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Abstract In recent years, functional connectomics signatures
have been shown to be a very valuable tool in characterizing
and differentiating brain disorders from normal controls.
However, if the functional connectivity alterations in a brain
disease are localized within sub-networks of a connectome,
then accurate identification of such disease-specific sub-net-
works is critical and this capability entails both fine-
granularity definition of connectome nodes and effective clus-
tering of connectome nodes into disease-specific and non-
disease-specific sub-networks. In this work, we adopted the
recently developed DICCCOL (dense individualized and
common connectivity-based cortical landmarks) system as a
fine-granularity high-resolution connectome construction

method to deal with the first issue, and employed an effective
variant of non-negative matrix factorization (NMF) method to
pinpoint disease-specific sub-networks, which we called
atomic connectomics signatures in this work. We have imple-
mented and applied this novel framework to two mild cogni-
tive impairment (MCI) datasets from two different research
centers, and our experimental results demonstrated that the
derived atomic connectomics signatures can effectively char-
acterize and differentiate MCI patients from their normal
controls. In general, our work contributed a novel computa-
tional framework for deriving descriptive and distinctive
atomic connectomics signatures in brain disorders.

Keywords Resting state fMRI . Brain networks . Functional
connectome .MCI . NMF . DICCCOL

Introduction

Neuroimaging has been an important technique in understand-
ing the structural and functional alterations in brains with
various psychiatric/mental disorders. Recently, functional
connectomes constructed from neuroimaging data have
emerged as a powerful tool in characterizing and differentiat-
ing brain disorders (Camchong et al. 2011; Cocchi et al. 2012;
Arbabshirani et al. 2013; Fornito and Bullmore 2014; Li et al.
2014; Zhu et al. 2014; Li et al. 2013; Venkataraman et al.
2012). For instance, functional connectomics signatures were
derived for characterization and differentiation of mild cogni-
tive impairment (MCI) (Wee et al. 2012; Zhu et al. 2014),
Alzheimer’s disease (AD) (Wang et al. 2007; Greicius et al.
2004; Supekar et al. 2008), posttraumatic stress disorder (Li
et al. 2014; Lanius et al. 2005; Gilboa et al. 2004) and prenatal
cocaine exposure affected brains (Li et al. 2013; Santhanam
et al. 2011). In general, those functional connectomics signa-
tures derived in those previous studies were typically over

J. Ou : L. Xie : R. Jiang :Y. Chen
School of Biomedical Engineering & Instrument Science, Zhejiang
University, Hangzhou, China

X. Li :D. Zhu : T. Liu (*)
Cortical Architecture Imaging and Discovery Lab, Department of
Computer Science and Bioimaging Research Center, The University
of Georgia, Athens, GA, USA
e-mail: tliu@cs.uga.edu

D. P. Terry :A. N. Puente : L. S. Miller
Department of Psychology, The University of Georgia, Athens, GA,
USA

D. Zhu : L. S. Miller
Bioimaging Research Center, The University of Georgia, Athens,
GA, USA

J. Zhang
Department of Statistics, Yale University, New Haven, CT, USA

D. Shen
Department of Radiology, UNC, Chapel Hill, NC, USA

L. Wang
Department of Biomedical Engineering, Tsinghua University,
Beijing, China

Brain Imaging and Behavior
DOI 10.1007/s11682-014-9320-1



whole-brain networks, i.e., the whole networks of a
connectome. If the functional alterations in a brain condition
are localized within specific functional sub-networks of a
connectome, whole-brain functional connectomes may not
be effective and sensitive enough to characterize and differ-
entiate the brain condition. Therefore, functional
connectomics signatures within sub-networks need to be ex-
plored, instead.

From a technical perspective, the major barrier to brain
connectivity analysis is the lack of large-scale common and
consistent brain landmarks as a generic brain reference sys-
tem, which provides network nodes for constructing connec-
tivities within individual brains and for comparing connectiv-
ities across different brains. Due to the lack of generic and
large-scale brain landmarks, fine-granularity connectivity net-
works of those functional connectomics signatures derived in
previous studies (Wee et al. 2012; Wang et al. 2007; Greicius
et al. 2004; Supekar et al. 2008; Lanius et al. 2005; Gilboa
et al. 2004; Santhanam et al. 2011) are still largely unknown.
Thus, determination of common and consistent brain land-
marks across different brains is perhaps one of the greatest
challenges in human brain mapping (Derrfuss and Mar 2009;
Poldrack 2012; Liu 2011). Recently, a large set of reliable and
dense cortical landmarks has been identified and publicly
released (http://dicccol.cs.uga.edu), named Dense
Individualized and Common Connectivity-based Cortical
Landmarks (DICCCOL) (Zhu et al. 2013). The neuroscience
basis is that each cytoarchitectonic area possesses a unique set
of extrinsic inputs and outputs, namely the “connectional
fingerprint”, which largely determine the functions that the
area can perform (Passingham et al. 2002). In the current
stage, the DICCCOL system has identified 358 consistent
cortical ROIs, the locations of which were optimized via
maximizing the group-wise consistency of DTI-derived fiber
shape connectivity patterns (Zhu et al. 2013). Importantly,
these 358 DICCCOLs could be accurately predicted and
localized in an individual brain based only on DTI data (Zhu
et al. 2013). Thus, in this work, we employed these DICCCOL
landmarks as network nodes for fine-granularity whole-brain
connectome construction. Because of the intrinsically struc-
tural and functional correspondences of the DICCCOL system
across brains, functional connectomes constructed from dif-
ferent brains can be readily pooled and integrated. The 358
DICCCOL landmarks on the reconstructed WM/GM cortical
surfaces were illustrated in Fig. 1. Notably, it should be
pointed out that the current 358 DICCCOLs are not the
whole-cortex parcellation, but are sampled consistent ROIs.

Generally speaking, the human connectome (Kennedy
2010) is a complex network with highly functional segrega-
tion and integration (Bassett and Bullmore 2006; Stam 2010;
Sporns et al. 2004; Sporns 2011, 2013), and can be function-
ally divided into many sub-networks, for instance, the default
mode, working memory, vision, auditory, attention and

emotion, some of which may overlap each other. The human
connectome can be characterized by a large-scale functional
connectivity matrix, e.g., denoted by X. From a mathematical
perspective, any given matrix X can be factorized as a linear
combination of some orthogonal bases. Because of the non-
negative constraints allowing only additive, not subtractive,
combinations, non-negative matrix factorization (NMF) can
effectively learn part-based representations (Lee and Seung
1999; Yang et al. 2007) of a composite object.

Motivated by the composite structure of the functional
connectome and the success of NMF in learning part-based
representations of a composite object, in our previous work
(Ou et al. 2014), we applied an effective variant of NMF, i.e.,
the divergence-based projective non-negative matrix factori-
zation (D-PNMF) (Yang and Oja 2010), along with a Bayes-
ian change point model, to investigate the atomic dynamic
functional interaction patterns in attention-deficit/hyperactivi-
ty disorder. To achieve a more general and feasible computa-
tional framework, in this work, we first integrated two MCI
datasets from two different research centers and then apply the
D-PNMF approaches directly to pooled datasets, for investi-
gating the connectivity patterns within sub-networks of a
connectome, which we called atomic functional connectomes
(AFCs). As a result, four AFCs were obtained, two from the
MCI group and another two from the normal control (NC)
group. Experimental results suggest that the four AFCs can be
categorized into distinctive and common pairs, which indicate
the connectivity patterns within disease-specific and non-
disease-specific sub-networks. The distinctive pair shows sig-
nificantly increased and decreased connectivity patterns in-
volved in MCI, as compared with NC. In addition, the four
AFCs also have high classification accuracy with both good
sensitivity and specificity, and can be viewed as
“connectomics signatures” for MCI and NC. Essentially, the
work in this paper implicates that MCI could be a disorder of
connectivity between components of a connectome.

Materials and methods

Overview

The pipeline of the proposed computational framework is
summarized in Fig. 2. First, after the fMRI/DTI data prepro-
cessing (step 1), the 358 consistent DICCCOL landmarks are
predicted and localized in the DTI data of each brain (step 2).
Then, the fMRI data is co-registered into the DTI space using
FSL FLIRT (step 3). The fMRI BOLD signals are then ex-
tracted from the co-registered fMRI data by averaging in a
small neighborhood (3 mm radius) for each DICCCOL (Zhu
et al. 2013) (step 4). Subsequently, a whole-brain functional
connectome is evaluated with Pearson correlations between
every pair of fMRI BOLD signals and characterized by a
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symmetric connectivity matrix (step 5). The D-PNMF ap-
proaches are then applied to the pooled connectivity matrices
for learning AFCs (step 6). Finally, we compare the approx-
imation residual errors of each FCV from its reconstructive
FCVs based on the learned AFCs for classification purpose
(step 7). Details of these steps are described in detail in the
following sections.

Subjects

To infer and investigate connectomics signatures in MCI, two
independent MCI datasets from two different research centers
(Duke Medical Center and UGA Bioimaging Research Cen-
ter) were used in this work.

Dataset 1 included 27 participants (10 MCI patients and 17
normal controls) who were recruited and scanned in the Duke-
UNC Brain Imaging and Analysis Center (BIAC). MCI pa-
tients were diagnosed according to NACC procedures and
NINCDS-ADRDA diagnostic guidelines, and their diagnoses
were based upon available data from a general neurological
examination, neuropsychological assessment evaluation, col-
lateral and subject symptom and functional capacity reports.
Confirmation of diagnosis for all subjects was made via expert
consensus panels at the Joseph and Kathleen Bryan
Alzheimer’s Disease Research Center (Bryan ADRC) and
the Department of Psychiatry at Duke University Medical
Center. The inclusion and exclusion criteria for dataset 1 can
be found in Wee et al. (2012). To be self-contained and brief,

the inclusion criteria for MCI patients are: 1) age>55 years
and any race; 2) recent worsening of cognition, but still
functioning independently; 3) Mini Mental State Examination
(MMSE) score between 24 and 30; 4a.) score≤−1.5 SD on at
least two Bryan ADRC cognitive battery memory tests for
single-domain amnestic MCI; or 4b.) score≤−1.5 SD on at
least one of the formal memory tests and score≤−1.5 SD on at
least one other cognitive domain task for multi-domain MCI;
5) score 4 or lower for baseline Hachinski; 6) no psycholog-
ical symptoms or history of depression; 7) exhibit no dementia
according to the NINCDS–ADRDA or DSM-IV-TR criteria;
and 8) ability to give informed consent and follow study
protocols. While the inclusion criteria for NC subjects are:
1) age>55 years and any race; 2) adequate visual and auditory
acuity to finish neuropsychological testing; 3) a normal non-
focal neurological examination score; 4) no self-report of
neurological or depressive illness; 5) exhibits no depression
according to the Diagnostic Interview Schedule portion of the
Duke Depression Evaluation Schedule; 6) a score>−1 SD on
any formal memory tests and a score>−1 SD any formal
executive function or other cognitive test; and 7) ability to
give informed consent and follow study protocols. Subjects
were excluded, who met the following criteria: 1) any tradi-
tional MRI contraindication, such as foreign metallic implants
or pacemakers; 2) any of other Axis I psychiatric disorders; 3)
any physical or intellectual disability preventing assessments;
4) any head injury or neurological disorder associated with
MRI abnormalities, such as dementia, brain tumors, epilepsy,

Fig. 1 Visualization of the 358
DICCCOL ROIs on the cortical
surfaces in the top a, lateral b and
rear c views. The ROIs are shown
as green spheres. The
visualizations of the DTI-derived
fiber patterns of these ROIs are
referred to: http://dicccol.cs.uga.
edu
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demyelinating diseases and so on; and 5) any prescription
medication (or nonprescription drugs) with known neurolog-
ical effects.

Dataset 2 included 24 participants (12 MCI patients and 12
normal controls) who were recruited from a 10-county area
around Athens-Clarke County, Georgia. Initial recruitment
was through advertisements and community contacts, which
was developed by the UGA Neuropsychology and Memory
Assessment Laboratory. Informed consent was obtained after
reviewing detailed written information about the experimental
protocol, which was approved by the UGA IRB. Participants
completed comprehensive evaluations including MRI com-
patibility screening, participant and collateral interviews re-
garding relevant social and medical history by a trained inter-
viewer certified in dementia rating, self, and collateral reports
of activities of daily living (ADLs), and neuropsychological
testing. The clinical dementia rating (CDR) staging decisions
(group placement) based on CDR guidelines (Hughes et al.
1982) was made upon the information from the initial inter-
view. The inclusion criteria for dataset 2 can be also found in
Faraco et al. (2013) and Puente et al. (2014). Briefly, the
inclusion criteria for dataset 2 are: 1) age between 65 and
85 years; 2) a reliable collateral, literate, and no self-reported
history of a neurological disorder; 3) capacity to give informed
consent and follow the entire MR scanning protocol; and 4)
compatibility with the MRI environment. For MCI patients,
there were another two extra inclusion criteria: 1) self and
collateral report of memory decline, and 2) objective memory
impairment within the memory domain of the CDR. Partici-
pants were categorized as NC if they received a global CDR
score of 0, as MCI if they received a global CDR score of 0.5,
and as dementing if they received a global CDR≥1.

Demographics of the participants in two Datasets are summa-
rized in Table 1.

Data acquisition and preprocessing

Dataset 1: The DTI and fMRI data were acquired on a 3 T GE
MRI scanner at the Duke-UNC BIAC, under Duke IRB
approval and with the following parameters. For fMRI, the
parameters were: matrix=64×64, slice thickness=3.8 mm,
field of view (FOV)=256×256 mm2, TR (repetition time)=
2 s, TE (echo time)=32 ms. For DTI, 25 direction diffusion-
weighted whole-brain volumes were acquired axially parallel
to the AC-PC using the following parameters: b=0,1000 s/
mm2, TR=17 s, TE=78 ms, matrix=128×128, FOV=256×
256 mm2, resulting in an imaging resolution of 2×2×2 mm3.

Dataset 2: The DTI and fMRI data were scanned on a 3 T
GE Signa HDx MRI system at the UGA, under UGA IRB
approval. For fMRI, the parameters were: matrix=64×64,
slice thickness=4 mm, FOV=256×256 mm2, TR=5 s, TE=
25 ms. For DTI, 30 direction diffusion-weighted whole-brain
volumes were acquired axially parallel to the AC-PC with the
following parameters: b=0,1000 s/mm2, TR=17 s, TE=min
full (minimum echo time needed, here the “min full” value for
TE is 86 ms), matrix=128×128, FOV=256×256 mm2,
resulting in an imaging resolution of 2 mm isotropic.

Briefly, the data preprocessing steps of the fMRI data
included brain skull removal, motion correction, spatial
smoothing, temporal prewhitening, slice time correction,
global drift removal, and band pass filtering (0.01Hz~
0.1Hz) (Li et al. 2012; Zhu et al. 2012). As the spontaneous
BOLD signals fluctuate in a low frequency in resting state,
mainly between 0.01 Hz and 0.1 Hz (Fransson 2005; Fox and

Fig. 2 The pipeline of the
computational framework is
composed of seven steps: 1)
preprocessing of the DTI and
fMRI data; 2) DICCCOL
prediction in the DTI data; 3) co-
registration of the fMRI data into
the DTI space; 4) fMRI BOLD
signal extraction by averaging in a
small neighborhood (3 mm
radius) for each predicted
DICCCOL; 5) functional
connectome construction from
the fMRI BOLD signals; 6) AFC
learning via the D-PNMF
approaches; 7) classification
based on the approximation
residual errors
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Raichle 2007). This is the typical band that in resting state
networks are of interest. It should be noted that the first few
volumes have been removed before preprocessing. After re-
moving the first few volumes, there were 150 volumes left in
dataset 1 and 108 volumes left in dataset 2. Preprocessing
steps of the DTI data included brain skull removal, motion
correction, and eddy current correction. More details of the
fMRI/DTI data preprocessing can be found in our previous
publications (Li et al. 2012; Zhu et al. 2012, 2013).

After the fMRI/DTI data preprocessing, the 358
DICCCOL landmarks were predicted and localized in the
DTI data of each individual brain via a data-driven strategy
(Zhu et al. 2013). Briefly, the prediction process consists of
three major steps: initial landmarks selection, optimization of
landmark locations, and determination of group-wise consis-
tent DICCCOLs (Zhu et al. 2013). More details of the
DICCCOL prediction can be found in our previous publica-

tion (Zhu et al. 2013) and the publicly accessible DICCCOL
website (http://dicccol.cs.uga.edu).

Functional connectome construction and vectorization

Because fMRI and DTI sequences are both EPI (echo planar
imaging) sequences, their distortions tend be similar and the
misalignment between fMRI and DTI images is much less
than that between fMRI and T1 images (Li et al. 2012). Thus,
after DICCCOL prediction (Zhu et al. 2013) in the DTI data of
each brain (Fig. 3a), the fMRI images were co-registered into
the DTI space using FSL FLIRT. Then, the fMRI BOLD
signals were acquired by averaging in a small neighborhood
(3 mm radius) for each DICCCOL (Fig. 3b). Here, the
pairwise functional connectivity was estimated as the absolute
value of the Pearson correlations between every pair of fMRI
BOLD signals (Fig. 3c), as follows:

Ri; j ¼ abs corr Si; S j

� �� �
; if i ≠ j; Ri; j ¼ 0; if i ¼ j; FC ¼ Ri; j

���i; j∈ 1; 358ð Þ
n o

ð1Þ

where Si denotes the fMRI BOLD signals extracted for the i-th
DICCCOL, Ri,j denotes the absolute value of the Pearson
correlation between the fMRI BOLD signals extracted for the
i-th and j-th DICCCOLs and FC denotes the functional
connectome over whole-brain networks, which is characterized
by a symmetrical non-negative 358×358 connectivity matrix.
Considering the symmetry of the functional connectivity ma-
trix, its upper triangular elements are concatenated to make a
vector of M=358×357/2=63903 features (Fig. 3d), denoted as
functional connectome vector (FCV). Due to the intrinsically-
established correspondences of DICCCOLs across individual
brains, FCVs constructed from different brains can be readily
pooled and integrated to make a single FCV matrix for further
analysis (Fig. 3e).

Atomic functional connectome (AFC) learning

In our previous works (Yuan et al. 2013; Zhu et al. 2013), the
functional roles of 358 DICCCOLs were annotated via meta-

analysis with the existing fMRI studies reported and aggregated
in the BrainMap database. In total, 339 DICCCOLs have been
functionally labeled with 55 functional sub-networks (Yuan
et al. 2013) via the meta-analysis. Hence, the whole-brain
functional connectome based on DICCCOLs can be viewed
as a combination of connectivity patterns within different func-
tional sub-networks, which we called atomic functional
connectomes (AFCs). Based on the above methods in the sec-
tion of “functional connectome construction and vectorization”,
a functional connectome can be represented by a vector, i.e.,
FCV, and a non-negative FCV matrix can be obtained from a
group. From a mathematical perspective, the AFCs can be
viewed as bases and be resolved by a matrix factorization
model (Trefethen and Bau III 1997), as follows.

XM�N ≈ WM�rH r�N ð2Þ

where columns of X are the FCVs constructed for each
individual, and columns of W denote the bases, i.e., the

Table 1 Demographic informa-
tion of the participants in Dataset
1 and Dataset 2

Dataset 1 Dataset 2

NC MCI NC MCI

No. of subjects 17 10 12 12

No. of males 9 5 2 5

Age (mean±SD) 74.2±8.6 72.1±8.2 72.3±5.1 78.1±4.8

Education (mean±SD) 17.7±4.2 16.3±2.4 16.1±2.6 14.7±3.6

MMSE (mean±SD) 28.4±1.5 29.4±0.9 28.3±1.7 25.5±2.5

Memory/Cognitive test score >−1 ≤−1.5 / /

CDR score / / 0 0.5
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vectorized representatives of AFCs, which can be used to
reconstruct X with the coefficients H. M denotes the dimen-
sion of FCVand AFC, and N denotes the number of subjects.
The rank r denotes the rank ofW, which is also the number of
AFCs. Here, we adopted the divergence-based projective non-
negative matrix factorization (D-PNMF) (Yang and Oja 2010)
approaches to learn the bases, i.e., AFCs. An example of AFC
learning is illustrated in Fig. 4.

In this work, to reduce the parameters during NMF, H is
assumed to be the projection ofX ontoW, i.e.,H=WTX. Thus,
under the non-negative constraints on the elements ofWandH,
AFCs become the solution to the optimization problem:

min
W ≥0

∥X−WWTX∥⟺ min
W ≥0

D X∥Yð Þ

¼ min
W≥0

∑i; j X i; jlog
X i; j

Y i; j
− X i; j þ Y i; j

� �
Y ¼ WWTX
� �

;

ð3Þ

where ∥I∥ denotes a matrix norm, and D(X||Y) is the matrix
divergence of X from Y, which reduces to the Kullback–
Leibler divergence, when ∑ i, j Xi, j=∑ i, jYi, j=1. With the

gradient descent approach, the additive update rule for
Eq. (3) becomes:

Wi; j ← Wi; j − ηi; j
∂D X∥WWTX

� �
∂Wi; j

; ð4Þ

where ηi, j is a non-negative step size. For the divergence, the
gradient in Eq. (4) is:

∂D X∥WWTX
� �

∂Wi; j
¼ ∑

k
WTX
� �

j;k
þ ∑

l
W l; jX i;k

� �
−

∑
k

X i;k WTX
� �

j;k

WWTX
� �

i;k

− ∑
k
X i;k∑

l

W l; jX l;k

WWTX
� �

l;k

:

ð5Þ

The non-negative constraint on W is guaranteed by posi-
tive initialization of W and setting the step size in Eq. (4) as
follows:

ηi; j ¼
Wi; jX

k
WTX
� �

j;k
þ
X

l
W l; j X i;k

� �: ð6Þ

Fig. 3 Functional connectome construction and vectorization. a The
predicted 358 DICCCOL landmarks on the cortical surfaces, shown as
green spheres. b The fMRI BOLD signals extracted for two randomly
selected DICCCOLs. c The functional connectivity matrices estimated
from the fMRI BOLD signals with their corresponding histograms

showing the distribution of the values on the top of each of the connectivity
matrices. d The vectorized representations of the functional connectivity
matrices, i.e., FCVs. e The pooled FCV matrix composed of FCVs con-
structed from different brains. The vectors and matrices are color coded by
using a heat color map, from dark blue (minimum) to dark red (maximum)
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Finally, the multiplicative updating rule is obtained as:

Wi; j←Wi; j

X
k
X i;k WTX

� �
j;k

.
WWTX
� �

i;k þ
X

k
X i;k

X
l
W l; j X l;k

.
WWTX
� �

l;kX
k

WTX
� �

j;k þ
X

l
W l; j X i;k

� � : ð7Þ

It should be noted that W must be initialized before we
perform the multiplicative updating in Eq. (7). Random initial-
ization is a commonly used strategy in unsupervised feature
learning (Saxe et al. 2011; Kuncheva and Vetrov 2006; Cox
and Pinto 2011). Importantly, random initialization can also do
well as pre-trained initialization (Saxe et al. 2011). Thus, in this
work, W is randomly initialized for our AFCs learning.

A critical issue in any decomposition analysis is the selec-
tion of the number of factors (r). Brunet et al. (2004) proposed
the cophenetic correlation coefficient (CCC) approach to de-
termine the optimal value of r, and Hutchins et al. (2008)
presented a variation of the residual sum of squares (RSS) to
estimate the optimal value of r. The key concept in the CCC
approach is the consensus matrix C, which is the average of
the clustering connectivity matrices over many runs (due to
the random initializations, we cannot exactly obtain the same
clustering connectivity matrix on each run). The clustering
connectivity matrix is a binarymatrix which indicates whether
two samples belong to the same cluster. The entry ci,j in the
clustering connectivity matrix is one if samples i and j belong
to the same cluster, otherwise ci,j is zero (Lancichinetti and
Fortunato 2012). Thus, the dispersion of the consensus matrix
between 0 and 1 measures the robustness and reproducibility
of the clustering results with respect to random initializations.
The CCC is measured by the Pearson correlation of two
distant matrices: the distance between samples induced by
the consensus matrix, I-C, and the distance between samples
induced by the linkage used in the reordering of C (Brunet
et al. 2004). The optimal value of r is where the magnitude of
the CCC falls. It should be noted that if the magnitude of the

CCC falls at more than one rank, the optimal value of r is
where the magnitude of the CCC drops off most steeply. RSS
is the residual sum of square errors between the data matrix
(X) and the approximated matrix (WWTX). If r is equal to or
surpasses its optimal value, the additional reduction of RSS is
minor (Hutchins et al. 2008). During the determination of r,
we also want to evaluate the robustness and reproducibility of
the clustering results with respect to the random initialization.
Thus, we adopted the CCC to estimate the optimal rank r.
Here, we experimentally found that 50 runs were sufficient for
the consensus matrix to converge in our applications and each
run takes approximately 2 min on a computer with Intel Core
i7@3.33GHz and 4GB DDR.

Results

In this section, we performed AFC learning on the individual
FCV matrices which were constructed from the fMRI data of
the MCI group and the NC group, respectively. Then, the
approximation residual errors of each FCV from its approxi-
mations based on the learnt AFCs were computed for classi-
fication purpose. Apart from the optimal rank estimated by
CCC, we also tried other ranks to study the effect of model
selection during AFC learning. Finally, we compared our
AFCs learnt by using the D-PNMF approaches with the ones
learnt by using the K-SVD algorithm, which is another vari-
ation of matrix factorization but without non-negative con-
straints. Meanwhile, the comparison with the traditional clus-
tering algorithm, k-means, was also provided.

Fig. 4 A rank-2 (r) matrix
factorization on a FCV matrix.
Each column in X represents a
FCV, and columns ofW are the
vectorized representatives of
AFCs. H are the coefficients
during matrix factorization. M
denotes the dimension of FCV
and AFC, and N denotes the
number of subjects. The rank r
denotes the number of bases inW
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AFC learning on the fMRI data of individual MCI/NC groups

In order to learn the AFCs in MCI and NC respectively, the
datasets were divided into two groups, one MCI group includ-
ing all the 22 MCI patients, and another NC group including
all the 29 controls. Based on the methods described in section
of “functional connectome construction and vectorization”, we
can derive three FCV matrices of the MCI group (X63903×22

(MCI) ),
NC group (X63903×29

(NC) ), and pooled MCI and NC groups
(X63903×51

(all) ) (used for rank determination). First, the CCCs of
the FCVmatrix of pooledMCI and NC groups were computed
for ranks r from 2 to 10, as shown in Fig. 5. As there is only
two groups used in this work, i.e., MCI and NC, the testing
range for r from 2 to 10 is sufficient in this work. The CCC
falls most steeply at r=2. Thus, the optimal rank r is estimated
as 2. Then, the D-PNMF approaches were applied to the two
FCV matrices of the MCI group, X63903×22

(MCI) , and NC group,
X63903×29
(NC) , with the estimated rank r=2 separately, and four

AFCs derived, two from the MCI group, W63903×2
(MCI) , and an-

other two from the NC group, W63903×2
(NC) .

Then, the top 400 highest functional connectivity pairs in
the four AFCs are experimentally selected to be visualized on
the cortical surfaces, as shown in Fig. 6e–h. Notably, the first
two AFCs in MCI and NC, i.e., MCI-AFC#1 (Fig. 6e) and
NC-AFC#1 (Fig. 6g), are very similar to each other. This
similarity is measured by the number of common connections
(edges) on the cortical surfaces. There are 290 common con-
nections between MCI-AFC#1 and NC-AFC#1, and the most
connected ROIs are almost the same. While the last two AFCs
in MCI and NC, i.e., MCI-AFC#2 (Fig. 6f) and NC-AFC#2
(Fig. 6h) exhibit significant differences from each other.
Therefore, the four AFCs can be categorized into two pairs,
one common pair composed of MCI-AFC#1 and NC-AFC#1,
which indicates the common connectivity patterns within non-
disease-specific sub-networks, and another distinctive pair

composed of MCI-AFC#2 and NC-AFC#2, which reflects
the altered connectivity patterns within disease-specific sub-
networks. The neuroscientific meanings of these four AFCs
can be interpreted as follows. The common pair involves
connectivities in the default mode network (DMN) (Yuan
et al. 2013; Fox and Raichle 2007; Broyd et al. 2009), as
highlighted by the yellow circles in Fig. 6e and g, and many
strong inter-hemisphere connections in the occipital lobes as
well. To better reveal the increased and decreased connectivity
patterns within the distinctive pair, the functional connectivity
strengths of MCI-AFC#2 and NC-AFC#2 were computed.
The functional connectivity strength of each DICCCOL was
calculated by accumulatively summing all the functional con-
nectivities between it and all of the other DICCCOLs, as
shown in Fig. 7b. Although both MCI-AFC#2 and NC-
AFC#2 show strong connectivities in the prefrontal cortex,
increased and decreased connectivity patterns in MCI-
AFC#2, which possess increased and decreased function con-
nectivity strengths, were clearly observed as compared with
NC-AFC#2. MCI-AFC#2 exhibited hyper-connectivities in
the right prefrontal cortex, left posterior parietal cortex and
temporal lobes, while hypo-connectivities were exhibited in
the dorsal parietal lobes and primary visual cortex, as
highlighted by the yellow oval shapes in Fig. 7. The distinc-
tive pair could be potentially considered as neuroimaging
biomarkers for MCI in the future, and could be viewed as
“atomic connectomics signatures”, which is one of the major
contributions of this work.

Classification analysis

Based on the methods in the section of “functional connectome
construction and vectorization” and results in the section of
“AFC learning on the fMRI data of individualMCI/NCgroups”,
a FCV,V, was constructed for each subject and two sets of bases

Fig. 5 The CCCs of the FCV
matrix of the pooled MCI and NC
group. The CCC falls most
steeply at r=2. Thus, the rank r is
estimated as 2
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(i.e., AFCs) were learned from the MCI and NC groups,
denoted asWMCI andWNC. From a mathematical perspective,
the two sets of bases can span two spaces, each of which can
be viewed as a class (MCI or NC). As discussed in section of
“functional connectome construction and vectorization”, the
projections of Vonto the two spaces, i.e., the approximations
ofV based on the two sets of bases, could be computed asV ′=
WTWV. Then, the approximation residual errors can be com-
puted based on Eq. (2), as follows:

R ¼ V−WTWV
		 		 ð8Þ

where ∥I∥ is a matrix norm. In this work, we used the ℓ 2

norm, and then R can be viewed as the sum of square errors
between the FCVand its approximation. Given the two sets of
bases, two approximation residual errors can be obtained for
each subject, one based onWMCI (RMCI) and another based on

WNC (RNC), as shown in Fig. 8. The approximation residual
error R evaluates howwell the set of bases can characterize the
FCV and could be used for classification purposes based on
the least square error criterion (Mirkin 1998). If RMCI is less
than RNC, meaning WMCI can better characterize the FCVof
the test subject, the subject is classified as a MCI patient. On
the contrary, if RNC is less than RMCI, the subject is classified
as a NC subject. In this work, it was observed that RMCI was
not equal to RNC for every subject.

In this work, there were only 22 MCI patients and 29 NC
subjects. To examine the robustness and reproducibility of the
classification results, the commonly used leave-one-out cross-
validation strategy was adopted to evaluate the sensitivity and
specificity of our learned AFCs. Finally, 100 % of MCI
patients and 94.1 % of NC subjects in Dataset 1 were suc-
cessfully classified, while 83.3 % of MCI patients 83.3 %
were successfully classified in Dataset 2.

Fig. 6 Visualization of connectivity patterns of the four AFCs and of
their projections on the WM/GM cortical surfaces in the top and lateral
views. Due to the different coefficients during D-PNMF, the values of
these matrices were very small. Thus, these matrices are scaled to the
range of 0 to 1. Matrices are color-coded according to the strength of

functional connectivity. DICCCOL ROIs are marked as green spheres on
the cortical surfaces, and the functional connectivities between ROIs are
shown as red edges connecting those spheres. The top 400 highest
functional connectivity pairs are selected for visualization. The yellow
circles in (e) and (g) highlight the ROIs involved in the DMN
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Studies on the effect of model order selection

To investigate the model sensitivity of the rank in D-PNMF, we
tested the model by using various ranks on the same datasets

used in section of “AFC learning on the fMRI data of individual
MCI/NC groups”. For each experiment, we performed AFC
learning via the D-PNMFmethod with different ranks. We then
compared the newly learned AFCs with the four AFCs de-
scribed in Fig. 6, which are considered as the basis patterns in
this experiment. By increasing the value of the rank r used in
the D-PNMF method and conducting the comparison between
the newly obtained AFCs and basis patterns, we observed that
the additional AFCs were first split from the distinctive AFCs
(i.e., MCI-AFC#2 and NC-AFC#2), and then from the com-
mon AFCs (i.e., MCI-AFC#1 and NC-AFC#1). More specifi-
cally, the common AFCs in NC (i.e., NC-AFC#1 in Fig. 6e)
was split into two AFCs when the rank was increased to 4,
while the common AFCs in MCI (i.e., MCI-AFC#1 in Fig. 6g)
began to split when the rank was increased as large as 8. This
suggested that the AFCs within non-disease-specific sub-
networks in MCI are more stable than the ones in NC.

Comparisons with dictionary learning and k-means methods

With the objective function, ‖X−WH‖p≤ε, where ∥I∥p is ℓ p

norm for p=1, 2 and∞, the approximationX≈WH can also be

Fig. 7 Visualization of the functional connectivity strengths of MCI-
AFC#2 and NC-AFC#2, as shown in (b). Those DICCCOLs with in-
creased functional connectivity strength in MCI-AFC#2 are selected and
visualized with the functional connectivity pattern of MCI-AFC#2, as
shown in (a). Those DICCCOLs with decreased functional connectivity

strength in MCI-AFC#2 are selected and visualized with the functional
connectivity pattern of NC-AFC#2 for better illustration, as shown in (c).
In the DICCCOL system, the ROIs are indexed left-to-right and bottom-
to-top in the top view

Fig. 8 The demonstration of the classification method based on the ap-
proximation residual error. The light blue area represents the MCI group
characterized byWMCI, while the light olive area represents the NC group
characterized byWNC. The yellow dotted lines indicate the approximation
residual error RMCI of V from its approximation VMCI reconstructed from
WMCI, while the green dotted lines indicate the approximation residual
error RNC of V from its approximation VNC reconstructed from WNC
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used for dictionary learning (DL) (Aharon et al. 2006; Wright
et al. 2009; Qiang and Baoxin 2010). Thus, we performed
dictionary learning on the same datasets for comparison pur-
poses. In this work, we applied an efficient implementation of
the K-SVD algorithm based on batch orthogonal matching
pursuit (OMP) (Aharon et al. 2006; Rubinstein et al. 2008;
Pati et al. 1993) to these FCV matrices, with the dictionary
size k of 2 for comparison purposes. Then, four sub-
dictionaries were learned, two from the MCI group and an-
other two from the NC group, as illustrated in Fig. 9. MCI-
D#1 (Fig. 9e) and NC-D#1 (Fig. 9g) were somewhat similar to
the commonAFCs described in Fig. 6. It should be mentioned
that there are negative entries in the connectivity matrix of the
learned sub-dictionaries. The reason is that, without non-
negative constraints, dictionary learning allows not only ad-
ditive, but also subtractive, combinations. It means that we
may learn non-zero entries in the sub-dictionaries, even if their
corresponding entries in the FCV matrix are zeroes. If the
corresponding entries in the FCV matrix are zeroes, it means

there are no co-variations between these corresponding ROIs,
so that the corresponding non-zero entries in the sub-
dictionaries are meaningless, which goes against our goals in
this work.

Apart from dictionary learning, we also compared the D-
PNMF approaches with traditional clustering algorithm. Take
the wildly used k-means method as an example. For compar-
ison purpose, the cluster number was set as 2 as well. After
clustering with the k-means algorithm, those functional
connectomes belonging to the same clusters were averaged.
The averaged functional connectomes can be visualized in
Fig. 10. Although the connectivity patterns (Fig. 10a–d) of
these averaged functional connectomes were remarkably dif-
ferent from the ones of the common AFCs (Fig. 6a and c)
described in Fig. 6, their projections on the cortical surfaces
share many common connections with the commonAFCs and
could be approximately characterized by the common AFCs.
Those four averaged functional connectomes are somehow
similar to each other. More specifically, MCI-FC#1 (Fig. 10e)

Fig. 9 Visualization of connectivity matrices of the four sub-dictionaries
learned via the K-SVD algorithm based on batch OMP, and their projec-
tions on the cortical surfaces in the top and lateral views. Due to the

different coefficients of the four matrices during the K-SVD algorithm,
the values of these matrices were also very small. Thus, these matrices are
scaled to the range of 0 to 1
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and MCI-FC#2 (Fig. 10f) share 329 and 168 common con-
nections with MCI-AFC#1 (Fig. 6e) respectively, and NC-
FC#1 (Fig. 10g) and NC-FC#2 (Fig. 10h) share 338 and 127
common connections with NC-AFC#1 (Fig. 6g) respectively.
The experimental results suggest that our D-PNMF ap-
proaches can reveal more meaningful phenomena that can
be revealed by traditional clustering methods.

Discussion and conclusion

Based on the consistent DTI-derived DICCCOL (Zhu et al.
2013) system, we constructed fine-granularity functional
connectomes from the fMRI data of MCI and NC groups,
and then achieved four AFCs by applying the D-PNMF
approaches to the MCI and NC groups separately. By
connectomics-level comparison, it was found that the four
AFCs can be categorized into two pairs according to the

similarity among them, one common pair indicating the com-
mon connectivity patterns within non-disease-specific sub-
networks in MCI and NC, and another distinctive pair impli-
cating the altered connectivity patterns within disease-specific
sub-networks in MCI, which can be viewed as “atomic
connectomics signatures”. By further comparison based on
the functional connectivity strengths of the distinctive pair,
clearly increased and decreased connectivity patterns within
disease-specific sub-networks were observed (Fig. 7). In ad-
dition, the four AFCs also had high classification accuracy
including both sensitivity and specificity. Comparison studies
show that the D-PNMF approaches can learn well part-based
functional connectivity patterns in sub-networks, as compared
with the K-SVD algorithm, which is another variant of matrix
factorization but without non-negative constraints, and reveal
more meaningful phenomena, as compared with the k-means
algorithm.

Notably,we imposed the non-negative constraints on func-
tional connectomes, i.e., we used the absolute values of the

Fig. 10 Visualization of connectivity matrices derived by the k-means
method (top panel) and of their projections on the WM/GM cortical
surfaces (bottom panel). Although the functional connectivity patterns

in top panel are different, their projections on the cortical surfaces share
many common connections
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Pearson correlations to evaluate the functional connectivities
in connectomes. Actually, the positive Pearson correlations
between fMRI BOLD signals measure the synchronous co-
variations between ROIs, while the negative ones measure the
asynchronous co-variations between ROIs. In the
connectomics-level analysis of functional connectome on the
cortical surfaces, we aim to analyze both synchronous and
asynchronous co-variations between ROIs simultaneously.
On the other hand, it is feasible to drop the negative sign
according to information theoretical measurements. Another
potential limitation is that the learned AFCs cannot be directly
compared, due to the different coefficients associated with the
AFCs during matrix factorization. In this study, the functional
connectomes were compared at the connectomics level, i.e.,
the comparisons between the AFCs are based on their con-
nections (edges) on the cortical surfaces. We experimentally
chose the top 400 highest connectivity pairs in the AFCs to be
visualized on the cortical surfaces for connectomics-level
analysis and comparison.

Here, we employed the DICCCOLs as network nodes for
functional connectome construction. It should be mentioned
that the DICCCOL ROIs were defined as 3D grid vertices
within the boundary box of the WM cortical surface, and was
visualized on the WM/GM cortical surface. The WM/GM
cortical surface is reconstructed based on the brain tissue
map derived from DTI data using in-house software (Liu
et al. 2004). Although it is more preferable that the
DICCCOLs are placed on the “deep” gray matter, such as
on the central cortical surface, given the 2 mm isotropic DTI
data, it is hard to reconstruct the central cortical surface. Even
though it is feasible to reconstruct the central cortical surface
from structural MRI data, the mapping of such central cortical
surface from MRI data to DTI data will be substantially
distorted by the intrinsic geometric distortions in DTI data
acquisition. Therefore, at this stage with current DTI data
acquisition methods, we placed the landmarks on the inner
GW/WM cortical surface, instead of the central cortical sur-
face. Then a GM tissue map was used to mask those GM
voxels such that only GM fMRI signals were extracted within
the neighborhood of the DICCCOL landmarks.

Another potential limitation of this work is that the current
358 DICCCOLs are not the whole-cortex parcellation, but are
sampled consistent landmarks (i.e. ROIs). Specifically, only a
portion (2.5 %) of the total GM voxels are covered by the
DICCCOL landmarks and used in the connectivity mapping.
With our recently achieved DICCCOL-based whole-cortex
parcellation, many more gray matter voxels could be included
into the connectivity mapping, thus significantly alleviated the
abovementioned problem. Our recent ongoing studies have
also shown that the fMRI BOLD signals sampled by
DICCCOL landmarks are quite representative of the whole-
cortex signals in terms of the inference of concurrent brain
network activities. Due to the scope of this paper, those results

will be reported in our future papers. In resting state, the
spontaneous BOLD signals fluctuate in a low frequency,
mainly between 0.01 Hz and 0.1 Hz (Fransson 2005; Fox
and Raichle 2007). This is also the typical band that resting
state networks are of interest. Thus, we performed band pass
filtering (0.01 Hz~0.1 Hz) on the fMRI data.

In this work, the demographic information, such as age,
education and cognitive performance, of the MCI group and
the NC group were different in a single dataset and cross the
two datasets. For example,MCI patients performed better than
NC for MMSE in the dataset 1, while the MCI group is older
than the NC group in the dataset 2. However, recall that our
work is feasible to fuse and combine different datasets from
different labs. These differences could somehow be neutral-
ized by combining the two datasets. Moreover, we could
introduce more datasets to deal with these potential issues in
the future.

Notably, previous studies (Wee et al. 2012; Zhu et al. 2014)
attempted to identify MCI patients from NC subjects and
already achieved a relative high classification accuracy. Wee
et al. (2012) identified about 70 % MCI subjects and 70.59 %
NC subjects using connectivity networks constructed from the
fMRI data in the dataset 1. Zhu et al. (2014) adopted a two-
stage supervised feature selection procedure and achieved
significantly high classification accuracy (more than 95 %).
However, the fine-granularity connectivity networks have not
been explored and visualized yet in those previous studies.
Besides, many features were discarded during feature selec-
tion in (Zhu et al. 2014), which may be useful for analysis.
Along with the high classification accuracy (more than 83 %),
the fine-granularity connectivity networks with high differen-
tiation power were also explored and visualized in this work.
Importantly, all the features, not only the disease-related but
also the non-disease-related, were preserved.

In this work, we experimentally adopted the Pearson cor-
relation to estimate functional connectivities. We plan to in-
vestigate and compare other metrics such as the partial corre-
lation, mutual information, and wavelet transform coherence
(WTC) for the datasets in this paper in the future. We would
like to point out that in our prior study (Zhang et al. 2013),
Pearson correlation and partial correlation have comparable
performances in classification applications. Furthermore, the
work presented in this paper can also be further enhanced with
a larger rank used in D-PNMF. The AFC learning was per-
formed with a low rank of 2. And only two AFCs were
obtained from each group. In general, it is still far from a full
understanding of connectomics signatures in MCI in a finer
granularity scale. In the future, we will focus on discovery of
more connectomics signatures and assessment of meaningful
connectivity patterns within more brain sub-networks. Also,
more in-depth analyses of the neuroscientific meanings of
these altered connectivity patterns should be performed by
considering clinical and behavior datasets in the future. In
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addition, the same computational framework can be possibly
applied in many other psychiatric disorders to reveal the
potentially dysfunctions of brain sub-networks.
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