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ABSTRACT 

 
Human brain function has been widely believed as a network 

behavior. However, most previous activation detection methods in 

the task-based fMRI field were voxel-based, instead of network-

based. For instance, the general linear model (GLM) has been 

widely used to fit the external stimulus curve with the fMRI BOLD 

signal of each voxel. In this paper, we present a novel network-

based activation detection method to fit network-level 

measurement of the brain’s response with the external stimulus 

curve. The basic idea here is that based on the structural 

connectome constructed from DTI data, the propensity for 

synchronization (PFS) of combinations of three-nodes complete 

graphs, or cliques, is calculated from task-based fMRI signals, and 

the general linear model is then used to detect activations of the 

network-centric PFS curve. Further, given the intrinsically-

established correspondences of structural connectomes and the 

derived complete graph cliques, the individual activation detection 

results are assessed across a population using the existing FSL 

FLAME framework to determine group-wise activated cliques 

during task performance. Our experimental results demonstrated 

that the network-based activation detection method is 

complementary to the widely-used voxel-based activation 

detection methods. 

 
     Index terms— Activation detection, DICCCOL, task-based 

fMRI, general linear model.  

 

1. INTRODUCTION 
Voxel-based activation detection in task-based fMRI has been 

widely used in the human brain mapping field. For instance, the 

general linear model (GLM) [13, 14] has been commonly used to 

determine activated voxels in task-based fMRI images. However, 

the voxel-based activation detection method has limitations in 

terms of elucidating the complex functional brain activities, since it 

has been generally believed that brain function is a network 

behavior. In response to this limitation, recently, we developed and 

applied a fiber-centered activation detection method in [1] to reveal 

the activated connectivity patterns and our results have suggested 

that activated fiber-connected regions cover substantially wider 

cortical areas than the traditional voxel-based activation methods. 

More recently, we examined the temporal dynamics of functional 

connectivity during task performance [2] and our extensive 

experimental results [2] showed that the whole-brain’s functional 

connectivity pattern well correlated with the block-based external 

stimulus curve. These results in [1, 2] demonstrated the feasibility 

and promise of connectivity-based activation detection in task-

based fMRI. 

Inspired by the above promising direction [1, 2], in this paper, we 

designed and applied a novel network-based activation detection 

framework that aims to determine the activated complete graphs 

with three nodes, or cliques, based on structural connectomes 

derived from DTI (diffusion tensor imaging) data. The basic 

premise is that the temporally varying functional synchronization 

among these graph cliques would be similar to the external block-

based stimulus curve, assuming that the participating human 

subject is following the instruction of task-based paradigm [1, 2]. 

Then, the activation level of the network or the graph clique is 

determined by the commonly-used GLM that is applied on the 

functional synchronization curve. Since it is not known in advance 

which complete three-nodes graph cliques would be involved in 

the task-performance, we perform a data-driven whole-space 

search within all possible combinations of nodes that are more 

likely to be involved in the task performance within a structural 

connectome, which is constructed based on our recently developed 

and validated DICCCOL (Dense Individualized and Common 

Connectivity-based Cortical Landmarks) system [3] 

(http://dicccol.cs.uga.edu/). A prominent attribute of the 

DICCCOL system (358 landmarks) is that each cortical landmark 

has intrinsically-established correspondence across individual 

brains, and thus the structural connectomes and derived three-

nodes complete graph cliques based on DICCCOL also have 

correspondences across individual brains. In this way, the 

activation level measured by the GLM for each complete graph 

clique can be assessed at the population level by pooling the 

activation detection results from multiple brains. Essentially, this 

group-wise network-based activation detection methodology is 

deemed to have more robustness to noises and variabilities, since a 

variety of prior studies have already demonstrated the advantages 

of group-wise activation detection [15, 16]. We have applied the 

proposed novel methods on a working memory task-based fMRI 

dataset [6] and our experimental results demonstrated that the 

network-based activation detection method is complementary to 

the voxel-based activation detection methods. 

 

2. MATERIALS AND METHODS 

 
2.1. Overview 

The computational pipeline of our methods is summarized in Fig. 

1. In the methods, we first used DTI data to identify the structural 

connectomes in each brain via the DICCCOL system in [3]. Then, 

as shown in Fig.1a, a landmark-based activation detection 

methodology is applied to detect activated landmarks for the 

purpose of significantly narrowing down the prohibitively huge 

search space (the total number is      
 ) of possible three-nodes 

cliques among the DICCCOL-based structural connectome. Our 

rationale here is that the activated landmarks determined via the 
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first round of landmark-based activation detection are more likely 

to be involved in the activated networks. In this step in Fig.1a, we 

perform the activation detection on the single landmark through the 

general linear model (GLM) [1, 2]. Then, the significance of 

activation level of each landmark is assessed at the population 

level given the correspondences of the 358 DICCCOL landmarks 

across individuals [3]. In this way, we identified 45 consistently 

activated DICCCOL landmarks to be the ROI (regions of interest) 

set for the second stage of network-based activation detection, as 

shown in Fig.1b. Specifically, the functional synchronization 

curves measured by the propensity for synchronization (PFS) [10, 

11] are derived within all possible combinations of three-nodes 

graph cliques, which are determined from the first stage of 

landmark-based activation detection (45 DICCCOLs). Then, the 

propensity for synchronization (PFS) is measured based on fMRI 

time series within each graph clique, and the GLM model is 

applied on the PFS curve, instead of raw fMRI BOLD signal, to 

assess the similarity between external stimulus curve and the PFS 

curve. Finally, the significance of activation level of each 

corresponding clique is assessed in a group of 20 subjects, which is 

enabled by the intrinsically-established correspondences of the 

DICCCOL-based structural connectomes. Given the activation 

detection results by both methodologies, we compared their 

activation patterns and concluded that their results are 

complementary. 

 
Fig.1. The overview of our method is shown in Fig 1, (a) 

landmark-based method (b) DICCCOL-triple network based 

activation detection (c) Display the method that compare the result 

from two methods and get the conclusion from the result. 

 

2.2. Data acquisition and pre-processing 

In an operational span (OSPAN) working memory task-based 

fMRI experiment under IRB approval [6], 20 healthy young adult 

subjects were scanned and fMRI images were acquired on a 3T GE 

Sigma scanner at the Bioimaging Research Center of The 

University of Georgia. Briefly, acquisition parameters are as 

follows: fMRI: 64×64 matrix, 4mm slice thickness, 220mm FOV, 

30 slices, TR=1.5s, TE=25ms, ASSET=2. Each participant 

performed a modified version of the OSPAN task (3 block types: 

OSPAN, Arithmetic, and Baseline) while fMRI data was acquired 

[6]. DTI data was acquired with dimensionality 128×128×60, 

spatial resolution 2mm×2mm×2mm; parameters were TR 15.5s 

and TE 89.5ms, with 30 DWI gradient directions and 3 B0 

volumes acquired. The fMRI data was co-registered with the DTI 

image space using a linear transformation via FSL FLIRT. For 

more details about pre-processing, please refer to [3, 5, 7]. 

2.3. Structural connectomes and landmark-based activation 

detection method 

Recently, we identified a dense map of 358 consistent cortical 

landmarks, or regions of interest (ROIs), in over 240 brains, named 

Dense Individualized and Common Connectivity-based Cortical 

Landmarks (DICCCOL) [3]. The visualizations, models, and 

prediction source codes of these 358 DICCCOLs have been 

released online at: http://dicccol.cs.uga.edu/. A prominent feature 

of these 358 DICCCOLs is that they possess intrinsically 

established structural and functional correspondences across 

individuals and populations [3]. Therefore, these DICCCOLs offer 

a natural substrate for fMRI activation detection without the need 

of image registration and spatial smoothing, which are commonly 

used in traditional fMRI signal analysis methods. Essentially, due 

to the lack of a quantitative representation of common brain 

architecture, most previous fMRI activation detection methods rely 

on spatial normalization and spatial smoothing to deal with the 

anatomical variation of different brains [1, 2]. However, a variety 

of recent studies have demonstrated that spatial normalization and 

smoothing could significantly reduce the sensitivity and specificity 

of task-based fMRI activation detection [8, 9].  

    

Therefore, in this paper, we first implemented a landmark-based 

activation detection framework based on DICCCOLs to explore 

the activation significance of each individual landmark among a 

group of brains, as illustrated in Fig.1a. Our rationale here is the 

same as that in other group-wise fMRI activation detection 

methods [15, 16]. That is, group-wise approach improves the 

statistical power and reliability of individual fMRI studies. 

Specifically, for each landmark, we first set the estimated 

activation significance parameters and their estimation deviations 

from a group of subjects, which were generated from the 

application of GLM on fMRI signals of each DICCCOL ROI in 

individual brains. These significance levels are used as the input of 

group-wise t-statistics via the tool of FSL FLAME as the second 

level of group analysis [15]. Then, the derived p-value from the 

group-level t-statistics is further translated to the commonly-used 

z-score to measure the group-wise activation significance of each 

DICCCOL landmark. Afterwards, we determined the activated 

DICCCOL landmarks via a widely-used threshold method. From 

the group-wise activation detection, we already obtained 45 

consistently activated ROIs (z-score threshold at 2.0) among the 

358 DICCCOLs to construct a working memory network, which 

will be further used to test our network-based activation detection 

method. It should be noted that these 45 consistently activated 

DICCCOL ROIs already covered much more cortical regions than 

the results in [4, 7] via the traditional voxel-based fMRI activation 

detection, suggesting the superiority of the DICCCOL-based 

group-wise landmark activation detection method. 

 

2.4. Network-based activation detection methods 

Although the 45 consistently activated DICCCOL ROIs are 

deemed to be more likely involved in working memory network, 

we do not know which sub-networks, or graph cliques, among 

these 45 ROIs are specifically activated during the working 

memory task performance. In response to this challenge, we 

employ a data-driven approach and search all possible 

combinations of three-nodes cliques within the working memory 

network. In this paper, each three-nodes sub-network, or graph 

clique, is considered as a potential sub-network, in which the 

functional synchronization and activation significance are assessed 

in the following sections.  

275



 

2.4.1 Calculate the PFS for the sub-network 

The PFS is a graph theoretic parameter that can be used to 

represent the functional synchronization behavior in a networked 

system [10, 11]. Thus, we first describe a functional brain network 

by a weighted undirected graph G=(V, E), where each node

is an DICCCOL ROI involved in the working memory 

system, and while edges  denotes the connectivity between 

ROIs regarding to the fMRI BOLD signal similarity. The 

Laplacian matrix of graph [10, 11] is derived as follows: 

 

(1) 

where is defined as the degree of the node 

. The set of eigenvalues of , , are 

defined as spectrum of and PFS are defined as the eigen ratio

, which was used as an indicator to characterize the 

network synchronization [10, 11]. A smaller value of PFS indicates 

that synchronization of brain networks tends to be more stable, and 

vice versa. Please refer to [10, 11] for more details of PFS.  

 

2.4.2 Clique activation detection based on PFS  

Now we are able to measure the network-level response within the 

cliques to external stimulus via the GLM method [13, 14]. For each 

of a group of 20 subjects, we tested every possible combination of 

3 landmarks among the 45 working memory ones as a triple clique 

network, and the total number of combinations is 14190, as 

visualizaed in Fig. 2a. After applying the GLM method on the PFS 

curve for the comparison with the external block-based stimulus 

curve, as illustrated in Figs. 2b and 2c, we can obtain the similary 

significance level of each PFS curve. Afterwards, we employed the 

widely-used FSL FEAT [12] for this procedure, and each of the 

14190 cliques (arranged in Fig. 2) was analyzed in a similar way. 

 
Fig.2. (a) 14190 points are arranged in the picture, in which each 

pixel means a PFS value for a clique network. (b) Task-based 

stimulus curve. (c) An example of activation network’s PFS time 

series.  

 

In the last step, the derived p-value from the group-wise t-statistics 

is further translated to the commonly used z-score to measure the 

activation significance of each network’s PFS curve. We 

determined the activated networks via a widely-used thresholding 

method and the threshold was chosen empirically.  

 

3.  RESULT 

 

3.1 Activation detection result  

The results of landmark-based activation detection are shown in 

Fig. 3a. The corresponding results for the network-based activation 

detection using different z-score thresholds are shown in Figs.3b-

3d. It can be clearly seen that the activated network cliques are 

quite dense among the corresponding landmarks, e.g., 249 

activated networks among the 45 activated ROIs when the z-score 

threshold was set as 12. This result not only provides support to 

our previous premise that activated landmarks are more likely to be 

involved in activated networks, but also suggests that network-

level activities are highly synchronous with the external stimulus 

curve. This result further confirms our prior studies in [1, 2] and 

importantly, offers novel insights on the network-level functional 

behaviors of the brain during task performance.  

 

It is also evident that with the increase of z-score threshold, the 

numbers of activated networks become less and less. However, it is 

interesting that the distributions of the most consistently activated 

networks are similar across different thresolds, suggesting the 

robustness of network-based activation detection. This result 

indicates that network-based activation detection method can 

provide useful perspectives to the functional activities of the brain 

during task performance. Here, the visualizations in Figs. 3b-3d 

clearly demonstrates the strong functional interactions among the 

clique networks in the occipital and frontal lobes, which is 

consistent with current neuroscience knowledge [4]. For 

comparison purpose, both of the activated and deactivated cliques 

(detected by the inverse of stimulus curve in Fig. 2b) in the 

working memory network are shown in Fig. 4. It is interesting that 

the numbers of both activated and deactivated networks are 

comparable, suggesting the complexity of functional brain network 

behaviors in task performance. The neuroscience interpretation of 

the results in Fig. 4 warrants extensive investigation in the future. 

  
Fig.3. (a) 45 ROIs are shown in part(a). (b) When Z=12, the 

number of networks is 249. (c) When Z=14, the number of 

netowrks is 91. (d) When Z=16, the number of networks is 30. 

 
Fig.4. Distribution of activated and deactivated cliques on the 

cortical surface, (a) Activated cliques. (b) Deactivated cliques. Z-

scores correspond to those in Figs.3b-3d from the left to right. 
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3.2 Comparison of results by two methods 

For each activated working memory ROI, we quantitatively 

compared the number of activated networks that each ROI is 

involved in (Fig. 5a) and the activation level z-score determined in 

landmark-based activation detection (Fig. 5b). It is interesting that 

some working memory ROIs, such as DICCCOL #11, #17, #24, 

#235 and #248 (Fig. 5a), are strongly activated in both landmark-

based activation detection and network-based activation detection. 

While other working memory ROIs, such as DICCCOL #280 and 

#282, are much more strongly activated in network-based 

activation detection than landmark-based activation detection, 

suggesting that landmarks that are very active in network behaviors 

are not necessarily very much following the external stimulus 

curve, as measured by the GLM on raw fMRI BOLD signals. This 

result indicates that network-based activation detection is 

complementary to landmark-based or voxel-based activation 

detection methods, and can offer novel insights in the functional 

activities of the brain during task performance. In Fig. 5, we can 

also see some working memory ROIs, such as DICCCOL #1, #2, 

#4, and #16, that are strongly active in landmark-based activation 

detection but not necessarily strongly active in network-based 

activation detection. This result further demonstrates the 

complementary nature of these two activation detection methods. 

 
Fig.5. (a) The numbers of activated networks that each DICCCOL 

ROI was involved in. It is color-coded based on the bar on the 

right. (b) The z-scores obtained from group-wise landmark-based 

activation detection for 45 DICCCOL ROIs. They are color-coded 

according to the bar on the right. Additional visualizations of the 

DICCCOLs are available at: http://dicccol.cs.uga.edu/      

 

4.  CONCLUSION 

 

We presented a novel network-based fMRI activation detection 

framework that is implemented in two stages. The first stage 

performed a landmark-based activation detection to identify those 

most consistently activated ROIs. The second stage performed a 

network-based activation detection method that relied on 

comparing the functional synchronization curves of networks with 

the external stimulus curve via the GLM. In both stages, the 

activation detections were conducted at the group level given the 

intrinsic correspondences provided the structural connectome. The 

application of this novel framework on a working memory task-

based fMRI dataset demonstrated that the network-based activation 

detection method is complementary to the landmark-based 

activation detection methods, and offered novel insights into the 

functional interactions at the network level in the brain during task 

performance. In the future, we plan to investigate effective and 

efficient approaches to deriving other types of graphs or cliques 

among the DICCCOL-based connectomes and examine their 

activation patterns in fMRI.     
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