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ABSTRACT 
It has been shown from various functional neuroimaging studies 
that sparsity-regularized dictionary learning could achieve 
superior performance in decomposing comprehensive and 
neuroscientifically meaningful functional networks from massive 
fMRI signals. However, the computational cost for solving the 
dictionary learning problem has been known to be very 
demanding, especially when dealing with large-scale data sets. 
Thus in this work, we propose a novel distributed rank-1 
dictionary learning (D-r1DL) model and apply it for fMRI big 
data analysis. The model estimates one rank-1 basis vector with 
sparsity constraint on its loading coefficient from the input data at 
each learning step through alternating least squares updates. By 
iteratively learning the rank-1 basis and deflating the input data at 
each step, the model is then capable of decomposing the whole set 
of functional networks. We implement and parallelize the rank-1 
dictionary learning algorithm using Spark engine and deployed 
the resilient distributed dataset (RDDs) abstracts for the data 
distribution and operations. Experimental results from applying 
the model on the Human Connectome Project (HCP) data show 
that the proposed D-r1DL model is efficient and scalable towards 
fMRI big data analytics, thus enabling data-driven neuroscientific 
discovery from massive fMRI big data in the future. 

Categories and Subject Descriptors 
• Information systems~Data mining • Computing 
methodologies~Machine learning 

General Terms 
Algorithms, Performances 

Keywords 

fMRI; Sparse coding; Distributed computation; Algorithm 
parallelization 

 

1. INTRODUCTION 
In recent years, the field of neuroimaging studies based on 
functional magnetic resonance imaging (fMRI) has featured 
unprecedented large-scale data availability thanks to the efforts 
from a series of data collection works including Human 
Connectome Project [26], 1000 Functional Connectomes [19] and 
OpenfMRI Project [20]. The rapidly growing data characterized 
different aspects of brain cognitive processes as well as various 
disorders, thus providing a great opportunity for decoding and 
identification of potential functional biomarkers for brain 
diseases. Consequently, there is an urgent call for more efficient 
and scalable data analytics and knowledge discovery methods, 
especially for dealing with fMRI big data. Functional network 
analysis has become an important and popular approach for 
discovering the underlying organization structures and meaningful 
dynamic patterns from the vast and noisy functional brain signals. 
Focusing on understanding the functional aggregation/co-
activation among brain regions through quantitative and data-
driven approaches, researchers have employed various types of 
matrix decomposition methods for the functional network analysis 
studies, including Independent Component Analysis (ICA) [24], 
Principal Component Analysis (PCA) [23] and Dictionary 
Learning [11]. Dictionary learning in particular has been shown to 
be a powerful tool in image compressed sensing [21], 
classification [14] and de-noising [8], and has shown superior 
performance in decomposing the meaningful and comprehensive 
functional networks from various types of fMRI signals [15]. 
However, the computational cost for solving the sparse coding 
problem for dictionary learning has been known to be very 
demanding [12], especially when dealing with large-scale data 
sets. Furthermore, most of current dictionary learning methods for 
fMRI data analysis are only implemented for local application 
without any parallelization scheme. Facing with the rapidly 
growing fMRI data and the needs for population-level analysis 
with terabytes or even petabytes of data size [23], the computation 
power limit of a single machine will eventually become the 
bottleneck for efficient and effective knowledge discovery from 
the fMRI big data. 

Following the previous success in using dictionary learning for 
functional network decomposition [15], in this work we devolved 
a novel distributed rank-1 dictionary learning (D-r1DL) model, 
leveraging the power of distributed computing for handling large-
scale fMRI big data. Compared to the gradient-based dictionary 
learning algorithms such as the online dictionary learning [18] 
(based on stochastic gradient descent) and the K-SVD [4] (based 
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on gradient descent), the proposed rank-1 dictionary learning 
algorithm has a few critical advantages: 1) The learning process is 
a fix-point algorithm by alternating least squares updates, thus 
avoiding the tuning of the learning rate/step size while also 
avoiding the slow convergence near the solution; 2) The memory 
cost of the proposed algorithm is very low because it needs not to 
maintain the potentially large gradient matrix in the memory. The 
intermediate results will be discarded after each rank-1 basis is 
learned and stored, which further reduce the memory cost. More 
importantly, the rank-1 dictionary learning algorithm is very light-
weighted regarding to the operational complexities: besides the 
input data, most of the routines in the algorithm will only take one 
vector as input and one vector as output. This feature helps the 
r1DL algorithm to be easily parallelized to its distributed version.   

For the algorithm parallelization, in this work we used the Spark 
engine [3] to implement the D-r1DL algorithm. Spark is a high-
performance distributed compute engine for large-scale data 
processing. It is similar to MapReduce, but has several distinct 
advantages that make it ideal for the deployment of large-scale 
analytics frameworks. First, its basic abstraction for distributed 
data, the resilient distributed dataset (RDD) [27], combines robust 
fault-tolerance with highly efficient data layout strategies. RDDs 
track their computation lineage as a directed acyclic graph; 
therefore, if a segment is lost, it can be easily recomputed from 
the lineage. These lineages can be optimized on-the-fly to 
minimize the overhead of the prescribed computations. Second, 
all operations in Spark are performed in-memory, thus 
significantly improving throughput of data pipelines. This is a 
departure from Hadoop MapReduce, in which data are serialized 
to disk in between map and reduce steps. Third, the Spark 
compute engine is much more generalizable than MapReduce, and 
can efficiently support highly diverse workloads. While Spark 
supports the map and reduce primitives from Hadoop 
MapReduce, it also supports graph processing [10] and streaming 
[28] APIs on the same compute engine, in addition to numerous 
functional primitives beyond map and reduce. This structural 
flexibility is crucial to the efficient implementation of a wide 
variety of distributed algorithms.  

An illustration for the operational and algorithmic pipeline 
consisting of three layers of model specification is shown in Fig. 
1. The first and foremost deliverable of this work is to provide an 
integrated solution for the large-scale fMRI big data analysis. 
Therefore, we initially deployed the proposed D-r1DL model on 
our in-house server (termed “in-house solution”) with an 
integrated neuroinformatics system [17]. The neuroinformatics 
system provides a web-based user interface for fMRI data 
uploading, hosting and result post-processing [17], as illustrated in 
Fig. 1(a). Alternatively, we also tested deploying the D-r1DL 
model on the cloud computing service provided by Amazon Web 
Services Elastic Compute Cloud (AWS-EC2) [1], which has been 
widely applied for biomedical imaging researches due to its 
resource flexibility and ease of use. For the “AWS-EC2 solution”, 
the data preprocessing was performed before running the D-r1DL 
model on it. Subroutines of the r1DL algorithm and its logic flow 
are illustrated in Fig. 1(b). The parallelization subroutines and its 
relationship with the r1DL algorithm are illustrated in Fig. 1(c). 

 
Figure 1. (a): Operations on the neuroinformatics system for 
preparing the application of D-r1DL and post-analysis. (b): 
Algorithm pipeline of the rank-1 dictionary learning. (c): 
Parallelization subroutines of the D-r1DL model derived from 
the corresponding subroutines of the r1DL using Spark. The 
distribution of input data S is based on RDDs.  

 

2. BACKGROUND AND RELATED WORK 
Functional network analysis based on matrix decomposition 
methods has the basic premise: the observed functional signals are 
the result of the linear combination from the signals of many 
latent source (i.e. functional networks), plus noises and/or artifacts 
signals [5]. The methods then aim to identify the latent source 
signals as well as the loading matrix based on various learning 
priors including spatial/temporal independence [5; 24] (for ICA), 
or the sparsity in the loading coefficients [11; 15] (for dictionary 
learning). The decomposition results consist of two parts: the 
signals of the latent sources (i.e. temporal pattern of the functional 
networks) that are regarded as basis activation patterns, and the 
loading matrix characterizing how each source contributes to the 
formation of each observed signal across voxels/ brain regions 
(i.e. spatial pattern of the functional networks). The spatial and 
temporal pattern of a sample network decomposed result is shown 
in Fig. 2.  

Several sets of consistent and meaningful functional networks 
have been identified in the previous literature: including the 10 
well-established resting-state networks (RSNs) [24] obtained 
using ICA, the task-related patterns obtained using PCA [25], and 
the HAFNI (holistic atlases of functional networks and 
interactions) atlases [15] featuring 32 group-wise consistent 
patterns during both task and resting-state using dictionary 
learning [2]. Visualization of one functional network from the 
matrix decomposition results using the proposed r1DL method is 
shown below, to illustrate the temporal (the time series curve) and 
spatial (on cortical volumetric space) patterns of the brain 
functional networks. 
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Figure 2. Top: spatial pattern visualized on cortical 
volumetric space of one decomposed network. Bottom: 
visualization of its temporal pattern. 

While dictionary learning in general is an active area of research, 
there has been significantly less effort in scaling the algorithm. 
One of the few methods proposed was [22], in which the authors 
designed a sparse coding framework on Hadoop MapReduce. The 
method was parallelized by splitting the core operations in two 
main phases: the sparse coding phase, in which the loading 
weights were learned in parallel; and the dictionary learning 
phase, in which the dictionary atoms were updated. By taking 
advantage of hard sparsity constraints, the authors avoided 
materializing the entire data matrix in memory at once, instead 
operating on blocks of the matrix in parallel and constructing the 
loading matrix row by row. In this work we undertook the similar 
dataflow optimization techniques: the sparse coding and 
dictionary atoms are assumed to fit easily in memory for fast and 
efficient computation. However, using the Spark framework 
instead of Hadoop MapReduce provides us intrinsic speedups. 
Where Hadoop MapReduce excels in batch processing, Spark is 
optimized for iterative computation: intermediate results are 
cached in-memory on the workers and re-used in subsequent 
iterations, and the updates are efficiently broadcasted to the 
workers. Most importantly, the RDDs abstraction pipelines the 
requested operations and lazily executes them after determining 
the optimal computational path using the least amount of 
resources. We leverage these advantages to provide a substantial 
performance gain in our D-r1DL dictionary learning 
implementation. 

 

3. RANK-1 DICTIONARY LEARNING FOR 
FMRI DATA ANALYSIS 
The rank-1 dictionary learning algorithm aims to iteratively 
estimate multiple rank-1 basis vector u (T×1 vector with unit 
length) and its loading coefficient vector v (P×1 vector) to 
decompose the input signal matrix S of dimension T×P,  by 
minimizing the following energy function L(u, v): ܮሺݑ, ሻݒ ൌ ‖ܵ െ ,ி‖்ݒݑ s. t. ‖ݑ‖ ൌ 1, ଴‖ݒ‖ ൑  (1) .ݎ

Eq. 1 indicates that the product of u and v is supposed to well-fit 
the input S while the total number of non-zero elements in v 
should be smaller than or equal to the given sparsity constraint 
parameter r. The minimization problem in Eq. 1 can be solved by 
alternatively updating u (randomly initialized before the first 
iteration) and v until convergence: ݒ ൌ argmin௩ ‖ܵ െ ி‖்ݒݑ , .ݏ .ݐ ଴‖ݒ‖ ൑ ,ݎ  

ݑ ൌ argmin௨ ‖ܵ െ ி‖்ݒݑ ൌ Converging ,‖ݒܵ‖ݒܵ at step ݆ if: ฮݑ௝ାଵ െ ௝ฮݑ ൏ ,ߝ ߝ ൌ 0.01. 
(2) 

Eq. 2 involves multiplication between input matrix S and vector u, 
followed by setting all elements in the resulting vector smaller 
than its r-th largest value to zero, essentially performing the 
vector partition operation. One rank-1 basis [u, v] can be 
estimated in each step; afterwards the input matrix S will be 
deflated to its residual R: ܴ௡ ൌ ܴ௡ିଵ െ ,௡ିଵ்ܴݒ ܴ଴ ൌ ܵ, 1 ൏ ݊ ൑  (3) ,ܭ

where K is the total number of expected basis (i.e. dictionary 
atoms) to be discovered from the input data. It could be seen that 
the formulation of the proposed rank-1 dictionary learning 
algorithm is similar to the sparse PCA problem [6]. However, the 
goal of PCA and sparse PCA is to derive a low-dimensional basis 
(i.e. learning a smaller set of high representative basis); in 
contrast, the goal in dictionary learning is to learn an over-
complete dictionary set [12]. Regarding the algorithm 
convergence, it is easy to show that the value of the energy 
function as in Eq. 1 decreases at each iteration (until 
convergence), thus the objective is guaranteed to converge. The 
convergence of the learning in Eq. 2 was also empirically tested in 
this work. The deflation operation in Eq. 3 is based on Hotelling’s 
deflation method for estimating the eigenvectors, where each step 
of deflation leads to the corresponding eigenvalue replaced by 
zero. The validity of using Hotelling’s deflation for sparse PCA 
was provided in [6], while better deflation methods were also 
discussed in [16]. Fig. 3 shows a running example illustrating the 
data preparation and networks decomposed by r1DL. 

 
Figure 3. Illustration of the r1DL model applied on fMRI data 
as a running example. (a) 4D fMRI data represented as a 
series of 3D volume images. (b) Converting 4D data into 2D 
input matrix S. (c) Spatial (v1…vK) and temporal (u1…uK) 
patterns of the decomposed functional networks from S using 
r1DL dictionary learning. 
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4. ALGORITHM PARALLLIZTAION AND 
DEPLOYMENT ON SPARK  
In this work, the rank-1 dictionary learning algorithm introduced 
above was implemented and parallelized on the Spark engine. 
Specifically, the vector-matrix multiplication and the matrix-
vector multiplication steps in Eq. 2 were implemented by their 
corresponding distributed primitives in Spark. Reading and 
partitioning the input data S is supported by the RDD abstraction; 
therefore, the distribution of S to each node as a series of key-
value pairs is inherently straight forward: data formation of the 
current work is based on row-vectors. In other words, each 
column in S contains the T number of observations for one 
specific feature, to the total of P features. While S was maintained 
as an RDD, the vectors u and v were broadcast to all nodes. Thus 
during the vector-matrix multiplication, each node will use its 
portion of the updated u vector, and then estimate the v vector 
based on the multiplication of portions of S and u. The resulting v 
vectors from all the nodes will be then map-reduced by the 
summation operation. The matrix-vector multiplication is 
relatively easier, where each node will use all the updated v vector 
then estimate its corresponding portion of the u vector. The 
resulting u vector is just the collection of the results from each 
node. In addition, the matrix deflation operation in Eq. 3 was also 
parallelized by broadcasting both the u and v vectors learned from 
Eq. 2, and then estimating the outer produce between portion of u 
vector and the whole v vector at each node. The S matrix is then 
subtracted by the results of each node through mapping over each 
row and deflating it in parallel. This implementation of the r1DL 
algorithm after parallelization is termed as the “Distributed rank-1 
dictionary learning” (D-r1DL) model. 

4.1 Complexity of the distributed primitives 
The computational complexity of the original (un-parallelized) 
rank-1 dictionary learning algorithm is quite obvious: all the 
major subroutines including matrix-vector multiplication, vector-
matrix multiplications and deflation have complexity of T*P, 
essentially traversing through input matrix S. However, the 
distributed primitives added for the parallelization in D-r1DL will 
potentially cause large extra computations and/or data transfers 
across nodes. The problem will be magnified when such transfer 
occurs over a network (e.g. worker nodes are distributed across 
Internet). Thus we analyzed the extra complexity induced by the 
parallelization of the three subroutines, assuming that there are M 
number of nodes. It should be noted that the estimations are upper 
bounds for the complexity; the empirical performance will be 
largely dependent on how Spark optimizes the transformation 
lineage for the RDD, and how the RDD is distributed across the 
cluster.  

 For the vector-matrix multiplication for estimating v, the 
total complexity is (T*M + P*M+Tlog(T) + P): T*M caused by 
the broadcasting, P*M+Tlog(T) caused by the map reduce and 
network shuffle, and P caused by the updating of v. 

 For the matrix-vector multiplication, the total 
complexity is (P*M + T): P*M caused by the broadcasting, and 
T caused by the updating of u. 

 For the matrix deflation, the total complexity is 
(P*M+T*M): both u and v will be broadcasted to all M nodes. 

4.2 Deployment and configuration 
The D-r1DL model was deployed on two different sets of server 
clusters, leading to two solutions for the data analysis. The first 

set is based on the in-house server, called the “in-house solution”. 
Spark version 1.5.2 pre-built for Hadoop 1.X and python version 
2.7.11 with all the required dependencies were installed on the in-
house server. We setup one standalone spark cluster on the server 
with a master node consisting of 16 cores and 16GB RAM. The 
in-house solution also featured an integrated neuroinformatics 
system named HELPNI (HAFNI-enabled largescale platform for 
neuroimaging informatics) as introduced in [17]. Authorized users 
of the system can upload, manage, and perform the preparations 
of the fMRI data for the model analysis. For running the D-r1DL 
model, the preparation steps include fMRI signal preprocessing 
(gradient distortion correction, motion correction, bias field 
reduction, and high pass filtering) [9], converting the 4D fMRI 
images to 2D data matrix, as well as the generation of shell scripts 
according to user specifications. When the computations by D-
r1DL are finished, the reports of the results (consisting of the 
statistics and visualizations of the decomposed functional 
networks) will be automatically generated by the HELPNI 
neuroinformatics system [17] and uploaded to the server, 
accessible via web interface for viewing and sharing. The in-
house solution is mainly used for testing the single-server (on the 
local threads), standalone mode performance of the D-r1DL 
algorithm.  

The second set was based on the computational resources 
provided by AWS-EC2 service. For the AWS-EC2 
implementations, we used the provided EC2 deployment scripts 
with the Spark distribution. These created a Spark cluster on EC2 
with one master node and 16 workers. Each worker consisted of 2 
cores and 7.5GB memory. EC2 clusters are highly scalable, as the 
number of workers recruited could be adjusted within the cluster. 
The preprocessed and converted fMRI data was stored at the 
cloud through Amazon S3 and accessible by the EC2 cluster. The 
nodes featured Hadoop distributed file system (HDFS), which 
ensured data consistency and improved I/O speed. Hadoop 
version 1.0, Spark version 1.5.2, and Python version 2.7.11 with 
the Anaconda scientific programming stack (e.g. NumPy, SciPy) 
were installed on EC2 cluster. An illustrative diagram showing the 
organization and execution architecture of the two solutions are 
shown below. 

 
 
Figure 4. Illustrative diagram showing the organization and 
execution architectures for the standalone local mode and the 
multi-worker cluster mode. 
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5. EXPERIMENTAL APPLICATION ON 
BRAIN FUNCTIONAL IMAGING DATA 

5.1  Validation of the D-r1DL model 
To validate the effectiveness of the proposed D-r1DL model in 
terms of its capability of decomposing fMRI data into meaningful 
functional networks, we applied the framework on the fMRI data 
acquired during multiple tasks from the Human Connectome 
Project (HCP) Q1 release dataset [26]. The HCP dataset is 
advantageous in its high temporal and spatial resolution 
(TR=0.72s, varied temporal length from 176 to 1200 volumes; 
2mm isotropic voxels, to the total of over 200,000 voxels), which 
enables more detailed characterization of the brain’s functional 
behavior. Additionally, the HCP dataset includes acquisitions of 
fMRI data during 7 tasks and resting-state from 68 subjects, to the 
total of over 500 individual data, which matches the aim of the 
proposed framework for population-level fMRI big data analysis. 

The learned collection of functional networks represented by 
rank-1 dictionary basis was then compared with the HAFNI 
atlases [15]. The HAFNI atlas was obtained by applying online 
dictionary learning method [18] on all the individual fMRI data in 
the same HCP Q1 dataset. Subsequently, 32 group-wise consistent 
networks were identified through manual inspection over more 
than 200,000 decomposed networks [15]. Thus our aim in this 
validation was to identify the presence (or absence) of those atlas 
networks from the results of D-r1DL. The main rationale of 
performing comparison with network templates and atlas network 
for the model validation in this work was due to the lack of 
ground truth in fMRI data. At this stage, the capability and 
accuracy of the proposed model could only be validated by 
comparing with the previously-reported and well-established 
results from the same dataset. 

 
Figure 5. Spatial maps obtained from applying the dictionary 
learning method on the same fMRI dataset implemented by 
SPAMS, r1DL in C++, and D-r1DL in Spark. 

In addition, the D-r1DL model was compared with the rank-1 
dictionary learning algorithm implemented in C++ without any 
parallelization, in order to investigate whether the parallelization 
would affect the model performance. Both of the implementations 
were deployed on the same in-house server and applied on the 
HCP Q1 individual resting-state fMRI data as well as two task 
fMRI datasets (“Emotion” and “Working Memory”) using the 
same parameter setting (r=0.07, K=80). An illustration for the 
spatial maps of two sample networks decomposed by r1DL 
implemented in C++ and D-r1DL, as well as the corresponding 
individual-level atlas network in HAFNI, is shown in the three 
panels in Fig. 5 (a)-(c), respectively. 

The obtained functional networks from D-r1DL were then 
matched to the individual-level atlas networks on the same 
subjects of the same tasks (or resting-state) by maximizing the 
spatial similarity between them: ܴሺ ଵܲ, ଶܲሻ ൌ | ଵܲ ∩ ଶܲ|/| ଶܲ|, (4) 
where P1 and P2 are the spatial map vectors of the two networks. 
In this work P1 is the network decomposed by D-r1DL and P2 is 
the atlas network. Operator |•| counts the total number of voxels 
with non-zero values in the given spatial pattern. R ranges from 0 
(no voxels overlapping) to 1 (exactly the same maps). The spatial 
similarity results show that all of the atlas networks defined in 
HAFNI could be found from the results of D-r1DL. Specifically, 
the 3 atlas networks from Emotion dataset were identified from D-
r1DL results with average spatial similarity of 0.82. The 6 atlas 
networks from WM dataset were identified with average spatial 
similarity of 0.79. The 10 resting-state networks, originally 
reported in [7] and later included in the HAFNI atlas were 
identified from the results of applying D-r1DL on resting state 
fMRI data with average spatial similarity of 0.70. The spatial 
similarity results also show that the networks decomposed by 
r1DL implemented in C++ and D-r1DL implemented in Spark are 
almost identical, with average spatial similarity of 0.99. 

5.2 Experiment on algorithm convergence 
As discussed in section 3 for the algorithm description, we have 
performed extensive experiments for testing the convergence of 
alternating least squares with l-0 constraint problem in Eq. 2. By 
running the r1DL algorithm on each individual fMRI dataset in 
the HCP Q1 release across 7 tasks with dictionary size parameter 
K=400 (i.e. decomposing 400 functional networks from each 
fMRI data), we found that the learning of u and v converged for 
all the 190,400 networks decomposed. The average number of 
alternative updates needed for learning one network for different 
datasets of 5 randomly selected sample subjects is listed in Table 
1 below. It can be seen that regardless of the input data size, the 
majority of the learning would be finished within only a few 
iterations. 

Table 1. Average number of iterations needed for convergence 
across 7 tasks of 5 subjects 

sbj1 sbj2 sbj3 sbj4 sbj5 

Emotion 6.1 6.1 6.2 6.1 6.2 

Gambling 6.3 6.3 6.5 6.3 6.2 

Language 6.4 6.3 6.4 6.3 6.3 

Motor 6.4 6.2 6.3 6.5 6.3 

Relational 6.2 6.2 6.2 6.2 6.2 

Social 6.3 6.3 6.2 6.3 6.3 

WM 6.4 6.3 6.4 6.4 6.4 
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5.3 Performance boost by r1DL comparing 
with other dictionary learning algorithms 
One of a major premise of the proposed r1DL algorithm is that 
because of its smaller memory cost and robust learning 
mechanism (no need to set learning rate), the algorithm should 
have similar or faster running speed, compared with other 
dictionary learning methods, even without the parallelization. 
Based on the performance statistics from running r1DL over the 
whole HCP task fMRI (tfMRI) dataset as introduced above, we 
compare the r1DL with the other two dictionary learning 
algorithms: online dictionary learning implemented in SPAMS 
package [18] and the stochastic coordinate coding (SCC) 
algorithm introduced in [13], by applying these two methods on 
the same HCP Q1 dataset using the same in-house server. The 
performance comparison is shown in Fig. 6 (averaged across all 
68 subjects). From the comparison, it can be seen that r1DL has 
exhibited improved computational speed over the other two 
methods in all the 7 tfMRI datasets. It should be noted that we 
used the r1DL implemented in C++ for the testing in this 
experiment, and in the same way the other two methods were 
implemented to ensure consistency in the comparison. 

 
Figure 6. Average time cost (measured in seconds) for 
functional network decomposition from individual tfMRI data 
during 7 tasks across 68 subjects, using the three dictionary 
learning methods. 

 

5.4 Performance and scalability analysis for 
D-r1DL using the in-house solution  
As introduced in 5.1, in this work we applied the D-r1DL model 
on the three types of datasets for functional network 
decompositions: tfMRI data of Emotion task with dimension of 
176*2M, tfMRI data of Working Memory (WM) task with 
dimension of 405*2M, and resting state fMRI (rsfMRI) data with 
dimension of 1200*2M. The testing input files sizes of the three 
types of dataset were 300MB, 700MB and 2GB, respectively. 
Using the in-house solution as specified in 4.2, we firstly analyzed 
the performance of the D-r1DL model using different numbers of 
cores on a single machine. The performance statistics measured in 
time cost are shown in Fig. 7. 

 
Figure 7. Time cost for decomposing one functional network 
from three different fMRI datasets by recruiting varying 
number of cores, using the in-house solution. 

For all the three datasets, there exists clear logarithmic 
relationship (R2=0.84, 0.89 and 0.92) between the number of cores 
recruited and the total time cost for the decomposition. The speed 
boosts by recruiting more cores for the computation comparing 
with the baseline (1-core) configuration for the three datasets 
using the in-house solution are listed in Table 2, showing the ratio 
between the time cost using 1 core and the time cost using 
multiple cores. 

Table 2. Ratios of time cost decreases by recruiting more cores 
comparing with the single-core configuration 

 Emotion WM RS 

2 cores 3.1 2.8 1.8 

4 cores 6.0 5.1 3.3 

8 cores 6.6 7.7 6.3 

16 cores 6.8 8.6 6.7 

 

As the configuration for using only one core for D-r1DL is 
equivalent to the non-parallel algorithm, the performance statists 
indicate that the parallelization based on Spark could greatly 
improve the performance of the rank-1 dictionary learning 
algorithm. Specifically, the better performance gain on larger 
dataset indicates that the parallelization of the rank-1 dictionary 
learning could potentially overcome the computational bottleneck 
for analyzing big neuroimaging data, potentially enabling high-
throughput analysis on a locally-deployed high-performance 
computation cluster in the future.  

Another analysis of the performance of D-r1DL on the in-house 
server was aiming at investigating the relationship between 
dictionary size K (i.e. number of functional networks to be 
decomposed) and the time/memory cost. The rationale is that, as 
discussed in 3.1, the rank-1 dictionary learning algorithm has 
advantages in the iterative estimation of the basis vectors [u, v]. 
Thus the program does not need to maintain the learning results in 
the memory. As shown in Fig. 8, the average time cost for 
estimating one dictionary only marginally increased when using 
larger dictionary sizes K. Further, the total memory cost of 
running the D-r1DL was independent with K. This feature is 
especially useful when the spatial dimension of the input data is 
large, either because of the higher spatial resolution or because of 
the aggregated dataset from multiple subjects in a population. As 
in such cases, the size of all decomposed networks, which equals 
to P*K, could be very large. 
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Figure 8. Time and memory costs for decomposing Emotion 
tfMRI datasets with varying dictionary size K, recruiting 16 
cores, using the in-house solution. 

5.5 Performance of D-r1DL in multi-worker 
mode using AWS-EC2 solution 
In addition to the experiments of the single-machine multi-core 
configurations conducted using the in-house solution, we have 
also applied the D-r1DL on the same datasets using the cloud 
computing service provided by AWS-EC2 as introduced in 4.2. 
We aimed to investigate the performance of D-r1DL when applied 
over multiple machines through a network interface. Specifically, 
as the Spark Python architecture and the resilient distributed 
dataset abstracts have been designed for supporting large-scale, 
high efficient analytic framework, we are interested to test its 
capability of utilizing the distributed computational resources 
provided by AWS-EC2. In this work, we tested the performance 
in terms of time and memory cost of the D-r1DL model using 1, 
2, 4, 8 and 16 workers on three datasets, while each worker has 
two cores for the computation. It should be noted that for normal 
usage, 16 is the maximum number of workers allowed for one 
instance for the EC2 configuration. The D-r1DL would be running 
in stand-alone mode under single-worker configuration, similar to 
the configuration used in the in-house solution. As discussed in 
4.1, the communications through network interfaces caused by the 
parallelization of computation (e.g. the broadcasting of u and v) 
will potentially increase the time cost mainly due to latencies. 
Thus the single-worker configuration serves as the baseline for 
testing whether recruiting more workers will be beneficial from 
the performance perspective. The performance results of the time 
and memory cost are summarized in Fig. 9, with the baseline 
results from single-worker configuration highlighted.  

 
Figure 9. Time cost for decomposing one functional network 
from three different fMRI datasets by recruiting varying 
numbers of workers, using the AWS-EC2 solution. The results 
from single-worker (standalone mode) configuration are 
highlighted as blocked markers. 

 

First of all, from the results it can be seen that the AWS-EC2 
solution recorded faster computation speed (10%~80% faster) 
comparing with the in-house solution, especially on larger dataset, 
when both of them use two cores. Considering the fact that the 
hardware configuration of AWS-EC2 features larger memory 
capacity better optimized for computation purposes, such 
difference in performance is within our expectation. 

On the other hand, it is interesting to observe that for AWS-EC2 
solution, there exists the break-even point at which the multiple-
worker mode outperformed the stand-alone mode, but only for the 
two larger datasets. The ratio between the time cost using 
standalone mode and the time cost using multiple workers are for 
the three datasets summarized in Table 3. It can be observed that, 
for the 700MB WM and the 2GB RS dataset, using 4 or more 
workers could lead to faster speed comparing with the standalone 
mode using 1 worker. While for the smaller 300MB Emotion data, 
the standalone mode is the fastest among all experiments. Thus it 
can be concluded that the multi-worker configuration will be more 
suitable for analyzing larger datasets, while standalone mode or 
the simpler in-house server solution might be preferred for 
datasets with typically smaller sizes. 

Table 3. Ratios of time cost changes by recruiting various 
number of workers comparing with standalone mode 

 Emotion WM RS 

2 workers 3.1 2.8 1.8 

4 workers 6.0 5.1 3.3 

8 workers 6.6 7.7 6.3 

16 workers 6.8 8.6 6.7 

 

The memory cost on each worker as summarized in Fig. 10 
indicates that the multi-worker mode under AWS-EC2 solution 
scales good with the increasing input file size, as it maintains 
reasonable small (~100MB) memory cost for all configurations 
including the single-worker standalone mode. That is the major 
advantage of using Spark Python model and its resilient 
distributed dataset for the parallelization: one or multiple workers 
need not to load the whole dataset at once, but only its 
corresponding portion of the data according to the data 
partitioning strategy implemented in the RDDs abstract.  
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Figure 10. Memory cost for decomposing three different fMRI 
datasets by recruiting varying number of workers, using the 
AWS-EC2 solution. The results from single-worker 
(standalone mode) configuration are highlighted as blocked 
markers. 

 

6. CONCLUSIONS 
In this paper, we proposed a novel and effective distributed 
dictionary learning model based on iterative rank-1 basis 
estimation. The model was implemented and parallelized in 
Spark, and then deployed using the in-house solution as well as 
the AWS-EC2 solution. The aim of this work is to meet the 
challenges posed by fMRI big data for more efficient and scalable 
data analytics methods. The testing results from running both 
solutions on the HCP Q1 dataset show that functional network 
decomposition using rank-1 dictionary learning could benefit 
from parallelization for both single-worker multi-core 
configuration and the multi-worker cluster configuration, with 
significant performance improvement especially on larger 
datasets. In the current work, we have only analyzed individual-
level fMRI data, with the largest data size of 2GB. As it has been 
shown from the performance statistics that the Spark engine 
supported by RDDs abstract could effectively perform the data 
partition and reduce the memory cost for large-scale input data, 
we will test the model performance on larger, population-level 
datasets (e.g., the HCP full dataset) with the size of dozens or 
hundreds of terabytes in the near future. The ultimate goal of the 
proposed D-r1DL model with the HELPNI neuroinformatics 
system is to provide an integrated solution for functional 
neuroimaging big data management and analysis, enabling high-
throughput neuroscientific knowledge discovery. In addition, the 
similar parallelization scheme used in this work for D-r1DL could 
be implemented on other algorithms as well. Thus the experience 
of this work also offers a practical perspective for improving the 
efficiency and scalability of general machine learning and data 
mining algorithm developments. 
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