant lower functional 
connectivities than the fiber-centered SCGM, suggesting that the 
fiber-centered functional connectivity approach has much better 
sensitivity in detecting brain state changes.  

The results in Fig. 5 – Fig. 7 are consistently reproducible in 
all of the four subjects we scanned in this study. Hence, we 
conclude that the proposed CSV model and global CSV value can 
effectively represent the overall functional connectivity in the brain, 
and thus their abrupt changes along the time axis can reasonably 
identify brain state change. Given that the global CSV change 
points correlated well with the stimulus curve in the task-based 
fMRI paradigm, we consider this result as a validation of our 
method for brain state change detection.  

 

 
Fig.7 Alignments of stimulus curve and global CSV value curve. 
(a) Average of CSV feature vectors (global CSV value) vs. 
stimulus curve; (b) Global CSV value curves for fiber-centered and 
randomly connected voxels respectively, and the integrated 
stimulus curve; Points with peak connectivity in the stimulus 
periods are highlighted by yellow circles. Points with peak 
connectivity in baseline periods are highlighted by green circles. 
 

In order to analyze the spatial distribution of brain 
connectivity patterns, we applied the HAMMER registration 
toolkit [17] to label each SCGM pair by a Montreal Neurological 
Institute (MNI) atlas region (thus each pair would belong to one or 
two MNI regions). After that, we picked 26 MNI atlas regions and 
computed the connectivity edge degree of each region at four 
different time windows. Then we obtained the regions with higher 
connectivity edge degree by thresholding, and visualized them in 
Fig. 8(a). The four time windows were marked by (1) to (4), with 
time window (1) and (3) were in baseline periods, (2) and (4) in (a) 
were in stimulus periods, as shown in Fig. 8(b). Also, in Fig. 8(c), 
the maps of connectivity edge degree of 26 regions were visualized. 
In each brain state from (1) to (4), the colored bar in Fig. 8(c) 
corresponds to a region visualized in Fig. 8(a) with the same color. 
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In Fig. 8(c), the length of each color bar is proportional to the 
connectivity edge degree of that region. From Fig. 8, it can be seen 
that, the activated brain regions formed different patterns in 
baseline periods and stimulus periods. In baseline periods, there are 
much less activated brain regions; while in stimulus periods, 
activated regions are distributed all over the brain.  

 
Fig.8 Relative activation levels of MNI atlas regions. (a) Regions 
having high connectivity are highlighted with their colors on 
cortical surface, during four separate brain states ((1)-(4)). (b) 
Integrated stimulus curve. (c) Proportional connectivity levels of 
26 regions in state (1)-(4), some connectivity edge degrees are 
shown above the color bar. And the total connectivity edge degrees 
of each time window are shown at the right of the bar.  
 
4.2. Results on resting state fMRI and natural stimulus 
fMRI data 
We applied the approaches in section 3 on resting state fMRI data 
and natural stimulus fMRI data to detect brain state changes. As 
shown in Fig. 9(a), there is no abrupt state change in resting state, 
which indicates that the whole-brain functional connectivity is 
relatively stable during resting state. This can also be confirmed by 
the visualized CSV feature vectors in Fig. 9(c). This result is 
reproducible in all of the nine subjects’ brains, indicating that the 
CSV model is reasonable for the representation of brain state under 
rest.  

When the approaches in section 3 were applied on natural 
stimulus fMRI data under movie watching [13], there are 
significant brain state changes, as shown in Fig. 9(b), which can 
also be observed by the visualized CSV vectors in Fig. 9(d). Due to 
the lack of quantitative measurements of natural stimulus of 
multimedia movie, at current stage, we only perform this 
qualitative studies and further quantitative analysis of the CSV 
vectors and natural stimulus curves are left to our future work. It 
should be emphasized that our CSV model and brain change 
detection method can clearly reveal the brain dynamics during 
natural stimulus of movie watching.   

4.3. Comparison with TCA 

Temporal clustering analysis (TCA) is a method that uses the fMRI 
BOLD signal to detect the occurrence of maximal signal response 
in the brain [7]. TCA is performed by creating a histogram of the 
voxels that reach their maximum signal at each time point in the 
time axis, and then the global signal peaks can be selected [7]. For 
the purpose of comparison, the TCA method was applied on the 
same dataset in section 4.1, and the result is shown in Fig. 10. 

It can be seen in Fig. 10 that certain brain responses to the 
stimulus can be detected by TCA, and they are in correspondence 
with our results (highlighted by yellow circles). However, the 
number of brain state changes that can be successfully identified 
by our method is much more (green circles), meaning that our 
method is more sensitive to brain state changes. The above results 
are reproducible in all of the subjects we scanned. This result 
suggests the superiority of our CSV-based method over the TCA 
method. Our interpretation of the difference between our method 
and the TCA method is: TCA is performed on the raw fMRI 
signals, which might suffer from the low signal-to-noise ratio; 
while our CSV model is based on the temporal correlation curve 
between SCGM pairs, which reflects the dynamics of functional 
connectivity and might be more robust to noises [2].  

 
Fig.9 CSV feature vectors and similarity matrices in resting state 
and under natural stimulus. (a) Similarity matrix for resting state 
fMRI data. (b) Similarity matrix for natural stimulus fMRI data. (c) 
CSV feature vectors for resting state. (d) CSV feature vector for 
natural stimulus.  

 
Fig.10 Result comparison with TCA. The blue curve is the global 
SCV curve obtained by our method, and the green line is the 
clustering result obtained by TCA. Regions detected in both 
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methods are highlighted by yellow circles. Regions detected by our 
method only are highlighted by blue circles. 
 

5. CONCLUSION  
In this study, we investigated the concept of brain state change 
from the global functional connectivity perspective, and developed 
a fiber-centered CSV model that can model and detect brain state 
change based on data-driven approaches. The CSV model 
represents brain connectivity state through temporal correlations of 
fMRI time series signals between structurally-connected grey 
matter voxels in sliding windows. The brain state change detection 
results obtained by our model on task-based fMRI data well 
correspond to the stimulus paradigm, and are better than the results 
obtained by the TCA method. Our CSV model is also applied to 
resting state fMRI and natural stimulus fMRI data and reasonable 
results are obtained, further indicating the effectiveness of our 
approaches.  

In the future, we plan to improve the CSV model by 
integrating more information from functionally-specialized brain 
sub-networks such as the attention, emotion, vision, and language 
systems for better characterization of brain dynamics, and further 
evaluate and validate the approaches via synthesized and real fMRI 
data. Also, the CSV model and brain state change approach will be 
applied to study brain diseases that might be associated with 
abnormal brain dynamics.     
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