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Task-based fMRI activation mapping has been widely used in clinical neuroscience in order to assess
different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) affected
brains and healthy controls. In this paper, we propose a novel, alternative approach of group-wise sparse
representation of the fMRI data of multiple groups of subjects (healthy control, exposed non-dysmorphic
PAE and exposed dysmorphic PAE) and assess the systematic functional activity differences among these
three populations. Specifically, a common time series signal dictionary is learned from the aggregated

Keywords: fMRI signals of all three groups of subjects, and then the weight coefficient matrices (named statistical
-éaSk me coefficient map (SCM)) associated with each common dictionary were statistically assessed for each
roup-wise

group separately. Through inter-group comparisons based on the correspondence established by the
common dictionary, our experimental results have demonstrated that the group-wise sparse coding
strategy and the SCM can effectively reveal a collection of brain networks/regions that were affected by

Sparse coding
Prenatal alcohol exposure

different levels of severity of PAE.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Task-based fMRI has been widely used to identify brain regions
that are functionally involved in specific task performance, and has
significantly advanced our understanding of functional localiza-
tions within the brain (Friston et al., 1994; Heeger and Ress, 2002;
Matthews and Jezzard, 2004; Logothetis, 2008). In the functional
neuroimaging community, there have been a variety of model-
based or data-driven approaches for fMRI time series analysis and/
or activation detection, for instances, correlation analysis (Ban-
dettini et al., 1993), general linear model (GLM) (Friston et al.,
1994; Worsley, 1997), statistic testing (Ardekani and Kanno, 1998),
principal component analysis (PCA) (Andersen et al., 1999), Mar-
kov random field (MRF) models (Descombes et al., 1998), mixture
models (Hartvig and Jensen, 2000), independent component
analysis (ICA) (McKeown et al., 1998), clustering analysis (Baum-
gartner et al,, 1997), wavelet algorithms (Bullmore et al., 2003;
Shimizu et al., 2004), autoregressive spatial models (Woolrich
et al., 2004a), Bayesian approaches (Huaien and Puthusserypady,
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2007; Bowman et al., 2008), and empirical mean curve decom-
position (Deng et al., 2013). Among all of these methods, GLM is
one of the most widely used methods (Friston et al., 1994; Wors-
ley, 1997) due to its effectiveness, simplicity and robustness. In
particular, several popular fMRI data analysis software packages
such as the FSL FEAT (http://www.fmrib.ox.ac.uk/fsl/feat5/index.
html), SPM (http://www.fil.ion.ucl.ac.uk/spm/) and AFNI (http://
afni.nimh.nih.gov/afni/) have employed the GLM method (Friston
et al., 1994; Worsley, 1997).

In addition to the abovementioned voxel-wise methods, in
order to deal with the remarkable individual variability and dif-
ferent sources of noises (e.g., Thirion et al., 2007; Derrfuss and
Mar, 2009; Laird et al., 2009; Hamilton, 2009; Costafreda, 2009;
Tahmasebi, 2010), group-wise task fMRI activation detection
methods have been developed, such as the two-level group-wise
GLM method (Beckmann et al., 2003), Bayesian inference (Wool-
rich et al., 2004b), multi-level analysis (Thirion et al., 2007), group
ICA analysis (Calhoun et al., 2009), FENICA (Schopf et al.,2011),
group Markov Random Field (MRF) methods (Ng et al., 2010), and
our recently developed DICCCOL-based group-wise activation de-
tection (Lv et al., 2014a). For instance, the FSL FEAT/FLAME toolkits
(Beckmann et al., 2003; Smith et al., 2004) incorporated a two-
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level group-wise GLM analysis procedure that warps the in-
dividual activation significance maps to the same template space
via image registration methods (e.g., FSL FLIRT), and then infers
the group-wise significantly activated regions from the pooled
activation maps. The major advantages of this two-level GLM
method include the facilitation of valid group analyses and in-
ference, good flexibility and generality, and easy and meaningful
interpretation of results (Beckmann et al., 2003; Smith et al,
2004). In our recently developed dense individual and common
connectivity-based cortical landmarks (DICCCOL)-based group-
wise activation detection (Lv et al., 2014a), the first-level GLM
analysis was first performed on the fMRI signal of each corre-
sponding DICCCOL landmark in individual brain’s own space, and
then the estimated effect sizes of the same landmark from a group
of subjects are statistically assessed with the mixed-effect model
at the group level. Finally, the consistently activated DICCCOL
landmarks are determined and declared in a group-wise fashion in
response to external block-based stimuli. The advantage of this
method is that these statistical inferences based on the in-
trinsically-established DICCCOL correspondences among a group
of subjects can be more reliable and robust to the variability in
individual activation magnitudes and the evoked brain networks.

Although these abovementioned methods leveraged the sta-
tistical power from multiple brains in order to gain the robustness
to noises and the less sensitivity to individual variability, chal-
lenges still exist. First, although the statistical activation maps can
be estimated group-wisely in spite of the variability of individual
anatomy with image registration methods, the consistency and
diversity of dynamic temporal responses evoked by task perfor-
mance cannot be systematically assessed group-wisely. Second, it
has been difficult to model multiple concurrent brain responses
from different spatially-overlapping brain networks. Specifically,
from a human neuroscience perspective, it has been widely re-
ported and argued that a variety of cortical regions and networks
exhibit strong functional diversity (Duncan, 2010; Gazzaugia,
2004; Pessoa, 2012), that is, a cortical region could participate in
multiple functional domains/processes and a functional network
might recruit various heterogeneous neuroanatomic areas (Gaz-
zaugia, 2004; Pessoa, 2012). Therefore, it is possible that hetero-
geneous regions and diverse activities participating in a task per-
formance could be overlooked by brain activity modeling meth-
ods. As a consequence, it is challenging for model-driven task fMRI
data analysis methods to reconstruct concurrent functional net-
works and assess systematic activity differences across
populations.

In recognition of the above challenges, researchers, including
ourselves, have decomposed fMRI signals into linear combinations
of multiple components based on data-driven sparse representa-
tion of whole-brain fMRI signals (Lee et al.,, 2011; Lv et al., 2013,
2014b, 2015; Varoquaux et al., 2011). The basic idea of this com-
putational methodology is to aggregate all of dozens (or hundreds)
of thousands of fMRI signals within the whole brain of one subject
into a big data matrix, which is subsequently factorized into an
over-complete dictionary basis matrix and a reference weight
matrix via dictionary learning and sparse coding algorithms
(Mairal et al., 2010). Then, the time series of each over-complete
basis dictionary represents the functional activities of a brain
network and its corresponding reference weight vector stands for
the spatial map of this brain network (Lv et al., 2013, 2014b, 2015).
An important characteristic of this framework is that the decom-
posed reference weight matrix naturally reveals the spatial over-
lap/interaction patterns among reconstructed brain networks (Lv
et al., 2014b). Thus this novel data-driven strategy naturally ac-
counts for that a brain region might be involved in multiple
functional processes (Duncan, 2010; Gazzaugia, 2004; Pessoa,
2012) and its fMRI signal is composed of various components (Lee

et al., 2011; Lv et al.,, 2013, 2014b, 2015; Varoquaux et al., 2011).

However, an unsolved problem in previous methods of sparse
representation of fMRI signals (Lee et al., 2011; Lv et al., 2013,
2014b; Varoquaux et al., 2011) is how to establish the correspon-
dence of different dictionary components across individuals and
populations. Specifically, works in (Lee et al., 2011; Lv et al., 2014b,
2015) performed dictionary learning and sparse coding on whole
brain fMRI signals and interesting functional networks of mean-
ingful temporal and spatial patterns can be detected among all the
learned components. But it is difficult to perform inter-subject
comparison or statistical analysis mainly because the data-driven
dictionary learning and sparse coding method applied on in-
dividuals learned brain networks by taking account of individual
specificity adaptively (Lee et al., 2011; Lv et al., 2014b), and cor-
respondence cannot be established across subjects. A common
dictionary is learned from the task fMRI signals of a group of
subjects in Lv et al. (2013), so that group-wise analysis could be
established based on the correspondence of the common dic-
tionary basis. However, inter-group comparison is usually required
for clinical research such as assessing the differences of functional
brain activities between brain conditions such as prenatal alcohol
exposure (PAE) (Coles et al., 1991; Santhanam et al. 2009) and
healthy controls. So far, establishing correspondence across groups
as well as across subjects is an important problem that has not
been sufficiently investigated before. Another important issue is
the variability in fMRI analysis and group-wise methods. In other
words, there is remarkable variability of activation magnitudes for
the corresponding brain regions across individual subjects and
imaging sessions (Smith et al., 2005; Thirion et al., 2007), due to
physiological noises, head/body motion, resting-state activity and
other factors. This variability imposes additional challenges to the
robust and reliable inference of group-wise consistent functional
networks.

In responses to the above challenges, in this paper, we propose
a novel computational framework of group-wise sparse re-
presentation of the fMRI datasets of multiple groups of subjects
(healthy control, exposed non-dysmorphic PAE and exposed dys-
morphic PAE) (Santhanam et al., 2009) and comprehensively as-
sess the systematic functional activity differences among these
three populations. Specifically, fMRI signals from all of the three
groups of subjects are aggregated as training samples to learn a
common time series signal dictionary, which would establish
component correspondence across subjects and groups. Before the
extraction of fMRI signals, each subject has been registered into
the MNI atlas space, in which the voxel correspondence is roughly
established across all subjects and groups based on a unified brain
mask which covers common region of all brains. After sparse
coding using the online dictionary method (Mairal et al., 2010),
statistical assessment is performed on the weight coefficient ma-
trices, named statistical coefficient map (SCM) here, associated
with each common dictionary for each group separately. By
comparing the inter-group differences based on the correspon-
dence established by the common dictionary, our experimental
results demonstrated that the group-wise sparse coding strategy
can effectively elucidate different levels of effect of PAE in a col-
lection of brain networks/regions.

2. Materials and methods
2.1. Overview

Our computational pipeline is summarized in Fig. 1. First,
subjects from 3 groups (Gc¢: healthy control, Gy: non-dysmorphic

PAE, Gp: dysmorphic PAE) (Santhanam et al., 2009) are spatially
normalized into the standard MNI space via linear image
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Fig. 1. The computational framework of group-wise sparse representation of fMRI signals from three different groups of subjects. (a) fMRI signals from one single subject are
extracted as a matrix Sx. A unified mask in the MNI space guides the signal extraction. (b) Signal matrices from three groups of subjects are aggregated into one big signal
matrix S. G¢: healthy control, Gy: non-dysmorphic PAE, Gp: dysmorphic PAE. Here t indexes the fMRI time series points. (c) The learned signal dictionary matrix D and the
corresponding coefficient matrix A are generated by applying the dictionary learning and sparse coding on the signal matrix. Note that the A matrix preserves the orga-
nization of subjects and groups in S. (d) Activity patterns can be selected from the D matrix, and coefficient matrix A can be statistically interpreted as group-wise spatial

patterns. Afterwards, inter-group comparison is carried out.

registration method FSL FLIRT (Jenkinson and Smith, 2001). Then,
by using a standardized group common brain mask, whole-brain
fMRI signals of each subject are extracted and aggregated into a 2D
signal matrix SyeR™™, as shown in Fig. 1a. Then all extracted
signal matrices from 3 groups are pooled and arranged into a big
matrix SER™" as shown in Fig. 1b. Note that S is composed of three
groups of subjects here:

S =[Seer Soms Sen |
Sen = [Snt SN2, .. Swi],

SG(‘ = [Sc1, Sc2, - Sck]
Sep = [Sp1, Sp2, .- Spi] D

Our computational framework then employs the online dic-
tionary learning and sparse coding method (Mairal et al., 2010),
which factorizes the signal matrix S into a time series signal dic-
tionary matrix D and the coefficient matrix A (Fig. 1c). Note that D
is learned to be commonly shared across three groups by assuming
that the same task would stimulate similar or comparable func-
tional responses in these individual brains, and the A matrix pre-
serves the spatial voxel organization and group correspondence of
S (Fig. 1c), ie., A= [AGC,AGN,AGD]e[RmX". Through temporal or
frequency analysis of matrix D, meaningful task-evoked responses
can be interpreted. In particular, based on the component corre-
spondence established by the common D and voxel correspon-
dence built up by the standard common mask, statistical group-
wise consistent coefficient mapping can be performed for each
group separately. Notably, the cross-group correspondence estab-
lished by the common D also provides us a foundation for later
inter-group comparison.

2.2. Data acquisition and pre-processing

In an arithmetic task-based fMRI experiment under IRB ap-
proval, 44 participants were scanned in 3T Siemens Trio scanner
(Santhanam et al., 2009) at the Biomedical Imaging Technology
Center of Emory University. They were all young adults (age 20-
26) who were from 3 groups including unexposed healthy controls
(16 subjects), exposure with the absence of dysmorphic signs (14
subjects) and exposure with presence of dysmorphic signs (14
subjects) (Santhanam et al.,, 2009). The task was presented in
blocks, and the total scan included 102 time points (the first

2 points are ignored). The 10 task blocks alternated between a
subtraction arithmetic task and a letter-matching control task.
Single-shot T2*-weighted EPI images were acquired. The scanning
parameters are TR/TE/FA/FOV of 3000 ms/32 ms/90°/22 cm, re-
solution of 3.44 mm x 344 mmx3 mm, and dimension of
64 x 64 x 34. The preprocessing pipeline included motion correc-
tion, slice time correction, spatial smoothing (FWHM =5 mm), and
global drift removal. The preprocessed volumes were first regis-
tered with the MNI template using FSL FLIRT (Jenkinson and
Smith, 2001). After registration, binary masks indicating voxels
with non-zero fMRI signals were generated for all subjects. The
group-wise common mask was generated by conducting all single
brain masks together and this common mask is used to guide the
extraction of whole-brain signals. In this way, each subject has the
same number of voxels and the voxels possess correspondence
across subjects. As our work mainly focused on the fluctuation
shape of fMRI signals, we normalized each extracted signal to have
zero mean and standard deviation of 1.

2.3. Dictionary learning and sparse representation

In the framework of dictionary learning and sparse coding, by
considering a rich signal set S = [s3, Sy, ...Sp]eR™", a meaningful and
over-complete dictionary DeR™*™ (m > t, m « n) (Mairal et al., 2010)
is required to be learned for sparse representation of S. In our
approach, S is fMRI signal set from the whole brains of three
groups of subjects. We have two aims for representing S into a
dictionary matrix D and coefficient matrix A (Eq. (2)) using the
dictionary learning and sparse decoding method. (1) The primary
aim is to minimize the representation error and (2) it is supposed
to learn an efficient dictionary and concentrate the representation
relevance, i.e., each signal can be represented by the most relevant
dictionary atoms. Thus, the empirical cost function is summarized
in Eq. (3) by considering the average loss of representation of n
signals.

S=DA+¢ )
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Here the loss function of each signal sample is defined in Eq.
(4). In order to achieve our two aims and trade-off the re-
presentation error and concentration, the £ regularization is em-
ployed.
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In order to make the coefficients in each row and column of A
comparable, firstly, each s; in S is normalized to have zero mean
and standard deviation of 1. Second, the columns di, d, ..., dm are
constrained with Eq. (5). This is implemented with an iterative
normalization of dictionary atoms during learning. Therefore, the
representation residual of each signal is subject to normal dis-
tribution, i.e. & ~N (0, ¢2).

ca {De[RfX'" s.t. Vj=1,..m, d}d,-g1} 5)

min LS — DAl + AllAll 1
DeC,aeRM*N 2

©

In summary, the whole procedure can be rewritten as a matrix
factorization problem in Eq. (6), and the online dictionary learning
method in (Mairal et al., 2010) provides an effective strategy to
learn the dictionary and representation alternatively and opti-
mally. Here, we employ the same assumption as previous studies
(Li et al., 2009, 2012; Lee et al., 2011; Oikonomou et al., 2012;
Abolghasemi et al., 2013) that the components of each voxel’s fMRI
signal are sparse and the neural integration of those components
is linear.

Coefficient

T-test result:
H(Ag.)

2.4. Group-wise statistical coefficient maps

As the spatial organization of the signal samples are predefined
for each subject in Sy and the dictionary learning and sparse
coding procedure will keep this organization, the coefficient ma-
trix s, preserves the spatial information. That is, if we map the
coefficient matrix back to 3D brain mask, there will be m coeffi-
cient maps for each subject. Group-wise assessment of these
coefficient maps requires two sets of correspondence. The first one
is component correspondence, which is established by the learned
common dictionary in our work. The second one is the corre-
spondence of voxels, which is roughly achieved by spatial nor-
malization with the image registration method and the unified
brain mask. In addition, the normalization of the original fMRI
signals and normalization of dictionary basis result in the normally
distributed representation errors, i.e., & ~N (0, ¢2). As a result, each
single coefficient is comparable across subjects, and the collection
of each coefficient from a group of subjects can also be regarded as
normal distribution. Thus, T-test is carried out to assess the non-
zero significance of each corresponding coefficient. This is one of
the methodological novelties of this work in comparison with
previous studies of sparse representation of fMRI signals (Lee et al.,
2011; Lv et al., 2013; Lv et al., 2014b; Varoquaux et al., 2011).

Specifically, as illustrated in Fig. 2a, the A matrix can be de-
composed into 3 matrices that represent three groups. As further
shown in Fig. 2b, each group is composed of sub-matrices of
subjects, e.g., Agc is composed of Ac1, Aca..., Ack. As the subjects are
normalized in the MNI template space and the common mask is
thus employed to extract fMRI signals. So the Ay (i, j) in each sub-
matrix stores the reference coefficient of the jth voxel to the ith
component in the dictionary (Fig. 2b). For each group, we hy-
pothesize that each coefficient Ag,(i, j) is group-wisely null, and
the T-test (with T defined as Eq. (7)) is carried out to test

Matrix

(

Comparison

Fig. 2. (a) A matrix is composed of three groups of subjects. (b) Correspondence of elements in Agc and group-wise null hypothesis T-test for each element. (c) The group-
wise T-test results of acceptance of null (black dots) or rejection (white dots) (P < 0.05). (d) Each row in (c), which represents a network component, is mapped back to the
brain volume color-coded with z-scores. (e) and (f) are z-score maps derived from Gy and Gp with the same method of (b-d). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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acceptance or rejection of the null hypothesis for each element
Acx(, j). Note that x indicates the group category, n denotes the
subject ID in each group. Here the threshold of P < 0.05 is used to
reject null hypothesis. The derived T-value can be easily trans-
formed to the standard z-score (Beckmann et al., 2003).
.. AGx(i' ])
Th)) = e
Var (Acy(i, j))In
= {An@i, j): n
=1, 2,...xk}.
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Since the dictionary learning and sparse representation con-
strain the sparsity of A matrix, the T-test result of Ag, is also a
sparse matrix, as shown in Fig. 2c. Here, each row in the matrix of
Fig. 2c represents the statistically non-zero contribution in the
whole brain of each dictionary atom. And each row can be mapped
back to brain volume, which stands for the spatial distribution of
the dictionary atom. Notably, we call each dictionary atom and the
correspondence distribution a network component in this work. In
order to illustrate the significance of the contribution of each
network, we color-code the z-scores of each component, which is
named the statistical coefficient map (SCM) here, as illustrated in
Fig. 2d. The T-test is carried out separately for A¢cc, Acy and Acp,
but the derived z-scores maps (such as Fig. 2d-f), which possess
correspondence of the same dictionary atom, can be compared
across groups. Seven examples of voxels, whose z-scores are 0.5, 1,
1.5, 2, 2.5, 3 and 3.5 in one of the statistical coefficient map of
control group, are shown in Fig. 3. For each example voxel, the
black stars represent the coefficient value in 16 subjects, and the
red block indicates the mean value of black stars divided by their
standard deviation respectively. We can see that, the z-score in-
creases with the increasing of mean/std. So, the derived z-score is
an effective statistical measurement of the significance of com-
ponent contribution.

Conceptually, the SCM has several key differences in compar-
ison with the widely used statistical parametric mapping (SPM)
(Beckmann et al., 2003) associated with the GLM method. First,
parameters estimated from the GLM model are model driven, and
regressors are pre-defined with a limited number of task para-
digms. While the SCM is based on a set of group-wisely learned
and optimized signal basis, and thus the abundant response

Coefficient
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Fig. 3. The coefficient distribution of 7 example voxels in 16 subjects from the
control group. The z-scores of the five voxels are 0.5, 1.0, 1.5..., 3.5. For each ex-
ample voxel, the black stars are coefficients from 16 subjects, and the red block
indicates the mean value of the black stars divided by the standard deviation of the
black stars. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

patterns learned by data-driven strategy from fMRI data tend to be
more effective to assess the rich information encoded in the fMRI
data. Second, the SPM maps are clusters of voxels whose signal are
similar to task design, the intensity of which is the significance of
similarity. In comparison, the SCM maps are decomposed over-
lapped brain networks, the intensity of which are the significance
of contribution of the network. Third, the commonly learned dic-
tionary can effectively leverage the commonness and discrimina-
tion across subjects and groups, which makes the SCM robust to
noise and comparable across subjects and groups. Fourth, the
sparsity constraint regularizes the regressor selection while
learning coefficient, i.e., if the regressor does not significantly
contribute, the coefficient will be penalized as 0. Consequently, the
results from group non-zero T-test will be stricter. As a result, SCM
maps might be more reliable in measuring the significance of
contribution than SPM.

3. Experimental results

The framework has been applied on the data set of three
groups of PAE related subjects: G¢, Gy and Gp (Santhanam et al.,
2009). The severity of PAE is in the order of Gc <Gy < Gp (San-
thanam et al., 2009). The common dictionary is learned for all
three groups and the group-wise statistics in Section 2.4 was ap-
plied to each group separately. We first detected arithmetic-re-
lated networks in G¢ as reported in Section 3.1 and diverse dy-
namic networks in Section 3.2. Further cross-group comparisons
in Section 3.3 showed that group differences can be observed in
these networks.

3.1. Inferred arithmetic related networks

As mentioned before, with the dictionary learning and sparse
coding method, a variety of networks are learned with temporal
and spatial aspects of representation, namely, the time series
patterns in D and the spatial maps in A. In order to interpret
meaningful networks, we first compare time series patterns in D
with the stimulus design, and in this way task-correlated networks
and anti-task networks can be identified. On the other hand, based
on the statistical coefficient maps (SCM) derived from Section 2.4
and by using the experimentally determined threshold Z > 1.65,
we determined voxels that have significant reference to each
dictionary atom. Note that in standard z-distribution, P (Z > 1.65)=
0.05. We select Z > 1.65 as the threshold, which is relatively lower
than traditional activation analysis. That’s because our coefficient
matrix is sparse, and if one network is not significantly consistent
the coefficient is punished to be zero, which is a strict false posi-
tive control. Thus, with a relative low but meaningful Z threshold,
we could possibly detect accurate network spatial maps. The
spatial distribution of task correlated networks and anti-task
networks are then explored in this section.

First, the task design curve as shown in the top panel of Fig. 4b
is convolved with the hemodynamic response function (HRF), for
calculating Pearson’s correlation with all of the learned dictionary
atoms. With the threshold (> 0.5) and ( < —0.5) applied to the
correlations, 6 dominant task-correlated networks and 6 dominant
anti-task networks with relatively large voxel numbers were
identified, respectively, from all of the learned networks. As shown
in Table 1, the peak correlation and anti-correlation could be as
high as 0.813 and —0.754. In comparison, the correlations of ori-
ginal fMRI time series with the task stimulus curve on the volu-
metric voxels that exhibit the highest and lowest z-scores are
shown in Table 2. It is evident that the dictionary learning method
is quite sensitive in detecting task correlated and anti-task com-
ponents even in the group level of large data space. For further
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Fig. 4. (a) The z-score map (Z > 1.65) of the 6 networks exhibiting high correlation with task design (MNI space). (b) The corresponding signal patterns in D of the 6 network
components. (c) Group-wise union of the highly task-related networks. (d) Group-wise activation detected by the GLM method (Z > 3.0, cluster-correction).

exploration, we visualized the 6 dominant component networks
from both task correlated networks and anti-task networks, whose
spatial z-score maps ( > 1.65) and time series patterns are shown
in Figs. 4a, b and 5a, b respectively.

In comparison with the group-wise activation detection from
the GLM method (Fig. 4d), the networks detected by our approach
exhibit multiple task-activated patterns. Notably, the shape dif-
ferences among these temporal patterns separated the generally
defined activations by GLM into sub-networks. For instance, the
sub-networks in Fig. 4a serve as parts of the activation patterns in
Fig. 4d. If we simply aggregated all the 6 task correlated maps (by a
union operation) and name it as the “Union” of task correlated
networks, as shown in Fig. 4c, the spatial pattern (Fig. 4c) is quite
similar as the activation pattern in Fig. 4d. In order to quantita-
tively measure how much our networks cover the activation map,

Table 1

we calculated the true positive rate (TPR) or sensitivity as

SMnT
T )

where SM is the spatial map of our inferred networks/sub-net-
works and T is the spatial map of the group-wise activation pat-
tern in Fig. 4d, which is treated as a template here. The TPR is
measured for each sub-network in Table 3 as well as the “Union”
of networks. We can observe that these networks cover the
activation map by GLM differently, and the most dominant
component #73 cover as high as 0.745 of the GLM-based activa-
tion. It is interesting that their union of our inferred sub-networks
cover about 0.926 of the GLM-based activation. Similar qualitative
and quantitative comparisons are also performed for the anti-task
networks as shown in Fig. 5 and Table 3. The union of the anti-task

TPR =

Pearson’s correlation and anti-correlation between time series of dominant networks and HRF convolved task design.

Task Correlated Comp. ID # 73 149
Correlation 0.813 0.567

Anti-Task Comp. ID # 82 94
Correlation -0.754 —0.690

185 308 312 390 Avg.
0.627 0.610 0.585 0.793 0.666
274 326 331 354 Avg.
—0.579 —0.747 —0.626 —0.556 —0.659
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(a) The Pearson’s correlations of top activated voxels from 8 subjects. As shown in the third row, the voxels exhibit the highest z-score in each subject. (b) The Pearson’s anti-
correlations of top deactivated voxels from 8 subjects. The voxels exhibit the lowest z-score in each subject.

Subject 1 2 3 4 5 6 7 8 Avg.
(a)
Voxel (26,46,12) (32,22,2) (30,15,3) (45,35,23) (49,21,10) (41,34,24) (46,38,15) (48,20,9)
z-Score 6.80 6.87 6.59 9.06 7.08 6.26 10.82 7.96 7.68
Correlation 0.654 0.668 0.707 0.819 0.763 0.672 0.703 0.765 0.719
(b)
Voxel (30,55,10) (31,15,26) (33,44,11) (36,52,18) (43,31,19) (31,43,12) (31,27,32) (34,48,14)
z-Score —6.56 —7.37 —6.08 —7.42 —-9.03 —6.35 —7.73 —8.41 —7.37
Correlation —0.369 —0.669 —0.390 —0.695 —0.728 —0.647 —0.697 —0.436 —0.579
- == Arithmetic
1.65 3.0 == [ etter-matching

#82

Union

Group-GLM
Deactivation

Fig. 5. (a) The z-score map of the 6 networks (Z> 1.65) performing high anti-correlation with task design (MNI space). (b) The corresponding signal patterns in D of the
6 network components. (c) Group-wise union of the highly anti-task networks. (d) Group-wise de-activation detected by the GLM method (Z < — 3.0, cluster-correction).

Table 3

The true positive rate (TPR) of task correlated network components, anti-task
components and their union respectively in the group-wise activation and deac-

tivation maps.

networks exhibit 0.817 TPR of the GLM-based deactivation map in

Task CompID #73 #149
TPR 0.745 0.209

Anti-task ComplID #82 #94
TPR 0.376 0.068

#185
0.393

#274
0.133

#308
0.132

#326
0.214

#312
0.091

#331
0.049

#390
0.434

#354
0.632

Union
0.926

Union
0.817

Fig. 5d. On the other hand, it is essential to inspect if these
networks are highly overlapped, i.e., if these networks are spatially
independent. Note that, TPR does not apply anymore in this

situation, because it is uneven to treat any network as a template.
Thus, Jaccard similarity is employed to calculate the overlap rate
(OR) as defined in Eq. (9) to measure the overlap between task
correlated networks and anti-task networks respectively. In Eq.

(9), N; and N, are spatial maps of two networks. The overlap rate is

defined by the intersection of two networks divided by their

union.
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(a) The spatial overlap ratio (OR) among the 6 task correlated networks. (b) The
spatial overlap ratio (OR) among the 6 anti-task networks.

_Naan

OR =
Nqg U Np )

In the results shown in Table 4, as we can see that the overlap
between these task-correlated/anti-task networks are quite small,

OR #73 #149 #185 #308 #312 #390
e.g., the average overlap is 0.05 for task correlated networks and is
#73 1.000 0.032 0.161 0.030 0.088 0.107 0.036 for the anti-task networks. From these results, it is evident
#149 1.000 0.025 0.017 0.014 0.054 that the task-related and anti-task sub-networks inferred by our
#185 1.000 0.021 0.060 0.088 hod lativel ial ind d
#308 1.000 0.008 0023 metho | are re atively spatla_ indepen en.t. .
#312 1.000 0.018 Additionally, the anatomical distribution of the union of sub-
#390 1.000 networks (Figs. 4c and 5c) detected by our method is in agreement
(b) with the results in the previous work (Santhanam et al., 2009,
OR #82 #94 #274 #326 #331 #354 2011). Task correlated networks are quite consistent with the ac-
tivation detected in the previous study (Santhanam et al., 2009),
#82 1.000 0.037 0.086 0.071 0.083 0.092 including regions of bilateral parietal lobe, medial frontal gyrus,
#94 1.000 0.039 0.022 0.015 0.018 . . . LS
#274 1.000 0.030 0002 0026 and bilateral middle frontal gyrus, which are also shown in Fig. 4d.
#326 1.000 0.030 0.053 These regions have been shown to be related to arithmetic and
#331 1.000 0.009 working memory (Santhanam et al.,, 2009). Also, the anatomical
#354 1.000 distribution of the union of deactivation sub-networks by our
methods, including the MPFC and the PCC, is akin to the previous
report (Santhanam et al., 2011), as shown in Fig. 5d. In summary,
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Fig. 6. (a) Voxel number histogram of the 400 network components in the control group. Here, the highly task related networks in Fig. 4 are marked with red color and the
highly anti-task networks in Fig. 5 are marked with blue color. Six dominant networks with high voxel numbers are marked with black. (b) The z-score map of the
6 networks (Z > 1.65) marked with black color in (a). (c) The corresponding signal patterns in D of the 6 network components. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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our method is capable of detecting multiple meaningful task-re-
lated and anti-task sub-networks, the total of which are in
agreement with the GLM-based group-wise activation. However,
our method can provide much more details about the temporally
and spatially different sub-networks. The interpretation of neu-
roscientific meanings of such variety of sub-networks entails more
effort in the future.

3.2. Diverse dynamic networks

In addition to the sub-networks identified in Section 3.1, other
sub-networks that include dominant number of voxels are also
explored in this section. Through frequency analysis on these
networks, we observed diverse network dynamics other than
traditionally conceived activations and deactivations. Specifically,
by thresholding all of the statistical coefficient maps (SCMs) in the
control group using Z> 1.65, we count the remaining voxel
numbers in Fig. 6a. The task correlated networks and anti-task
networks are marked with red and blue respectively, from which
we can see that some of them include dominant numbers of voxels
while some of them do not. Apart from the red and blue marks,
there are also certain networks that contain dominant numbers of
voxels, e.g., # 27, #126 and #180. We picked up 6 most dominant
networks and visualized their spatial maps and temporal patterns
in Fig. 6b and c. In Fig. 6b, these networks are mainly located on
the visual cortex, part of the default mode network and subcortical
areas. The Pearson’s correlations with task design curve of these
networks are relatively low, as shown in Table 5. By inspecting
their time series patterns in Fig. 6c, it is interesting that the net-
work components of #27, #126, #180 and #256 exhibit high po-
sitive or negative impulses at the task change points. While #248
shows magnitude increase in letter-matching task and magnitude
decrease in arithmetic task. Also, #328 is similar to anti-correla-
tion pattern but it involves more uncertain fluctuations. The per-
iodical reactions of all these networks exhibit high relevance to the
task design curve, though they have quite diverse dynamics. This
might be the reason that they are overlooked by the GLM based
activation detection, and thus we call them diverse dynamic net-
works (DDN) in this paper.

To further explore the diverse dynamic networks (DDNs), we
applied the Fourier transform to the time series of the corre-
sponding dictionary network atoms, as shown in Fig. 7. For com-
parison, the power distributions of task correlated network #73
and anti-task network #82 are also shown in the top panels of
Fig. 7. Since TR=3 s and the period of a task cycle is 20 TRs, the
task frequency is 1/(20 x 3 s)=0.017 HZ. The power of task and
anti-task networks are also concentrated on the task frequency of
0.017 HZ, as expected. But the diverse dynamic networks exhibited
multiple frequencies. As shown in Fig. 7, the power of network
#27, #126, #180 and #256 are mostly concentrated at doubled
task frequencies (around 0.034 HZ) or four times of task frequency
(around 0.068 HZ). The network components #180 and #256 even
have peaks at six times of task frequency (around 0.100 HZ). The
networks components #248 and #328 are concentrated on the
task frequency, but low frequency energy at around 0.0085 HZ also
contributes to the signal pattern of #248 and there are other fre-
quencies in #328. These diverse dynamic networks provide evi-
dence that there are multiple frequency responses in the human
brain to tasks, and a certain brain region might exhibit multi-

Table 5
The Pearson’s correlations between the time series of diverse dynamic networks
(DDN) and HRF-convolved task design curve.

DDN Comp. ID #  #27 #126 #180  #248 #256  #328
Correlation 0.239 —-0.031 0170 -0.265 0.043 -0.411
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Fig. 7. The power distribution across frequencies of diverse dynamic networks in
Fig. 6¢ after applying Fourier transform.

frequency responses. Also, these multi-frequency responses can-
not be effectively detected by the traditional GLM-based method.
These responses might occur at the brain areas that are not di-
rectly responsible for arithmetic or working memory but are be-
lieved to contribute to information input and attention regular-
ization, such as the visual cortex, default model network or sub-
cortical areas. In summary, the detection and characterization of
these diverse dynamic networks demonstrated the advantage of
our dictionary learning and sparse coding based framework.

3.3. Effects of PAE

As reported in the literature (Santhanam et al., 2009, 2011), the
activation and deactivation regions tend to shrink with the in-
crement of severity of PAE effect. We repeated the GLM based
group-wise activation and deactivation detection with the FSL
toolbox (Beckmann et al., 2003), and similar results are achieved,
as shown in Fig. 8 and Table 6. In this session, we will explore if the
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Non-Dys
PAE
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D8LLBOB e

Group-wise Deactivation

Dysmorphic
PAE

Fig. 8. Comparison of activation maps (Z > 3.0) and deactivation maps (Z< —3.0)
from three groups of subjects by repeating GLM based group-wise activation and
de-activation.
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Table 6

Voxel numbers of group-wise activation regions and deactivation from GLM based
method in three groups by using different levels of threshold. The activation using
threshold Z > 3.0 and deactivation using threshold Z < —3.0 are visualized in Fig. 8.

Activation Control Non-dys PAE Dysmorphic PAE
Z>25 4906 3096 3057
Z>3.0 2630 1373 1276
Z>35 1103 461 437
Z>40 364 113 100
Deactivation Control Non-dys PAE Dysmorphic PAE
Z<-25 6163 5955 2484
Z<-30 3100 3098 787
Z< -35 1315 1165 148
Z<-40 487 241 18

size of statistical coefficient maps (SCM) will be affected by the
severity of PAE.

First, we compare the voxel number histograms of all statistical
coefficient maps from three groups of subjects including controls,
exposed non-dysmorphic PAE (Non-dys PAE) and exposed dys-
morphic PAE (Dysmorphic PAE) in Fig. 9a-c based on the corre-
spondence established by the common dictionary D. The same
threshold of Z > 1.65 is chosen for all networks from three groups.
Globally, the voxel number distribution is quite similar across
three groups, especially the marked dominant networks. Notably,
the decreasing trend of voxel number can be observed with in-
crement of severity of PAE, e.g., the task-correlated network #73
includes around 2300 voxels in the control group, but it only in-
cludes around 1500 voxels in the Non-dys PAE group and only
around 600 voxels in the Dysmorphic PAE group.

After sorting the voxel number of each corresponding network

Voxel num.

263

in three groups, it can be found that the size of most of the net-
works decreases with the increment of severity of PAE. We vi-
sualize the 6 most dominant networks in Fig. 10. Histogram of
voxel numbers are shown in Fig. 10a, and the decreasing trend is
quite evident. Also, the diminution is observable from the spatial
maps in Fig. 10b. Among these 6 networks, #73 and #390 are
categorized into task correlated networks, #354 is considered as
an anti-task network, and #27, #126 and #180 are believed to be
three diverse dynamic networks, as discussed in Section 3.2. The
diminution of task-related networks include the left superior and
right inferior parietal regions and the medial frontal gyrus, which
is in agreement with the activation detection in our work and
previous work in Santhanam et al. (2009). The diminution of anti-
task network includes sub-cortical areas and MPFC, and this con-
curs with previous work as well (Santhanam et al., 2011). It is
interesting that the diverse dynamic networks, including visual
cortex and default mode network, also shrink with the more se-
verity of PAE.

Apart from the dominant networks shown in Fig. 10, we can
also find some other minor networks that include less numbers of
voxels. The network sizes exhibit different patterns of relationship
with the severity of PAE, as shown in Figs. 11-12. In Fig. 11a and b,
networks in the control group have the highest voxel sizes, while
the Dysmorphic group has intermediate sizes and the Non-dys
group has the lowest. In contrast, for the networks in Fig. 12a and
b, the Non-dys group has the highest activation, the control group
performs intermediately, and the Dysmorphic group has the
lowest. Most of these networks are considered as anti-task net-
works, and it is evident that PAE effect might not be necessarily
linear to certain brain networks. This effect needs more future
interpretation, but it is inspiring that they can be captured by our
group-wise sparse coding method.
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Fig. 9. Voxel number histogram of the 400 network components in the three groups of Control, Non-dys PAE and Dysmorphic PAE groups, respectively. (a) is the same as

Fig. 6a.
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Non-Dys PAE

Dysmorphic PAE

Fig. 10. Six networks whose voxel number is in decreasing order across three groups, i.e., V(Control) > V(Non-Dys PAE) > V(Dys PAE). (a) Voxel number (P < 0.05, Z > 1.65)
comparison of the 6 networks from three groups. (b) The z-score map comparison of 6 networks from three groups.

4. Reproducibility analysis
4.1. Simulation experiment

To validate the effectiveness of our method on multiple group
analysis, we designed an experiment based on the fMRI simulation
toolbox SimTB (http://mialab.mrn.org/software; Erhardt et al,,
2012). Specifically, as shown in Fig. 13 five components are si-
mulated in two comparable groups (10 subjects in each). The
spatial shapes of the components are shown in Fig. 13a, and
overlaps are designed between component 2 and 5, and between
component 3 and 4. Block designed signals convolved by canonical
HRF are visualized in Fig. 13b. Inter-subject variability are simu-
lated by 1-3 voxel (uniformly distributed) x-translation, 1-3 voxel
(uniformly distributed) y-translation, and 1-5° (uniformly dis-
tributed) rotation. Cross-group difference are realized by different
component sizes, i.e., the sizes of components in the subjects of
Group 1 is 1.3-1.5 times (uniformly distributed) larger than that of
Group 2. Rician noise is added to each simulated subjects with the
contrast-to-noise ratio of 1-3 (uniformly distributed).

With our proposed method, we learn the common signal

Voxel number _ Control

#149
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#287
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pattern dictionary from the two groups of subjects. Since we al-
ready know the component number, we set the dictionary size as
5. As visualized in Fig. 13c, the simulated signals of components
are well reconstructed. The SCMs are calculated for each compo-
nent of each group and are shown in Fig. 13d and e. Since the
simulation is based on very easy assumption, the significance of
components could be high, so that we choose Z-threshold as 2.0.
We can see that, the spatial maps of components from both groups
are reconstructed, especially the component 1 with multiple re-
gions. Also the components (2, 5, 3, 4) with overlaps are well re-
covered. Additionally, comparing Fig. 13d and e, the size difference
of components between two groups are detected as designed, i.e.,
the SCMs of Group 1 are obviously larger than that of Group 2.
Based on the simulation, we can conclude that our method is ef-
fective in reconstructing overlapped component networks from
multiple groups, and is capable of capturing group-wise differ-
ences at the network level.

4.2. Reproducibility with different dictionary size

Dictionary size is an important parameter of dictionary

Non-Dys PAE

Dysmorphic PAE

860
8068
(b)

Fig. 11. Four networks whose voxel number is in the order of V(Control) > V(Dys PAE) > V(Non-Dys PAE) across three groups. (a) Voxel number (P < 0.05, Z > 1.65) com-
parison of the 4 networks from three groups. (b) The z-score map comparison of 4 networks in (a) from three groups.


http://mialab.mrn.org/software

J. Lv et al. / Psychiatry Research: Neuroimaging 233 (2015) 254-268 265

Voxel number

I Control
[ Non-Dys PAE
I Dysmorphic PAE (a)

Non-Dys PAE

Dysmorphic PAE

8866
$ 60
Y X

b

Fig. 12. Four networks whose voxel number is in the order of V(Non-Dys PAE) > V(Control) > V(Dys PAE) across three group. (a) Voxel number (P < 0.05, Z> 1.65) com-
parison of the 4 networks from three groups. (b) The z-score map comparison of 4 networks in (a) from three groups.

learning and sparse coding. In our paper we experimentally de-
termine the dictionary size as 400. However, we also tried the
dictionary size of 200, 300 and 500. Based on our experiments, we
found that by increasing the dictionary size, the detected networks
might decrease in size. Firstly, that’s because the coefficients might
be diluted by more dictionary atoms. And another reason is that
it's possible that one network will be decomposed into multiple
component networks or similar networks. So in this paper, on the
purpose of balancing dictionary size and network diversity we
determine the dictionary size as 400. But as shown in Fig. 14, with
dictionary size set as 200, 300 and 500 the dominant task-related
network, anti-task network and diverse dynamic network could
always be detected. And the spatial patterns (Fig. 14b) and tem-
poral patterns (Fig. 14c) are quite consistent across different dic-
tionary sizes. From Fig. 14a, we also found that the group differ-
ence can also be consistently detected with different dictionary
settings, i.e., the sizes of network #73 and #27 decrease with the

Simulation
Design

Results

increment of PAE severity and the size of network #82 follow the
pattern of V(Control) > V(Dys PAE)> V(Non-Dys PAE). In sum-
mary, we conclude that although the dictionary size might impact
the network size and diversity, the representative networks could
be consistently reproduced with different dictionary size setting.
And the group differences could also be consistently captured by
our method. In summary, our method is reliable and reproducible.

5. Discussion and conclusion
5.1. Overview

In this paper, we have presented a novel group-wise sparse
representation and statistical coefficient mapping (SCM) approach

for analyzing multiple populations with task fMRI data. The ag-
gregated task fMRI signals from multi-groups of subjects are

Fig. 13. Simulation experiment with simulation toolbox SimTB (http://mialab.mrn.org/software). (a) The spatial layout of the five simulated components. There are overlaps
between C2 and C5, and between C3 and C4. (b) The simulated signal patterns of the five components. Two comparable groups of subjects are simulated. The average
component sizes of Group 2 is smaller than Group1. (¢) The learned signal patterns of the five components from two groups using our method. (d) The spatial patterns of

SCMs from Group 1. (e) The spatial patterns of SCMs from Group 2.
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Fig. 14. Reproducibility experiment with different dictionary size. Blocks (I), (II) and (IIl) represent three dominant networks detected by setting of dictionary size as 200,
300 and 500, respectively. #73 is a task-related network, #82 is an anti-task network and #27 is a diverse dynamic network. (b) The voxel number of the networks in three
groups. (b) The spatial maps of the three networks. (c) The signal pattern of the three networks.

systematically represented as a learned common collection of
signal basis and their spatial coefficient distribution maps. Tem-
poral and frequency analysis on the dictionary basis elucidated the
diversity of task evoked activity patterns. Statistical assessment of
the spatial maps across subjects and inter-group comparison
provide fine-granularity perspectives of detecting discriminations
between brain conditions and normal controls. The approach has
been applied on three groups of subjects which are affected by PAE
in different degrees. Experimental results have suggested that our
data-driven group-wise method can detect diverse task-related
brain networks simultaneously, and these networks consistently
exist across three groups but are affected in different ways with
the increment of severity of PAE.

5.2. Methodological advantage

The methodological advantages of our sparse coding and sta-
tistical coefficient mapping (SCM) are summarized as follows.
First, the group-wise common dictionary bases are learned and
optimized from the whole fMRI data, which consist of abundant
response patterns. Thus, they are more adaptive to neurophysiol-
ogy specification, more systematic in discovering diverse brain
networks, and more sufficient in assessing rich information en-
coded in the whole fMRI data than the traditional GLM method.
Second, the commonly learned dictionary can effectively leverage
the commonness and discrimination across subjects and groups,
which makes the SCM more robust to noise and more powerful in
detecting cross-group differences, which is greatly preferred by
systematic clinical assessment, such as PAE. Third, the sparsity

constraint regularizes the regressor selection while learning
coefficient, consequently the results from group non-zero T-test
will be more strict. As a result, SCM maps are more reliable in
measuring the significance of contribution. Finally, in comparison
with previous sparse representation of fMRI signals of each in-
dividual brains for network analysis (Lee et al., 2011; Lv et al,,
2014b), our group-wise statistical method can automatically es-
tablish their correspondences across different populations and
systematically assess the functional activity differences among
these populations. Correspondence of individual component net-
works is established by learning the common dictionary basis
from multiple groups and subjects, and the spatial normalization
of individual brains and signal extraction guided by the common
mask provides a foundation for statistical analysis and inter-group
comparison.

5.3. The robustness of the method

Sparsity, which is a major feature of our method, take the re-
sponsibility of detecting statistically robust networks. In our
method, the fMRI signal of each voxel from each subject was
sparsely represented by the learned and optimized common signal
basis. If one dictionary atom is not relevant to the certain signal,
the corresponding coefficient will be penalized to zero. In other
words, the sparse constraint regularizes the signal basis selection.
Consequently, most elements of the coefficient matrix are zeros.
Thus, the voxels survived from T-test in the SCMs have to be
substantially and consistently non-zero. That is the reason that
most SCMs perform very low voxel number as shown in Fig. 9. And
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it is exactly in this way, that the sparsity guaranteed the robust-
ness of the networks.

The common dictionary learning from multiple groups of
subjects make our method less sensitive to noises such as motions.
Most of the noises are individually specified, but the dictionary is
learned to represent common features across groups of subjects.
Thus, either the noises would be dropped in the residuals of sparse
representation or be learned as dictionary atoms if the dictionary
is big enough.

Additionally, the learned activation signal patterns are more
adaptive and flexible in the perspective of hemodynamic function
as shown in Fig. 4b. While in traditional GLM method, the he-
modynamic function are usually pre-defined and uniformed for
the whole brains of different subjects. And it is evident that in
Fig. 4, different activated brain regions might perform different
hemodynamic functions. Therefore, our method is also robust to
hemodynamic variation.

5.4. Improvement of analysis

Our proposed method was applied on the same data set of
Santhanam et al. (2009). The major contribution of Santhanam
et al. (2009) is the finding of diminution of activation and de-ac-
tivation relevant to the severity of PAE. In comparison, our method
not only detect this kind of diminution in activation/de-activation,
but also refine the results in multiple activated or de-activated
networks, which perform adaptive task-related signal patterns. In
addition, we also found the diminution is present in multiple di-
verse networks, which have not yet been detected by traditional
methods. However, in our work, we also captured that diminution
is not the only pattern that applies to all networks. As shown in
Figs. 11 and 12, different patterns could be found regarding the
effect of PAE.

5.5. Challenges and future work

However, there are also challenges associated with this novel
computational framework. First, there is little neuroscience evi-
dence regarding how many component networks should be de-
composed for the group of task fMRI signal sets so far. As a result,
it is difficult to determine the learned dictionary size theoretically.
Instead, our current results were based on experimentally de-
termined network number. It will be one of our major future
works to optimize the network number. Second, due to the lack of
ground truth in fMRY], it is difficult to interpret the neuroscience
meaning of all the learned hundreds of brain networks. Thus, more
temporal, frequency and spatial characterization methods should
be developed in the near future for better interpretation of our
results. Finally, this novel framework should be applied in other
task fMRI datasets of brain conditions and controls, in order to
examine its reproducibility and robustness. It is believed that this
framework would find many applications in clinical and cognitive
neurosciences in the future.
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