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Abstract: Modeling abnormal temporal dynamics of functional interactions in psychiatric disorders has
been of great interest in the neuroimaging field, and thus a variety of methods have been proposed so far.
However, the temporal dynamics and disease-related abnormalities of functional interactions within specific
data-driven discovered subnetworks have been rarely explored yet. In this work, we propose a novel com-
putational framework composed of an effective Bayesian connectivity change point model for modeling
functional brain interactions and their dynamics simultaneously and an effective variant of nonnegative
matrix factorization for assessing the functional interaction abnormalities within subnetworks. This frame-
work has been applied on the resting state fmagnetic resonance imaging (fMRI) datasets of 23 children
with attention-deficit/hyperactivity disorder (ADHD) and 45 normal control (NC) children, and has
revealed two atomic functional interaction patterns (AFIPs) discovered for ADHD and another two AFIPs
derived for NC. Together, these four AFIPs could be grouped into two pairs, one common pair represent-
ing the common AFIPs in ADHD and NC, and the other abnormal pair representing the abnormal AFIPs
in ADHD. Interestingly, by comparing the abnormal AFIP pair, two data-driven abnormal functional sub-
networks are derived. Strikingly, by evaluating the approximation based on the four AFIPs, all of the
ADHD children were successfully differentiated from NCs without any false positive. Hum Brain Mapp
35:5262–5278, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Recently, modeling functional connectivity between ana-
tomically distinct regions of interest (ROIs) in the brain has
emerged as a powerful tool for investigating functional
brain interactions and their abnormalities in psychiatric
conditions. In many previous functional connectivity stud-
ies [Fox and Raichle, 2007; Raichle et al., 2001], functional
connectivities or interactions were assumed to be tempo-
rally stationary, that is, functional connectivities or interac-
tions were estimated over the entire fMRI scan. However,
recent studies suggested that the functional activity/con-
nectivity of any cortical area is subject to top-down influen-
ces of attention, expectation, and perceptual tasks [Gilbert
and Sigman, 2007]. For example, each brain area performs
quite different programs according to the context and to
the current perceptual requirements [Gilbert and Sigman,
2007]. Particularly, the dynamically changing functional
interactions from higher- to lower-order brain areas and
intrinsic cortical networks mediate the moment-by-moment
functional state changes in the brain [Gilbert and Sigman,
2007; Li et al., 2013a]. Even in resting state, a variety of
studies have suggested that the functional interaction is
still undergoing considerable temporal dynamic changes at
different time scales [e.g., Bassett et al., 2011; Chang and
Glover, 2010; Li et al., 2013a, 2014b; Lindquist et al., 2007;
Lynall et al., 2010; Majeed et al., 2011; Robinson et al., 2010;
Smith et al., 2012; Zhang et al., 2012].

Along this research direction, there are several recent
literature reports that used sliding time windows to cap-
ture the functional brain dynamics [e.g., Allen et al., 2012;
Li et al., 2013a; Zhang et al., 2012]. However, the effec-
tiveness of the sliding time window based framework
might be limited due to the difficulty in determining the
optimal length of the sliding time window and its biolog-
ical meaning. Considering the temporal state-like and
network behaviors of functional brain interactions, we
utilize our recently developed Bayesian connectivity
change point mode (BCCPM) [Lian et al., In press; Zhang
et al., 2013a] to statistically investigate the temporal
dynamics of functional interactions, which can be charac-
terized by large-scale functional connectivity matrices, for
example, denoted by V. Then, from a mathematical per-
spective, any given matrix V can be approximated by a
linear combination of some orthogonal bases [Trefethen
and Bau III, 1997], for example, V �WH. Under the non-
negative constraint, the nonnegative matrix factorization
(NMF) can effectively learn the orthogonal bases [e.g.,
Lee and Seung, 1999; Yang et al., 2007]. Essentially, each
entry of columns of the coefficient matrix H indicates the
contribution of each basis to the approximation of sam-
ples V. By considering each basis, that is, each column of
W, as a distinctive cluster, and choosing the maximum of
each column of coefficient matrix as the cluster indicator,
NMF can effectively learn the bases and the clustering
results simultaneously [e.g., Brunet et al., 2004; Ding
et al., 2005; Li and Ding, 2006; Yang et al., 2007].

Recently, NMF and its variants have been successfully
applied to biomedical scenarios [Brunet et al., 2004;
Ghanbari et al., 2013; Kim and Park, 2007; Pascual-
Montano et al., 2006; Qi et al., 2009].

From a technical perspective, it is difficult to integrate and
compare the fMRI signals and their derivations across differ-
ent brains without a generic brain reference system. Because
of the unclear cortical boundaries, the remarkable individual
structural variability of cortical anatomy and the nonlinear
properties of ROIs [Liu, 2011], identifying a common and
reliable set of brain landmarks across different brains as a
generic reference system is perhaps one of the great chal-
lenges in human brain mapping [Derrfuss and Mar, 2009;
Poldrack, 2012]. Recently, a large set of common and consist-
ent cortical landmarks has been developed and publicly
released, named Dense Individualized and Common
Connectivity-based Cortical Landmarks (DICCCOL) [Zhu
et al., 2013]. The neuroscience basis is the “connectional fin-
gerprint,” that is, each cytoarchitectonic area possesses a
unique set of extrinsic inputs and outputs, which is crucial
in the determination of the functions that the area can per-
form [Passingham et al., 2002]. In current stage, the DICC-
COL approach has discovered 358 common and consistent
cortical ROIs, each of which is optimized to possess maximal
group-wise consistency of diffusion tensor imaging (DTI)-
derived fiber shape patterns [Zhu et al., 2013]. Importantly,
the set of the 358 DICCCOL landmarks can be accurately
predicted and localized in the DTI data of an individual
brain. Due to intrinsically established structural and func-
tional correspondences of the DICCCOLs across different
individuals and populations, they offer a generic brain refer-
ence system for integrating and comparing fMRI data across
individuals and populations. Thus, in this work, we adopted
the 358 DICCCOL landmarks as network nodes for func-
tional interaction pattern (FIP) mapping.

In addition, motivated by the temporal dynamics of func-
tional interactions [Bassett et al., 2011; Chang and Glover,
2010; Majeed et al., 2011; Smith et al., 2012] and inspired by
the success of projective nonnegative matrix factorization
based on the Frobenius norm (NPNMF) in learning connec-
tivity subnetworks [Ghanbari et al., 2013], we propose a
novel computational framework that combines the effective
BCCPM and the projective nonnegative matrix factorization
based on a variant of Kullback–Leibler divergence
(DPNMF), to infer temporal dynamics of functional interac-
tions and learn the FIPs within subnetworks, which are
called atomic functional interaction patterns (AFIPs). Specifi-
cally, a key concept in the BCCPM is that change points are
defined as abrupt changes of multivariate functional interac-
tions among brain networks, other than the raw fMRI time
series changes [e.g., Lindquist et al., 2007; Robinson et al.,
2010]. In both DPNMF and NPNMF, H is assumed to be
the projection of V to W. Hence we only need to update W
during matrix factorization, while both W and H need to be
updated in the standard nonnegative matrix factorization
(SNMF) [Brunet et al., 2004; Lee and Seung, 1999]. The
major difference between DPNMF and NPNMF is that the
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objective function in DPNMF is based on the matrix diver-
gence, which can be reduced to the Kullback–Leibler diver-
gence, other than the matrix norm. The DPNMF approach
can converge more quickly and achieve more stable cluster-
ing results, as compared with SNMF and NPNMF and dis-
cussed in the following sections.

The applicability of the computational framework has
been demonstrated by applying it to the multimodal DTI
and resting state fMRI (R-fMRI) datasets of 23 attention-defi-
cit/hyperactivity disorder (ADHD) children and 45 normal
control (NC) ones. Experimental results have suggested two
AFIPs discovered for ADHD and the other two AFIPs
derived for NC. Importantly, these four AFIPs could be cate-
gorized into two pairs, one common pair representing the
common AFIPs in ADHD and NC, and the other abnormal
pair representing the abnormal AFIPs in ADHD. By compar-
ing the abnormal AFIP pair, two data-driven abnormal func-
tional subnetworks (AFSNs) were derived. Interestingly, by
evaluating the approximation based on the four AFIPs, all of
the ADHD children were successfully differentiated from the
NC ones without any false positive. In general, our work
contributed a novel computational framework for dynamic
functional interaction modeling and our experimental results
demonstrated that the atomic dynamic FIPs offer meaningful
neuroscientific insights and can effectively characterize and
differentiate ADHD children from NC ones.

MATERIALS AND METHODS

Overview

The flowchart of the proposed computational frame-
work is summarized in Figure 1. First, the 358 consistent
DICCCOL landmarks that have been discovered and vali-
dated in our recent study [Zhu et al., 2013] are predicted
and localized in the DTI data of each brain (green bub-
bles in Fig. 1a) via a data-driven strategy [Zhu et al.,
2012, 2013]. After DICCCOL prediction, the R-fMRI
images are coregistered into the DTI space using FMRIB
software library (FSL) FMRIB’s linear image registration
tool (FLIRT), and then the R-fMRI time series correspond-
ing to each DICCCOL are extracted. Subsequently,
change points in the extracted R-fMRI time series of each
subject are modeled and detected via the BCCPM (Fig.
1b). Then FIPs were estimated (Fig. 1c) as the Pearson
correlations between every pair of the R-fMRI time series
segments separated by those change points and then vec-
torized to construct a vector, named functional connec-
tome vector (FCV). Due to the intrinsic structural and
functional correspondences of DICCCOLs across different
individuals and populations, FCVs derived from different
R-fMRI time series segments across different brains were
integrated and pooled to form a single FCV matrix (Fig.
1d). Finally, we perform the atomic functional interaction
pattern learning (AFIPL) using the DPNMF [Yang and

Oja, 2010] (Fig. 1e). Details of these steps will be
described in details in the following sections.

Data Acquisition and Preprocessing

The DTI and R-fMRI datasets used in this work were
acquired from 74 children including 25 ADHD-c (a sub-
type of ADHD which exhibits both inattention and
hyperactivity-impulsivity symptoms) patients and 49 nor-
mal development children as NCs under Institutional
Review Board (IRB) approval. These participants were all
aged between 8 and 14 years and right-handed, and their
intelligence quotient were higher than 80. All the children
were diagnosed by the Kiddie Schedule for Affective Dis-
orders and Schizophrenia for School-Age Children-Present
and Lifetime Version (K-SADS-PL)[Kaufman et al., 1997],
and they agreed to participant in this study, from whose
parents’ informed consent was obtained. Due to excessive
head motion during R-fMRI scans, two patients and four
NCs were excluded. Totally, we had 23 ADHD patients
and 45 NCs involved in this study.

The datasets were acquired with a 3T Siemens Trio scan-
ner at the Imaging Center for Brain Research, Beijing Nor-
mal University, with the following parameters. R-fMRI:
axial slices, 33; repetition time (TR), 2000 ms; echo time
(TE), 30 ms; flip angle (FA), 90; thickness/gap, 3.5/0.7 mm;
field of view (FOV), 200 3 200 mm2; matrix, 64 3 64. DTI:
axial slices, 49; TR, 7200 ms; TE, 104 ms; diffusion direc-
tions, 64; b, 1000 s/mm2; average, 1; thickness, 2.5 mm;
acquisition matrix, 128 3 128; FOV, 230 3 230 mm2.

Bayesian Connectivity Change Point Model

As mentioned above, we know that the FIP is under-
going temporal dynamic changes. Motivated by the state-
like behavior of functional interactions, our recently devel-
oped novel Bayesian connectivity change point model
(BCCPM) [Lian et al., In press; Zhang et al., 2013a] is
applied to the R-fMRI time series for detecting the change
points, which are defined as abrupt changes of multivari-
ate functional interactions among brain networks. To be
self-contained and be brief, in the BCCPM, the change
points are determined by the joint probability among ROIs
between different time periods, and Markov chain Monte
Carlo (MCMC) is applied to sample the posterior probabil-
ity distribution of each time point as being a change point.
Let Xs5 xs

1; x
s
2; � � � ; xs

M

� �
, xs

t 2 Rm be the R-fMRI time series
of a subject s, where m is the number of ROIs, M is the
total number of time points per subject, the superscript s
denotes subject index, which will be omitted if we do not
refer to any specific subject, and the subscript t denotes
time index. We assume the R-fMRI time series to be a
Gaussian distribution, that is, xt � Nðl;RÞ, where m
denotes the m-dimensional mean vector, and

P
denotes

the m 3 m covariance matrix. The conjugate prior
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distribution of (m, R) is the N2Inv 2Wishart ðl0;K0=j0; m0;
K0Þ [Gelman et al., 2003] with the following form:

ljR � N l0;R=j0ð Þ; R � Inv 2Wishart ðm0;K0Þ: (1)

Based on the data x1; x2; � � � ; xM, the posterior distribution
of (m,

P
) is N2Inv 2Wishart ðlM;KM=jM; mM;KMÞ, where

lM5
j0

j01M
l01

M

j01M
�x; jM5j01M; mM5m01M

KM5K01S1
j0M

j01M
�x2l0ð Þ �x2l0ð ÞT; S5

XM
t51

ðxt2�xÞðxt2�xÞT:

(2)

Therefore, the probability of x1; x2; � � � ; xM is calculated
as follows [Gelman et al., 2003]:

p x1; x2; � � � ; xMð Þ5 p x1; x2; � � � ; xM; l;Rð Þ
p l;Rjx1; x2; � � � ; xMð Þ

5
� 1

2p

�mM=2
32mM=23

� j0

jM

�m=2

3
CmðmM

2 Þðdet ðK0ÞÞm0=2

Cmðm0

2 Þðdet ðKMÞÞmM=2
;

(3)

where Cm is the multivariate gamma function:

Figure 1.

The flowchart of the computational framework. (a) The 358 DICC-

COLs prediction and R-fMRI time series extraction for each DICC-

COL. (b) Change points detection in the R-fMRI time series of each

subject via the BCCPM. (c) FIP estimation as the Pearson correlation

between every pair of the R-fMRI time series segments separated by

those detected change points. (d) FIP matrix vectorization and con-

gregation. (e) AFIPL via the DPNMF approach. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Cm xð Þ5pmðm21Þ=2
Ym
j51

C x1ð12jÞ=2ð Þ : (4)

Then we define a segment indicator vector I
!

5ðI1; I2; . . . ;
IMÞ to indicate the possible locations of the change points in
the m 3 M R-fMRI time series matrix X5 x1; x2; . . . ; xM½ �,
where It 5 1 indicates that there is a change point at time
Point t, It 5 0 otherwise. The starting time point I1 is always
considered as a change point, as it is the beginning of the
first segment. Given I

!
, the marginal likelihood of the R-

fMRI time series matrix X5 x1; x2; . . . ; xM½ � can be repre-
sented as follows:

p Xj I!
� �

5
YPIt

b51

pðXbÞ ; (5)

where Xb is the temporal samples belonging to the b-th

segment and p(Xb) can be calculated according to Eq. (3).

It should be pointed out that the temporal segments are

assumed to be statistical independent here. Therefore, the

posterior distribution of pð I
!jXÞ can be obtained by:

p I
!jX
� �

/ p I
!� �

p Xj I!
� �

; (6)

where p I
!� �

5
YM

t51
pðItÞ and pðItÞ is �Bern (0.5).

Afterwards, the MCMC scheme [Liu, 2008] is applied to

sample the posterior distribution pð I
!jXÞ of time points as

being change points, with a randomly initial segment indi-

cator vector I
!0

. Details of the BCCPM algorithm are
described in Algorithm 1 as below.

The algorithm of Bayesian connectivity change point
model

1. Initialize I
!

Initialize the initial segment indicator vector I
!0

randomly.
2. Iterate n from 1 to a given number N

1. Generate a new segment indicator vector by ran-
domly choosing an indicator in and change its
value from 0 to 1 or from 1 to 0.

2. Calculate according to Eq. (6).
3. Generate a random number u from uniform (0,1)

and set

I
!n

5

I
!�

if u � min 1;
pð I
!�jXÞ

pð I
!n21

jXÞ

2
4

3
5

I
!n21

otherwise

8>>>><
>>>>:

(7)

3. Calculate pð I
!jXÞ

1. Exclude the burn-in from the actual MCMC sam-
ple of the posterior distribution.

2. Calculate the posterior probability for each time
point to be a change point from MCMC samples.

Algorithm 1. The algorithm of BCCPM.

FIP Estimation and Vectorization

Given the change points detected via the BCCPM in sec-
tion Bayesian connectivity change point model, the whole
R-fMRI time series of each subject are divided into several
segments, as shown in Figure 1b. Here, the pairwise func-
tional interaction is defined as the absolute value of the
Pearson correlations [Friston, 1994; Li et al., 2013a; Zhang
et al., 2013b] between every pair of the R-fMRI time series
segments separated by those change points, as follows:

Ri;j;t5abs corr TSi;t; TSj;t

� �� �
; Ri;j;t50; if i5j;

FIP t5 Ri;j;tji; j 2 ð1; 358Þ
� 	 (8)

where FIPt denotes the FIP within the t-th R-fMRI time
series segment, which is a set of correlations from the con-
gregation of all Ri,j,t over each combination of i and j, and
thus is a symmetrical connectivity matrix with the dimen-
sion of 358 3 358, TSi,t denotes the t-th R-fMRI time series
segment between the t-th and (t 1 1)-th change points
extracted from the i-th DICCCOL. Considering the symme-
try of the FIP matrix, the upper triangular (excluding the
zero diagonal) elements of the FIP matrix are concatenated
to make a vector of p5ð3583357Þ=2563903 dimensions,
denoted as FCV. Due to the intrinsically established corre-
spondences of the DICCCOL landmarks across individual
brains [Zhu et al., 2013], FCVs from different R-fMRI time
series segments across different brains can be readily
pooled and integrated to form a FCV matrix for further
analysis as follows.

Atomic Functional Interaction Patterns Learning

Here, we premise that the whole-brain FIPs can be
approximated by a linear combination of the AFIPs among
brain networks. Based on the above method in Section FIP
Estimation and Vectorization, the FIP matrices from differ-
ent R-fMRI time series segments across different brains are
vectorized and congregated into a single FCV matrix. To
compute the AFIPs, a matrix factorization model is applied
to the FCV matrix, as follows

V �WH; (9)

where columns of Vp3q, that is, FCVs, are the FIP matrix
representatives, and columns of Wp3r are vectorized repre-
sentatives of the AFIPs, that is, the upper triangular ele-
ments of the AFIP matrices. Here, p denotes the dimension
of FCV, q denotes the number of FCVs, and r denotes the
rank of W, which is also the number of the AFIPs.

In this work, H is assumed to the projection of V onto
W, that is, H5WTV. With the nonnegative constraints on
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the elements of W and H, our nonnegative AFIPs become
the solution to the following optimization problem:

min
W�0
jjV2WWTVjj () min

W�0
D V k Uð Þ

5min
W�0

X
i;j

Vi;jlog
Vi;j

Ui;j
2Vi;j1Ui;j


 �
U5WWTV
� � (10)

where jj � jj is a matrix norm, and D V k Uð Þ is the matrix
divergence of V from U, which can be viewed as a variant
of the Kullback–Leibler divergence. Using the gradient
descent approach, the above optimization function can be
minimized by updating:

Wi;j  Wi;j2hi;j

oD V kWWTV
� �

oWi;j
; (11)

where hi;j is a nonnegative step size. For the divergence,
the gradient in Eq. (11) is:

oD V kWWTV
� �

oWi;j
5
X

k

WTV
� �

j;k
1
X

l

Wl;jVi;k

 !
2

X
k

Vi;k WTV
� �

j;k

WWTV
� �

i;k

2
X

k

Vi;k

X
l

Wl;jVl;k

WWTV
� �

l;k

:

(12)

To keep the elements of W nonnegative, the step size in
Eq. (11) is set as follows

hi;j5
Wi;jX

k
ð WTV
� �

j;k
1
X

l
Wl;jVi;kÞ

: (13)

Thus, the multiplicative updating rule is obtained as:

Wi;j  Wi;j

X
k
Vi;kðWTVÞj;k= WWTV

� �
i;k

1
X

k
Vi;k

X
l
Wl;jVl;k= WWTV

� �
l;kX

k
ðWTVÞj;k1

X
l
Wl;jVi;k

: (14)

For stability of the convergence, W is normalized by 2-
norm at each iteration.

Notably, a critical issue in matrix decomposition analysis
is the selection of the number of factors, that is, the rank of
W, r. Previous studies attempted to estimate the optimal
rank r based on the cophenetic correlation coefficient [Bru-
net et al., 2004; Pascual-Montano et al., 2006] or a variant of
the residual sum of squares of the approximated data
matrix [Hutchins et al., 2008]. The basic ideal of rank selec-
tion based on the cophenetic correlation coefficient is that if
a clustering of k classes is strong, the sample assignment to
clusters would vary little from run to run [Brunet et al.,
2004] (due to the random initializations, we cannot exactly
obtain the same clustering results on each run). For each
run, a clustering connectivity matrix Cn3n (n is the number
of samples) is defined to indicate the clustering results, in
which entry ci;j51 if samples i and j belong the same clus-
ter, otherwise ci;j50. Then a consensus matrix �C, defined as
the average clustering connectivity matrix over many runs,
can be calculated. For a stable clustering algorithm, the
entries of �C will be close to 0 or 1. Thus, the dispersion
between 0 and 1 measures the reproducibility of the cluster-
ing algorithm with respect to random initializations. The
cophenetic correlation coefficient is measured by the Pear-
son correlation of two distant matrices: the distance
between samples induce by the consensus matrix, I2�C, and
the distance between samples is induced by the linkage
used in the reordering of �C [Brunet et al., 2004].

Notably, the optimization function for the transposed
data matrix VT in Eq. (10) is equivalent to the objective

function of the k-means clustering under the assumption
that the columns of W are orthonormal. Actually, the col-
umns of W can be considered to be orthonormal [Yang
et al., 2007]. Assume we want to cluster a dataset V5

v1; v2; . . . ; vn½ � into k clusters C1; C2; . . . ; Ck, whose cent-
roids are O1; O2; . . . ; Ok. The objective function of k-
means clustering is [Ding et al., 2005]:

Jk5
Xk

j51

X
i2Ci

jjvi2Ojjj25trace VTV
� �

2trace ATVTVA
� �

; (15)

where the element ai,j in the cluster indicator matrix An3k

is one if data vector vi belongs to cluster Cj, zeros other-
wise. Because each data vector belongs to one and only
one cluster, columns of A are orthogonal. The optimization
function in Eq. (10) for the transposed data matrix VT is:

jjVT2WWTVTjj25trace VT2WWTVT
� �

V2VWWT
� �� �

5trace VTV
� �

22trace WTVTVW
� �

1trace WWTVTVWWT
� �

:

(16)

The last term becomes trace WTVTWV
� �

under the
assumption that the columns of W are orthonormal, that
is, WTW5I. If we choose the maximum element on each
row as the cluster indicator, W becomes equivalent to the
cluster indicator matrix A in k-means clustering. Due to
the intrinsic relation between the DPNMF and the k-means
clustering, and the random initialization of W in DPNMF,
in this work, we adopted the cophenetic correlation
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coefficient to determine the optimal rank r. The optimal
value of r is where the magnitude of the cophenetic corre-
lation coefficient falls. We experimentally found that 30–50
runs are sufficient for �C to be stable in our applications.

RESULTS

In this section, we applied the BCCPM described in Sec-
tion Bayesian Connectivity Change Point Model to the
R-fMRI time series of each subject for detecting change
points in them (Section Change Points Detected by the
BCCPM). After FIP estimation and vectorization, the
DPNMF was applied to the derived FCV matrices for
AFIPL (Section AFIPL on R-fMRI Datasets of ADHD and
NC). Subsequently, the matrix divergences of the FCV
matrix of each subject from its reconstructed FCV matrices
based on the leant AFIPs from ADHD and NC, were cal-
culated and compared for classification ADHD patients
from NC subjects, respectively (Section Classification Anal-
ysis). The reproducibility of the learned AFIPs and their
classification performance was assessed via a fivefold
cross-validation strategy (Section Reproducibility Results).
Finally, comparisons of AFIPL using the SNMF [Brunet
et al., 2004; Lee and Seung, 1999] and the NPNMF (Section
Comparisons with Other Nonnegative Matrix Factorization
Method), as well as with the k-means algorithm, were pro-
vided (Section Comparisons with the k-Means Method).

Change Points Detected by the BCCPM

Based on the methods discussed in Section Bayesian
Connectivity Change Point Model, the BCCPM was
applied to the R-fMRI dataset of ADHD and NC subjects
described in Section Data Acquisition and Preprocessing.
For the sake of applicability and scalability, there are two
important parameters in the BCCPM: one is prior informa-
tion related to the change point number, denoted as, here

q5log
pðIt51Þ

12pðIt51Þ (17)

where pðIt51Þ is the prior probability of the time point t
being a change point. Normally, pðIt51Þ is set as 0.5 by
default which indicates that every time point has equal
probability to be a change point and thus q50. If it is
desirable to detect more change points, bigger pðIt51Þ
should be chosen and thus positive value of q should be
set. If less change points are desired, negative value of q is
preferred. The other parameter is the initial segment indi-
cator vector related to the change point locations, denoted

as I
!0

. If we do not know any prior information about the

change point locations, the parameter I
!0

should be set as
a randomly binary vector. However, if we know any pos-
sible change point location, it could be contained in the

parameter I
!0

, that is, the values in the binary vector cor-

responding to the change point locations could be set as 1.
Given the R-fMRI time series, how many and where the
change points would be detected are unknown. Thus, the

parameter q is set as 0 and the parameter I
!0

is set as a
randomly binary vector.

The segment indicator I
!

of each subject obtained by the
BCCPM was plotted with a randomly selected color, as
shown in Figure 2. There are three time points with the
posterior probability pðItÞ51 in each line (the starting time
point is always defined as a change point), that is, three
change points were detected by the BCCPM for each sub-
ject. Then, the whole R-fMRI time series of each subject
could be divided into three segments, each of which can
be used to estimate a FIP.

AFIPL on R-fMRI Datasets of ADHD and NC

As mentioned above, three R-fMRI time series segments
were obtained from the whole R-fMRI time series of each
subject, and hence three FIPs could be constructed for
each subject. Totally, there were 69 FCVs for the 23 ADHD
patients and another 135 FCVs for the 45 NC subjects.
Since the DICCCOL definition of ROIs provides us an
inherently universal reference system across different
brains, after vectorization, we congregated the FCVs to
make three FCV matrices of ADHD (VADHD

63903369), NC
(VNC

639033135), and pooled ADHD and NC (Vall
639033204) (used

for rank selection). First, the consensus matrices and the
cophenetic correlation coefficients of the pooled ADHD
and NC FCV matrix, Vall

639033204, were calculated using the
above DPNMF and clustering methods, as described in
Section Atomic Functional Interaction Patterns Learning.
The results are shown in Figure 3. Figure 3a shows the
consensus matrices generated for ranks r from 2 to 7.
Although the cophenetic correlation coefficient falls at the
ranks of 2, 3, 4, 6, 7, 9, it drops off more steeply at rank
r 5 2 (Fig. 3b), and the consensus matrix at rank r 5 2 has
the clearest block diagonal pattern (Fig. 3a), that is, the
algorithm achieves the most robustness clustering results
and is least sensitive to random initializations for r 5 2.
Thus, the optimal rank is estimated as 2 in this work.

With the rank of 2, we applied the DPNMF to the two
FCV matrices, VADHD

63903369 and VNC
639033135, and four normal-

ized representatives of AFIPs, that is, WADHD
6390332 and

WNC
6390332, were derived for ADHD and NC, as shown in

Figure 4a. Then, we experimentally chose the top 400 high
functional interaction pairs between DICCCOLs in each
AFIP to be visualized on the three different views of corti-
cal surfaces, as shown in Figures 4b–d. By comparing the
common connections (edges) on the cortical surfaces
between the four AFIPs, they could be categorized into
two pairs: one common pair composed of ADHD-AFIP1
and NC-AFIP#1, where there are 310 common connections
between them, and another distinctive pair composed of
ADHD-AFIP#2 and NC-AFIP#2, where there are only 27
common connections between them. Therefore, the
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common pair can be viewed as the common interaction
patterns within subnetworks in both ADHD and NC,
while the distinctive pair reflects the abnormal interaction
patterns within subnetworks in ADHD. The neuroscience
meanings of these four AFIPs are interpreted as follows.
ADHD-AFIP#1 and NC-AFIP#1 both exhibit activities in
the default mode networks (DMN) [Fox and Raichle, 2007;
Raichle et al., 2001] as highlighted by the yellow circles in
Figure 4, and also involves interhemisphere connections in
the parietal lobe, occipital lobe, and the dorsal part of the
visual cortex, as highlighted by the oval shapes. ADHD-
AFIP#2 and NC-AFIP#2 involve strong connections
between hemispheres in the parietal lobes and temporal
lobes. Two clear differences between ADHD-AFIP#2 and
NC-AFIP#2 are observed in Figure 4, as highlighted by the
oval shape. The first difference is that ADHD-AFIP#2
exhibits strong interhemisphere connections in the prefron-
tal cortex, while NC-AFIP#2 shows few connections in the
prefrontal cortex, which is in agreement with current
knowledge about ADHD that ADHD reflects connectivity
alternations in prefrontal-striatal circuitry [Castellanos and
Proal, 2012]. The second difference is that NC-AFIP#2
exhibits much denser connections along the dorsal part of
the posterior frontal lobes and anterior parietal lobes. The
two different functional subnetworks between ADHD-
AFIP#2 and NC-AFIP#2 indicate the abnormal FIPs in
ADHD, and can be viewed as the AFSNs. According to

the meta-analysis of functional roles of DICCCOLs [Yuan
et al., 2013], the DICCCOLs (nodes of the subnetworks)
involved in the two AFSNs are mainly related to the atten-
tion and working memory subnetworks, which is in agree-
ment with current knowledge about the pathological
origins of ADHD [e.g., Cortese, 2012; Krain and Castella-
nos, 2006]. To quantitatively elucidate the two AFSNs, we
constructed two functional connectivity matrices for
ADHD-AFIP#2 and NC-AFIP#2 as follows. Once the 400
high functional interaction pairs were chosen, their corre-
sponding entries in the functional connectivity matrix are
set to one, while the rest are set to zero. Then we accumu-
latively calculate the functional connectivity strength of
each DICCCOL, as shown in Figure 5b. This result sug-
gests that ADHD exhibit both increased and decreased
FIPs, in comparison to NC. Interestingly, there are two
major increased and decreased FIPs, which are consistent
with the two AFSNs. Conceptually, that is one of the
major methodological contribution of this work.

Besides, to further explore the neuroscience interpreta-
tion of the AFIPs in Figure 4, both less and more func-
tional interaction pairs between DICCCOLs in each AFIP
are visualized on the cortical surfaces, as shown in Sup-
porting Information Figures 2 and 3. The visualizations in
Supporting Information Figures 2 and 3 further confirm
the above findings in Figure 4, where ADHD-AFIP#1 and
NC-AFIP#1 construct the common pair, and ADHD-

Figure 2.

The temporal distributions of the locations of change points

detected by the BCCPM in the R-fMRI time series of each sub-

ject. The segment indicator vectors l
!

of different subjects were

plotted with different colors (randomly selected), in which one

indicates that there is a change point at that time point. The first

time point is always considered as a change point. The horizontal

axis denotes the time points, and the vertical axis denotes the

probability of each time point as being a change point. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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AFIP#2 and NC-AFIP#2 form the abnormal pair. More-
over, the two AFSNs are also observed in Supporting
information Figures 2 and 3, as highlighted by the oval
shapes, and even occur in the AFIPL using the SNMF and
NPNMF approaches, as described later in Section Compar-
isons with Other Nonnegative Matrix Factorization
Method. This is another major methodological contribution
of this work.

Classification Analysis

As discussed in Section Change Points Detected by the
BCCPM, we can construct a FCV matrix for subject s, that is,

Vs
6390333, and reconstruct two FCV matrices, for example,

Vs
0
5WWTVs, based on WADHD

6390332 and WNC
6390332 respectively.

Hence two matrix divergences, DADHD
s and DNC

s , of the con-
structed FCV matrix Vs from its two reconstructed ones can
be computed to evaluate the approximations to Vs based on
Eq. (10). The matrix divergence is equivalent to the residual
error of the approximation from the actual data. Thus, we
can use the two matrix divergences of subject s for classifica-
tion purpose based on the following criterions.

If DADHD
s < DNC

s , the subject s is classified as an ADHD
patient, because the AFIPs derived from ADHD can better
approximate the FIPs of the subject. On the contrary, if

DADHD
s > DNC

s , the subject s is classified as a NC subject. If

Figure 3.

(a) Reordered consensus matrices averaging 50 clustering connectivity matrices with rank r from 2

to 7. The clear block diagonal pattern at rank r 5 2 indicates its robustness for clustering. (b) Cophe-

netic correlation coefficients for those consensus matrices in (a), with the steepest drop off at r 5 2.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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DADHD
s 5DNC

s , the subject s cannot be classified, which is
very unlikely to happen actually, although it is possible theo-

retically. In our applications, we obtained DADHD
s 6¼ DNC

s for
all subjects. The matrix divergences of all subjects are shown
Figure 6. The blue bar indicates the matrix divergence of the

FCV matrix Vs of each subject from its reconstructed one

based on WNC
6390332. While the read bar indicates the matrix

divergence of the FCV matrix Vs of each subject from the

reconstructed one based on WADHD
6390332. For all ADHD patients,

we had DADHD
s < DNC

s (Fig. 6a), and for all NC subject we

Figure 4.

(a) Visualization of the four AFIPs of ADHD and NC, whose

vectorized representatives are columns of WADHD
6390332 and

WNC
6390332. (b)–(d) Visualization of the top 400 high functional

interaction pairs between DICCCOLs in the four AFIPs on the

three different views of cortical surfaces. The yellow circles in

ADHD-AFIP1 and NC-AFIP#1 highlight the nodes involved in

the DMN, and the oval shapes in ADHD-AFIP#2 and NC-

AFIP#2 highlight the two AFSNs. DICCCOL ROIs are marked

as green spheres on the cortical surfaces, and the functional

interaction pairs between ROIs are shown as red edges con-

necting those spheres. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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had DADHD
s > DNC

s (Fig. 6b), which means that we can suc-
cessfully differentiate all ADHD patients from NC subjects
without any false positive based on the above methods. This
result suggests the effectiveness of the proposed computa-
tional pipeline.

Reproducibility Study

To examine the reproducibility of our AFIPL using the
DPNMF, a fivefold cross-validation strategy was per-
formed on the same dataset used in Section AFIPL on R-

fMRI Datasets of ADHD and NC. The same dataset was
divided into five portions, in which the first three portions
consist of nine NC subjects and five ADHD patients, while
the last two portions consist of nine NC subjects and four
ADHD patients. The cross-validation training dataset was
subsequently constructed by sequentially combining four
portions into one, and the remaining portion was used as
the testing dataset.

Then, AFIPL was performed on each of the fivefold
training datasets with the same rank r52 used in Section
Classification Analysis. Four AFIPs were obtained from
each training dataset, and also provided another

Figure 5.

The functional connectivity strengths of ADHD-AFIP#2 and

NC-AFIP#2 are shown in (b). The DICCCOLs with decreased

functional connectivity strength in ADHD are picked and visual-

ized with the functional connectivities of NC-AFIP#2 for better

illustration as shown in (a). The DICCCOLs with increased

functional connectivity strength in ADHD are picked and visual-

ized with the functional connectivities of ADHD-AFIP#2 for bet-

ter illustration as shown in (c). The two decreased and

increased FIPs are consistent with the two AFSNs, as highlighted

by the oval shapes. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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supporting evidence to the observations in Figure 4, as

shown in Supporting Information Figure 4. Notably, the

four AFIPs can be reproduced across different folds with

minor differences. These minor differences might be due

to the differences in the training samples, which deserves

further investigations using larger scale datasets in the

future. The active areas involved in ADHD-AFIP#1 and

NC-AFIP#1 were quite similar to the ones in Figure 4, and

two AFSNs were also discovered in ADHD-AFIP#2 and

NC-AFIP#2, which suggested the reproducibility of our

findings discussed in Section AFIPL on R-fMRI Datasets of

ADHD and NC.

Next, the same classification method described in Sec-
tion Classification Analysis was applied on each of the
fivefold testing datasets along with the AFIPs obtained
from its corresponding training dataset. The classification
results are provided in Table I and shown in Supporting
Information Figure 5. On average, 92% of ADHD patients
are successfully classified with only 5% false positive. The
results demonstrated the efficiency and stability of the
classification performance by our AFIPs.

Figure 6.

The matrix divergence of the FCV matrix of each ADHD

patient [panel (a)] and each NC subject [panel (b)] from its

reconstructed FCV matrices based on WADHD
6390332 and WNC

6390332.

The blue bar indicates the matrix divergence of the FCV matrix

from its reconstructed FCV matrix based on the AFIPs of NC,

WNC
6390332. While the read bar indicates the matrix divergence of

the FCV matrix from its reconstructed FCV matrix based on

the AFIPs of ADHD, WADHD
6390332. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Comparisons with Other NMF Method

To further demonstrate the effectiveness of our AFIPL
using DPNMF, as described in Section Atomic Functional
Interaction Patterns Learning, we also applied the SNMF
method [Brunet et al., 2004; Lee and Seung, 1999] and the
NPNMF method [Yang and Oja, 2010] on the same data-
set. In the SNMF algorithm, to solve the approximation
V �WH, matrices W and H are randomly initialized and
iteratively updated to minimize the divergence function:

D V kWHð Þ5
X

i;j

ðVi;jlog
Vi;j

ðWHÞi;j
2Vi;j1ðWHÞi;jÞ: (18)

At each iteration, W and H are updated as

Hi;j  Hi;j

X
k
Wk;iVk;j= WHð Þk;jX

k
Wk;i

Wi;j  Wi;j

X
k
Hj;kVi;k=ðWHÞi;kX

k
Hj;k

:

(19)

In the NPNMF algorithm, the optimization problem in
Eq. (10) becomes:

min
W�0
jjV2WWTVjj () min

W�0
jjV2WWTVjj2Frobenius

5min
W�0

trace ðV2WWTVÞðV2WWTVÞT
n o (20)

and its corresponding multiplicative updating rule is:

Wi;j  Wi;j

2ðVVTWÞi;j
ðWWTVVTWÞi;j1ðVVTWWTWÞi;j

: (21)

Subsequently, we performed AFIPL using SNMF and
NPNMF on the same data used in Section AFIPL on R-
fMRI Datasets of ADHD and NC. The consensus matrices
and the cophenetic correlation coefficients of the FCV
matrix of the pooled ADHD and NC, Vall

639033204, are shown
in Figure 7. The consensus matrices shown in Figures 3
and 7 suggest that the AFIPL using DPNMF is more stable
and less sensitive to random initializations than the ones
using SNMF and NPNMF. The optimal rank for SNMF
and NPNMF is still 2, as shown in Figure 7a,b. Moreover,

we also evaluated the convergence of the consensus matrix
derived from DPNMF, SNMF, and NPNMF, as shown in
Supporting Information Figure 6. The AFIPL using
DPNMF converge more quickly than using SNMF and
NPNMF. The AFIPs derived via SNMF and NPNMF are
visualized in Supporting Information Figures 7 and 8.
Notably, the two AFSNs in ADHD-AFIP2 and NC-AFIP#2,
which are observed in Figure 4, are also discovered in
Supporting Information Figures 7 and 8, suggesting their
robustness and reliability. The combination of ADHD-
AFIP#1 and ADHD-AFIP#2 derived via SNMF (Supporting
Information Figure 7) is similar to the combination of
ADHD-AFIP#1 and ADHD-AFIP#2 derived via DPNMF
(Figure 4) and NPNMF (Supporting Information Figure 8).
It should be pointed out that the differences between the
AFIPs derived via SNMF and DPNMF merit further analy-
sis in the future. These comparison studies also provide
another supporting evidence to the reproducibility of our
AFIPs using DPNMF.

Comparisons with the k-Means Method

As discussed in Section Atomic Functional Interaction
Patterns Learning, projective nonnegative matrix factoriza-
tion (PNMF) has intrinsic relation to the k-means method.
Thus, apart from the comparisons with SNMF and
NPNMF, we also compared our AFIPL with the k-means
method. Estimating the optimal cluster number is a crucial
step in cluster analysis, and there are many validation
methods [e.g., Fraley and Raftery, 2011; Halkidi et al.,
2001], for instance, the Bayesian information criterion
(BIC) [Schwarz, 1978], the entropy criterion [Celeux and
Soromenho, 1996], and the gap statistic approach [Tibshir-
ani et al., 2001]. The gap statistic approach is applicable to
any clustering method, and does not require any prior
knowledge on the model of the data. Notably, there is
already an effective implementation of the gap statistic
method as a the comprehensive R archive network
(CRAN) package [Maechler et al., 2012]. Thus, to facilitate
our study, we adopted the gap statistic method to estimate
the optimal number of clusters. Suppose we cluster the
data V5 v1;v2; . . . ;vn½ � into k clusters C1; C2; . . . ; Ck. Let
di;i0 denotes the distance between samples vi and vi0 , the
“gap” is defined as:

Gapn kð Þ5E*
n log Wkð Þ
� 	

2log Wkð Þ

Wk5
Xk

j51

1

2nj
Dj; Dj5

X
i;i02Cj

di;i0 ;
(22)

where nj is the number of samples in the cluster Cj, and
E*

n denotes expectation under a sample of size n from the
reference distribution generated by Monte Carlo. The opti-
mal number of clusters is estimated as the smallest k such
that [Tibshirani et al., 2001]

TABLE I. List of the classification results of each of the

five-fold testing datasets along with the AFIPs obtained

from its corresponding training datasets

Fold#1 Fold#2 Fold#3 Fold#4 Fold#5 Average

ADHD 5/5 4/5 4/5 4/4 4/4 92%
NC 8/9 8/9 9/9 9/9 9/9 95%

The entry of 4/5 in the table means that 4 subjects in the testing
dataset consisting of five subjects are successfully classified.
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Gap kð Þ � Gap k11ð Þ2sk11 (23)

The results of the gap statistic are shown in Supporting
Information Figures 9a,b. The estimated number of clusters
for ADHD patients is 2, while the one for NC is 3. For
comparison purpose, we also tried to estimate the optimal
number of clusters based on the BIC. A major difference
between the gap statistic method and the BIC method is
that the data vi is assumed to come from the multivariate
Gaussian mixture model in the BIC method. The optimal
number of clusters is where the BIC reaches its maximum.
As shown in Supporting Information Figures 9c,d, the esti-
mated optimal number of clusters for ADHD patients is 2,
while the one for NC is 3. This suggested the stability of
the estimated optimal numbers of clusters. Then we
applied the widely used k-means clustering algorithm to
the FCV matrices of ADHD and NC with the estimated
numbers of clusters, and the average of these FIPs which
belong to the same cluster was calculated for each cluster.
As before, the top 400 high functional interaction pairs

between DICCCOLs in each averaged FIP are visualized
on the cortical surfaces, as shown in Figure 8. Although
the connectivity matrices of the averaged FIPs are remark-
ably different (the top panel in Fig. 8), the most connected
DICCCOLs are quite similar (the bottom panel in Fig. 8).
Our interpretation is that those averaged FIPs might be
linearly related to each other to a certain degree. Interest-
ingly, those most connected DICCCOLs in those averaged
FIPs are quite similar to the ones in ADHD-AFIP#1 and
NC-AFIP#1 (Fig. 4b). Thus, those FIPs can be characterized
by ADHD-AFIP#1 or NC-AFIP#1 obtained from AFIPL
using DPNMF. It also suggests that our AFIPL using
DPNMF can reveal more meaningful phenomena which
cannot be revealed by traditional clustering methods.

DISCUSSION AND CONCLUSIONS

In this work, we first applied the BCCPM to the R-fMRI
time series to model functional interactions and their

Figure 7.

Visualization of reordered consensus matrices averaging 50 clustering connectivity matrices with

ranks r from 2 to 5 obtained via SNMF, (a), and NPNMF, (b). (c) The curve of cophenetic corre-

lation coefficients for those consensus matrices in (a). (d) The curve of cophenetic correlation

coefficients for those consensus matrices in (b). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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dynamics. FIPs were constructed via our recently devel-
oped 358 DICCCOLs [Zhu et al., 2013]. The optimal rank
during DPNMF was determined by the cophenetic correla-
tion coefficient [Brunet et al., 2004]. Then the DPNMF
approaches were applied to the vectorized FIP matrices to
learn the AFIPs in ADHD and NC. Four AFIPs were
derived and can be grouped into two pairs, one common
pair composed of ADHD-AFIP#1 and NC-AFIP#1, which
suggested that NC brains and ADHD brains shared com-
mon AFIPs, and the other abnormal pair composed of
ADHD-AFIP#2 and NC-AFIP#2, which indicated the abnor-
mal AFIPs in ADHD brains. By further visualization analy-
sis of the abnormal pair of ADHD-AFIP#2 and NC-AFIP#2,
two AFSNs were discovered, which were reproduced dur-
ing cross-validations and comparison studies with SNMF
and NPNMF. The two AFSNs reflect the decreased and
increased interaction patterns within subnetworks in
ADHD and are mainly related to the attention and working
memory subnetworks according to the meta-analysis of
functional roles of DICCCOLs [Yuan et al., 2013], which is
consistent with current knowledge about pathological ori-
gins of ADHD [e.g., Castellanos and Proal, 2012; Cortese,
2012; Krain and Castellanos, 2006].

In addition, the four AFIPs also have a good classifica-
tion performance in differentiating ADHD patients from
NC subjects. By comparing the matrix divergences of the
FCV matrix of each subject from its reconstructed FCV
matrices based the AFIPs of ADHD and NC, all the
ADHD patients were successfully classified without any

false positive. The fivefold cross validation confirmed the
reproducibility of the meaningful biological phenomena
and the good classification performance of the AFIPs.

In our study, we used the absolute value of the Pearson
correlation between the R-fMRI time series of two ROIs to
measure the coactivities between the two ROIs. Actually, the
positive Pearson correlation measures the synchronous coac-
tivities between two ROIs, while the negative one measures
the asynchronous coactivities between two ROIs. In the
network-level analysis of FIPs and AFIPs on the cortical
surfaces, we aim to analyze both synchronous and asynchro-
nous coactivities between ROIs simultaneously. Thus, we
used the absolute values of the Pearson correlations for the
FIP definition. In addition, the whole-brain network is func-
tionally composed of many subnetworks, such as the default
mode, working memory, and attention subnetworks. Due to
the nonnegative constraints allowing only additive, not sub-
tractive, combinations, NMF can effectively learn well part-
based representations of a composite object [Lee and Seung,
1999; Yang et al., 2007]. Thus, we adopted an effective vari-
ant of NMF, that is, the DPNMF, to investigate the FIPs
within subnetwork, that is, AFIPs, in this work.

Moreover, it should be noted that the connectivity matri-
ces of the learnt AFIPs are not directly comparable.
Because of the different reconstructive coefficients associ-
ated with the AFIPs during matrix decomposition, higher
magnitude of an entry in an AFIP does not mean stronger
coactivities between the corresponding ROIs, as compared
with another entry in another AFIP. However, the entries

Figure 8.

Visualization of the averaged FIPs derived by k-means (top panel) and visualization of the top

400 high functional interaction pairs between DICCCOLs in each averaged FIP on the cortical

surfaces (bottom panel). Although FIPs in top panel are remarkably different, their projections

on the cortical surfaces are quite similar. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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in the same AFIP are still comparable. Hence we experi-
mentally chose the top 400 high interaction pairs in the
AFIPs, other than a global threshold, to be visualized on
the cortical surfaces for network-level analysis and com-
parison. The comparisons between the AFIPs are based on
their projections on the cortical surfaces.

A potential limitation of our work is that the BCCPM is
not sensitive to small local structure changes within a
small part of ROIs. In our study, we assume that the
change points exist in all the ROIs. Thus, the BCCPM
focuses on detecting the global change of network struc-
ture. However, if different ROIs have different change
points for the same subject, the BCCPM would only detect
the change points where most of the ROIs are involved in
the change of structure.

In summary, our work contributed a novel computa-
tional framework for characterization and differentiation
of ADHD and our experimental results have revealed
novel insights about the abnormal functional interactions
and dynamics in ADHD. In the future, this computational
framework could be possibly applied in many other psy-
chiatric disorders to elucidate the potentially abnormal
brain functions in such brain conditions. Also, more
indepth analyses of the neuroscientific meanings of the
AFSNs, for example, those in the ADHD in Figure 4,
should be performed by considering clinical and behavior
datasets in the future.
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