
Scalable Fast Rank-1 Dictionary Learning
for fMRI Big Data Analysis

Xiang Li1*, Milad Makkie1*, Binbin Lin2, Mojtaba Sedigh Fazli1, Ian Davidson3
Jieping Ye2#, Tianming Liu1#, Shannon Quinn1#

1Department of Computer Science, University of Georgia, Athens, GA
2Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI

3Department of Computer Science, University of California, Davis, CA
*Equal contributions; #Joint corresponding authors.

ABSTRACT
It has been shown from various functional neuroimaging studies
that sparsity-regularized dictionary learning could achieve
superior performance in decomposing comprehensive and
neuroscientifically meaningful functional networks from massive
fMRI signals. However, the computational cost for solving the
dictionary learning problem has been known to be very
demanding, especially when dealing with large-scale data sets.
Thus in this work, we propose a novel distributed rank-1
dictionary learning (D-r1DL) model and apply it for fMRI big
data analysis. The model estimates one rank-1 basis vector with
sparsity constraint on its loading coefficient from the input data at
each learning step through alternating least squares updates. By
iteratively learning the rank-1 basis and deflating the input data at
each step, the model is then capable of decomposing the whole set
of functional networks. We implement and parallelize the rank-1
dictionary learning algorithm using Spark engine and deployed
the resilient distributed dataset (RDDs) abstracts for the data
distribution and operations. Experimental results from applying
the model on the Human Connectome Project (HCP) data show
that the proposed D-r1DL model is efficient and scalable towards
fMRI big data analytics, thus enabling data-driven neuroscientific
discovery from massive fMRI big data in the future.

Categories and Subject Descriptors
• Information systems~Data mining • Computing
methodologies~Machine learning

General Terms
Algorithms, Performances

Keywords

fMRI; Sparse coding; Distributed computation; Algorithm
parallelization

1. INTRODUCTION
In recent years, the field of neuroimaging studies based on
functional magnetic resonance imaging (fMRI) has featured
unprecedented large-scale data availability thanks to the efforts
from a series of data collection works including Human
Connectome Project [26], 1000 Functional Connectomes [19] and
OpenfMRI Project [20]. The rapidly growing data characterized
different aspects of brain cognitive processes as well as various
disorders, thus providing a great opportunity for decoding and
identification of potential functional biomarkers for brain
diseases. Consequently, there is an urgent call for more efficient
and scalable data analytics and knowledge discovery methods,
especially for dealing with fMRI big data. Functional network
analysis has become an important and popular approach for
discovering the underlying organization structures and meaningful
dynamic patterns from the vast and noisy functional brain signals.
Focusing on understanding the functional aggregation/co-
activation among brain regions through quantitative and data-
driven approaches, researchers have employed various types of
matrix decomposition methods for the functional network analysis
studies, including Independent Component Analysis (ICA) [24],
Principal Component Analysis (PCA) [23] and Dictionary
Learning [11]. Dictionary learning in particular has been shown to
be a powerful tool in image compressed sensing [21],
classification [14] and de-noising [8], and has shown superior
performance in decomposing the meaningful and comprehensive
functional networks from various types of fMRI signals [15].
However, the computational cost for solving the sparse coding
problem for dictionary learning has been known to be very
demanding [12], especially when dealing with large-scale data
sets. Furthermore, most of current dictionary learning methods for
fMRI data analysis are only implemented for local application
without any parallelization scheme. Facing with the rapidly
growing fMRI data and the needs for population-level analysis
with terabytes or even petabytes of data size [23], the computation
power limit of a single machine will eventually become the
bottleneck for efficient and effective knowledge discovery from
the fMRI big data.

Following the previous success in using dictionary learning for
functional network decomposition [15], in this work we devolved
a novel distributed rank-1 dictionary learning (D-r1DL) model,
leveraging the power of distributed computing for handling large-
scale fMRI big data. Compared to the gradient-based dictionary
learning algorithms such as the online dictionary learning [18]
(based on stochastic gradient descent) and the K-SVD [4] (based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org
KDD '16, August 13-17, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-4232-2/16/08...$15.00
DOI: http://dx.doi.org/10.1145/2939672.2939730

511

on gradient descent), the proposed rank-1 dictionary learning
algorithm has a few critical advantages: 1) The learning process is
a fix-point algorithm by alternating least squares updates, thus
avoiding the tuning of the learning rate/step size while also
avoiding the slow convergence near the solution; 2) The memory
cost of the proposed algorithm is very low because it needs not to
maintain the potentially large gradient matrix in the memory. The
intermediate results will be discarded after each rank-1 basis is
learned and stored, which further reduce the memory cost. More
importantly, the rank-1 dictionary learning algorithm is very light-
weighted regarding to the operational complexities: besides the
input data, most of the routines in the algorithm will only take one
vector as input and one vector as output. This feature helps the
r1DL algorithm to be easily parallelized to its distributed version.

For the algorithm parallelization, in this work we used the Spark
engine [3] to implement the D-r1DL algorithm. Spark is a high-
performance distributed compute engine for large-scale data
processing. It is similar to MapReduce, but has several distinct
advantages that make it ideal for the deployment of large-scale
analytics frameworks. First, its basic abstraction for distributed
data, the resilient distributed dataset (RDD) [27], combines robust
fault-tolerance with highly efficient data layout strategies. RDDs
track their computation lineage as a directed acyclic graph;
therefore, if a segment is lost, it can be easily recomputed from
the lineage. These lineages can be optimized on-the-fly to
minimize the overhead of the prescribed computations. Second,
all operations in Spark are performed in-memory, thus
significantly improving throughput of data pipelines. This is a
departure from Hadoop MapReduce, in which data are serialized
to disk in between map and reduce steps. Third, the Spark
compute engine is much more generalizable than MapReduce, and
can efficiently support highly diverse workloads. While Spark
supports the map and reduce primitives from Hadoop
MapReduce, it also supports graph processing [10] and streaming
[28] APIs on the same compute engine, in addition to numerous
functional primitives beyond map and reduce. This structural
flexibility is crucial to the efficient implementation of a wide
variety of distributed algorithms.

An illustration for the operational and algorithmic pipeline
consisting of three layers of model specification is shown in Fig.
1. The first and foremost deliverable of this work is to provide an
integrated solution for the large-scale fMRI big data analysis.
Therefore, we initially deployed the proposed D-r1DL model on
our in-house server (termed “in-house solution”) with an
integrated neuroinformatics system [17]. The neuroinformatics
system provides a web-based user interface for fMRI data
uploading, hosting and result post-processing [17], as illustrated in
Fig. 1(a). Alternatively, we also tested deploying the D-r1DL
model on the cloud computing service provided by Amazon Web
Services Elastic Compute Cloud (AWS-EC2) [1], which has been
widely applied for biomedical imaging researches due to its
resource flexibility and ease of use. For the “AWS-EC2 solution”,
the data preprocessing was performed before running the D-r1DL
model on it. Subroutines of the r1DL algorithm and its logic flow
are illustrated in Fig. 1(b). The parallelization subroutines and its
relationship with the r1DL algorithm are illustrated in Fig. 1(c).

Figure 1. (a): Operations on the neuroinformatics system for
preparing the application of D-r1DL and post-analysis. (b):
Algorithm pipeline of the rank-1 dictionary learning. (c):
Parallelization subroutines of the D-r1DL model derived from
the corresponding subroutines of the r1DL using Spark. The
distribution of input data S is based on RDDs.

2. BACKGROUND AND RELATED WORK
Functional network analysis based on matrix decomposition
methods has the basic premise: the observed functional signals are
the result of the linear combination from the signals of many
latent source (i.e. functional networks), plus noises and/or artifacts
signals [5]. The methods then aim to identify the latent source
signals as well as the loading matrix based on various learning
priors including spatial/temporal independence [5; 24] (for ICA),
or the sparsity in the loading coefficients [11; 15] (for dictionary
learning). The decomposition results consist of two parts: the
signals of the latent sources (i.e. temporal pattern of the functional
networks) that are regarded as basis activation patterns, and the
loading matrix characterizing how each source contributes to the
formation of each observed signal across voxels/ brain regions
(i.e. spatial pattern of the functional networks). The spatial and
temporal pattern of a sample network decomposed result is shown
in Fig. 2.

Several sets of consistent and meaningful functional networks
have been identified in the previous literature: including the 10
well-established resting-state networks (RSNs) [24] obtained
using ICA, the task-related patterns obtained using PCA [25], and
the HAFNI (holistic atlases of functional networks and
interactions) atlases [15] featuring 32 group-wise consistent
patterns during both task and resting-state using dictionary
learning [2]. Visualization of one functional network from the
matrix decomposition results using the proposed r1DL method is
shown below, to illustrate the temporal (the time series curve) and
spatial (on cortical volumetric space) patterns of the brain
functional networks.

512

Figure 2. Top: spatial pattern visualized on cortical
volumetric space of one decomposed network. Bottom:
visualization of its temporal pattern.

While dictionary learning in general is an active area of research,
there has been significantly less effort in scaling the algorithm.
One of the few methods proposed was [22], in which the authors
designed a sparse coding framework on Hadoop MapReduce. The
method was parallelized by splitting the core operations in two
main phases: the sparse coding phase, in which the loading
weights were learned in parallel; and the dictionary learning
phase, in which the dictionary atoms were updated. By taking
advantage of hard sparsity constraints, the authors avoided
materializing the entire data matrix in memory at once, instead
operating on blocks of the matrix in parallel and constructing the
loading matrix row by row. In this work we undertook the similar
dataflow optimization techniques: the sparse coding and
dictionary atoms are assumed to fit easily in memory for fast and
efficient computation. However, using the Spark framework
instead of Hadoop MapReduce provides us intrinsic speedups.
Where Hadoop MapReduce excels in batch processing, Spark is
optimized for iterative computation: intermediate results are
cached in-memory on the workers and re-used in subsequent
iterations, and the updates are efficiently broadcasted to the
workers. Most importantly, the RDDs abstraction pipelines the
requested operations and lazily executes them after determining
the optimal computational path using the least amount of
resources. We leverage these advantages to provide a substantial
performance gain in our D-r1DL dictionary learning
implementation.

3. RANK-1 DICTIONARY LEARNING FOR
FMRI DATA ANALYSIS
The rank-1 dictionary learning algorithm aims to iteratively
estimate multiple rank-1 basis vector u (T×1 vector with unit
length) and its loading coefficient vector v (P×1 vector) to
decompose the input signal matrix S of dimension T×P, by
minimizing the following energy function L(u, v): ܮሺݑ, ሻݒ ൌ ‖ܵ െ ,ி‖்ݒݑ s. t. ‖ݑ‖ ൌ 1, ‖ݒ‖ (1) .ݎ

Eq. 1 indicates that the product of u and v is supposed to well-fit
the input S while the total number of non-zero elements in v
should be smaller than or equal to the given sparsity constraint
parameter r. The minimization problem in Eq. 1 can be solved by
alternatively updating u (randomly initialized before the first
iteration) and v until convergence: ݒ ൌ argmin௩ ‖ܵ െ ி‖்ݒݑ , .ݏ .ݐ ‖ݒ‖ ,ݎ

ݑ ൌ argmin௨ ‖ܵ െ ி‖்ݒݑ ൌ Converging ,‖ݒܵ‖ݒܵ at step ݆ if: ฮݑାଵ െ ฮݑ ൏ ,ߝ ߝ ൌ 0.01.
(2)

Eq. 2 involves multiplication between input matrix S and vector u,
followed by setting all elements in the resulting vector smaller
than its r-th largest value to zero, essentially performing the
vector partition operation. One rank-1 basis [u, v] can be
estimated in each step; afterwards the input matrix S will be
deflated to its residual R: ܴ ൌ ܴିଵ െ ,ିଵ்ܴݒ ܴ ൌ ܵ, 1 ൏ ݊ (3) ,ܭ

where K is the total number of expected basis (i.e. dictionary
atoms) to be discovered from the input data. It could be seen that
the formulation of the proposed rank-1 dictionary learning
algorithm is similar to the sparse PCA problem [6]. However, the
goal of PCA and sparse PCA is to derive a low-dimensional basis
(i.e. learning a smaller set of high representative basis); in
contrast, the goal in dictionary learning is to learn an over-
complete dictionary set [12]. Regarding the algorithm
convergence, it is easy to show that the value of the energy
function as in Eq. 1 decreases at each iteration (until
convergence), thus the objective is guaranteed to converge. The
convergence of the learning in Eq. 2 was also empirically tested in
this work. The deflation operation in Eq. 3 is based on Hotelling’s
deflation method for estimating the eigenvectors, where each step
of deflation leads to the corresponding eigenvalue replaced by
zero. The validity of using Hotelling’s deflation for sparse PCA
was provided in [6], while better deflation methods were also
discussed in [16]. Fig. 3 shows a running example illustrating the
data preparation and networks decomposed by r1DL.

Figure 3. Illustration of the r1DL model applied on fMRI data
as a running example. (a) 4D fMRI data represented as a
series of 3D volume images. (b) Converting 4D data into 2D
input matrix S. (c) Spatial (v1…vK) and temporal (u1…uK)
patterns of the decomposed functional networks from S using
r1DL dictionary learning.

513

4. ALGORITHM PARALLLIZTAION AND
DEPLOYMENT ON SPARK
In this work, the rank-1 dictionary learning algorithm introduced
above was implemented and parallelized on the Spark engine.
Specifically, the vector-matrix multiplication and the matrix-
vector multiplication steps in Eq. 2 were implemented by their
corresponding distributed primitives in Spark. Reading and
partitioning the input data S is supported by the RDD abstraction;
therefore, the distribution of S to each node as a series of key-
value pairs is inherently straight forward: data formation of the
current work is based on row-vectors. In other words, each
column in S contains the T number of observations for one
specific feature, to the total of P features. While S was maintained
as an RDD, the vectors u and v were broadcast to all nodes. Thus
during the vector-matrix multiplication, each node will use its
portion of the updated u vector, and then estimate the v vector
based on the multiplication of portions of S and u. The resulting v
vectors from all the nodes will be then map-reduced by the
summation operation. The matrix-vector multiplication is
relatively easier, where each node will use all the updated v vector
then estimate its corresponding portion of the u vector. The
resulting u vector is just the collection of the results from each
node. In addition, the matrix deflation operation in Eq. 3 was also
parallelized by broadcasting both the u and v vectors learned from
Eq. 2, and then estimating the outer produce between portion of u
vector and the whole v vector at each node. The S matrix is then
subtracted by the results of each node through mapping over each
row and deflating it in parallel. This implementation of the r1DL
algorithm after parallelization is termed as the “Distributed rank-1
dictionary learning” (D-r1DL) model.

4.1 Complexity of the distributed primitives
The computational complexity of the original (un-parallelized)
rank-1 dictionary learning algorithm is quite obvious: all the
major subroutines including matrix-vector multiplication, vector-
matrix multiplications and deflation have complexity of T*P,
essentially traversing through input matrix S. However, the
distributed primitives added for the parallelization in D-r1DL will
potentially cause large extra computations and/or data transfers
across nodes. The problem will be magnified when such transfer
occurs over a network (e.g. worker nodes are distributed across
Internet). Thus we analyzed the extra complexity induced by the
parallelization of the three subroutines, assuming that there are M
number of nodes. It should be noted that the estimations are upper
bounds for the complexity; the empirical performance will be
largely dependent on how Spark optimizes the transformation
lineage for the RDD, and how the RDD is distributed across the
cluster.

 For the vector-matrix multiplication for estimating v, the
total complexity is (T*M + P*M+Tlog(T) + P): T*M caused by
the broadcasting, P*M+Tlog(T) caused by the map reduce and
network shuffle, and P caused by the updating of v.

 For the matrix-vector multiplication, the total
complexity is (P*M + T): P*M caused by the broadcasting, and
T caused by the updating of u.

 For the matrix deflation, the total complexity is
(P*M+T*M): both u and v will be broadcasted to all M nodes.

4.2 Deployment and configuration
The D-r1DL model was deployed on two different sets of server
clusters, leading to two solutions for the data analysis. The first

set is based on the in-house server, called the “in-house solution”.
Spark version 1.5.2 pre-built for Hadoop 1.X and python version
2.7.11 with all the required dependencies were installed on the in-
house server. We setup one standalone spark cluster on the server
with a master node consisting of 16 cores and 16GB RAM. The
in-house solution also featured an integrated neuroinformatics
system named HELPNI (HAFNI-enabled largescale platform for
neuroimaging informatics) as introduced in [17]. Authorized users
of the system can upload, manage, and perform the preparations
of the fMRI data for the model analysis. For running the D-r1DL
model, the preparation steps include fMRI signal preprocessing
(gradient distortion correction, motion correction, bias field
reduction, and high pass filtering) [9], converting the 4D fMRI
images to 2D data matrix, as well as the generation of shell scripts
according to user specifications. When the computations by D-
r1DL are finished, the reports of the results (consisting of the
statistics and visualizations of the decomposed functional
networks) will be automatically generated by the HELPNI
neuroinformatics system [17] and uploaded to the server,
accessible via web interface for viewing and sharing. The in-
house solution is mainly used for testing the single-server (on the
local threads), standalone mode performance of the D-r1DL
algorithm.

The second set was based on the computational resources
provided by AWS-EC2 service. For the AWS-EC2
implementations, we used the provided EC2 deployment scripts
with the Spark distribution. These created a Spark cluster on EC2
with one master node and 16 workers. Each worker consisted of 2
cores and 7.5GB memory. EC2 clusters are highly scalable, as the
number of workers recruited could be adjusted within the cluster.
The preprocessed and converted fMRI data was stored at the
cloud through Amazon S3 and accessible by the EC2 cluster. The
nodes featured Hadoop distributed file system (HDFS), which
ensured data consistency and improved I/O speed. Hadoop
version 1.0, Spark version 1.5.2, and Python version 2.7.11 with
the Anaconda scientific programming stack (e.g. NumPy, SciPy)
were installed on EC2 cluster. An illustrative diagram showing the
organization and execution architecture of the two solutions are
shown below.

Figure 4. Illustrative diagram showing the organization and
execution architectures for the standalone local mode and the
multi-worker cluster mode.

514

5. EXPERIMENTAL APPLICATION ON
BRAIN FUNCTIONAL IMAGING DATA

5.1 Validation of the D-r1DL model
To validate the effectiveness of the proposed D-r1DL model in
terms of its capability of decomposing fMRI data into meaningful
functional networks, we applied the framework on the fMRI data
acquired during multiple tasks from the Human Connectome
Project (HCP) Q1 release dataset [26]. The HCP dataset is
advantageous in its high temporal and spatial resolution
(TR=0.72s, varied temporal length from 176 to 1200 volumes;
2mm isotropic voxels, to the total of over 200,000 voxels), which
enables more detailed characterization of the brain’s functional
behavior. Additionally, the HCP dataset includes acquisitions of
fMRI data during 7 tasks and resting-state from 68 subjects, to the
total of over 500 individual data, which matches the aim of the
proposed framework for population-level fMRI big data analysis.

The learned collection of functional networks represented by
rank-1 dictionary basis was then compared with the HAFNI
atlases [15]. The HAFNI atlas was obtained by applying online
dictionary learning method [18] on all the individual fMRI data in
the same HCP Q1 dataset. Subsequently, 32 group-wise consistent
networks were identified through manual inspection over more
than 200,000 decomposed networks [15]. Thus our aim in this
validation was to identify the presence (or absence) of those atlas
networks from the results of D-r1DL. The main rationale of
performing comparison with network templates and atlas network
for the model validation in this work was due to the lack of
ground truth in fMRI data. At this stage, the capability and
accuracy of the proposed model could only be validated by
comparing with the previously-reported and well-established
results from the same dataset.

Figure 5. Spatial maps obtained from applying the dictionary
learning method on the same fMRI dataset implemented by
SPAMS, r1DL in C++, and D-r1DL in Spark.

In addition, the D-r1DL model was compared with the rank-1
dictionary learning algorithm implemented in C++ without any
parallelization, in order to investigate whether the parallelization
would affect the model performance. Both of the implementations
were deployed on the same in-house server and applied on the
HCP Q1 individual resting-state fMRI data as well as two task
fMRI datasets (“Emotion” and “Working Memory”) using the
same parameter setting (r=0.07, K=80). An illustration for the
spatial maps of two sample networks decomposed by r1DL
implemented in C++ and D-r1DL, as well as the corresponding
individual-level atlas network in HAFNI, is shown in the three
panels in Fig. 5 (a)-(c), respectively.

The obtained functional networks from D-r1DL were then
matched to the individual-level atlas networks on the same
subjects of the same tasks (or resting-state) by maximizing the
spatial similarity between them: ܴሺ ଵܲ, ଶܲሻ ൌ | ଵܲ ∩ ଶܲ|/| ଶܲ|, (4)
where P1 and P2 are the spatial map vectors of the two networks.
In this work P1 is the network decomposed by D-r1DL and P2 is
the atlas network. Operator |•| counts the total number of voxels
with non-zero values in the given spatial pattern. R ranges from 0
(no voxels overlapping) to 1 (exactly the same maps). The spatial
similarity results show that all of the atlas networks defined in
HAFNI could be found from the results of D-r1DL. Specifically,
the 3 atlas networks from Emotion dataset were identified from D-
r1DL results with average spatial similarity of 0.82. The 6 atlas
networks from WM dataset were identified with average spatial
similarity of 0.79. The 10 resting-state networks, originally
reported in [7] and later included in the HAFNI atlas were
identified from the results of applying D-r1DL on resting state
fMRI data with average spatial similarity of 0.70. The spatial
similarity results also show that the networks decomposed by
r1DL implemented in C++ and D-r1DL implemented in Spark are
almost identical, with average spatial similarity of 0.99.

5.2 Experiment on algorithm convergence
As discussed in section 3 for the algorithm description, we have
performed extensive experiments for testing the convergence of
alternating least squares with l-0 constraint problem in Eq. 2. By
running the r1DL algorithm on each individual fMRI dataset in
the HCP Q1 release across 7 tasks with dictionary size parameter
K=400 (i.e. decomposing 400 functional networks from each
fMRI data), we found that the learning of u and v converged for
all the 190,400 networks decomposed. The average number of
alternative updates needed for learning one network for different
datasets of 5 randomly selected sample subjects is listed in Table
1 below. It can be seen that regardless of the input data size, the
majority of the learning would be finished within only a few
iterations.

Table 1. Average number of iterations needed for convergence
across 7 tasks of 5 subjects

sbj1 sbj2 sbj3 sbj4 sbj5

Emotion 6.1 6.1 6.2 6.1 6.2

Gambling 6.3 6.3 6.5 6.3 6.2

Language 6.4 6.3 6.4 6.3 6.3

Motor 6.4 6.2 6.3 6.5 6.3

Relational 6.2 6.2 6.2 6.2 6.2

Social 6.3 6.3 6.2 6.3 6.3

WM 6.4 6.3 6.4 6.4 6.4

515

5.3 Performance boost by r1DL comparing
with other dictionary learning algorithms
One of a major premise of the proposed r1DL algorithm is that
because of its smaller memory cost and robust learning
mechanism (no need to set learning rate), the algorithm should
have similar or faster running speed, compared with other
dictionary learning methods, even without the parallelization.
Based on the performance statistics from running r1DL over the
whole HCP task fMRI (tfMRI) dataset as introduced above, we
compare the r1DL with the other two dictionary learning
algorithms: online dictionary learning implemented in SPAMS
package [18] and the stochastic coordinate coding (SCC)
algorithm introduced in [13], by applying these two methods on
the same HCP Q1 dataset using the same in-house server. The
performance comparison is shown in Fig. 6 (averaged across all
68 subjects). From the comparison, it can be seen that r1DL has
exhibited improved computational speed over the other two
methods in all the 7 tfMRI datasets. It should be noted that we
used the r1DL implemented in C++ for the testing in this
experiment, and in the same way the other two methods were
implemented to ensure consistency in the comparison.

Figure 6. Average time cost (measured in seconds) for
functional network decomposition from individual tfMRI data
during 7 tasks across 68 subjects, using the three dictionary
learning methods.

5.4 Performance and scalability analysis for
D-r1DL using the in-house solution
As introduced in 5.1, in this work we applied the D-r1DL model
on the three types of datasets for functional network
decompositions: tfMRI data of Emotion task with dimension of
176*2M, tfMRI data of Working Memory (WM) task with
dimension of 405*2M, and resting state fMRI (rsfMRI) data with
dimension of 1200*2M. The testing input files sizes of the three
types of dataset were 300MB, 700MB and 2GB, respectively.
Using the in-house solution as specified in 4.2, we firstly analyzed
the performance of the D-r1DL model using different numbers of
cores on a single machine. The performance statistics measured in
time cost are shown in Fig. 7.

Figure 7. Time cost for decomposing one functional network
from three different fMRI datasets by recruiting varying
number of cores, using the in-house solution.

For all the three datasets, there exists clear logarithmic
relationship (R2=0.84, 0.89 and 0.92) between the number of cores
recruited and the total time cost for the decomposition. The speed
boosts by recruiting more cores for the computation comparing
with the baseline (1-core) configuration for the three datasets
using the in-house solution are listed in Table 2, showing the ratio
between the time cost using 1 core and the time cost using
multiple cores.

Table 2. Ratios of time cost decreases by recruiting more cores
comparing with the single-core configuration

 Emotion WM RS

2 cores 3.1 2.8 1.8

4 cores 6.0 5.1 3.3

8 cores 6.6 7.7 6.3

16 cores 6.8 8.6 6.7

As the configuration for using only one core for D-r1DL is
equivalent to the non-parallel algorithm, the performance statists
indicate that the parallelization based on Spark could greatly
improve the performance of the rank-1 dictionary learning
algorithm. Specifically, the better performance gain on larger
dataset indicates that the parallelization of the rank-1 dictionary
learning could potentially overcome the computational bottleneck
for analyzing big neuroimaging data, potentially enabling high-
throughput analysis on a locally-deployed high-performance
computation cluster in the future.

Another analysis of the performance of D-r1DL on the in-house
server was aiming at investigating the relationship between
dictionary size K (i.e. number of functional networks to be
decomposed) and the time/memory cost. The rationale is that, as
discussed in 3.1, the rank-1 dictionary learning algorithm has
advantages in the iterative estimation of the basis vectors [u, v].
Thus the program does not need to maintain the learning results in
the memory. As shown in Fig. 8, the average time cost for
estimating one dictionary only marginally increased when using
larger dictionary sizes K. Further, the total memory cost of
running the D-r1DL was independent with K. This feature is
especially useful when the spatial dimension of the input data is
large, either because of the higher spatial resolution or because of
the aggregated dataset from multiple subjects in a population. As
in such cases, the size of all decomposed networks, which equals
to P*K, could be very large.

0

200

400

600

800

Emotion Gambling Language Motor Relational Social WM

SPAMS SCC r1DL

0

2000

4000

6000

1 2 4 8 16

Emotion WM RS

T
im

e
C

os
t (

se
co

nd
s/

di
ci

to
na

ry
)

Number of Cores

516

Figure 8. Time and memory costs for decomposing Emotion
tfMRI datasets with varying dictionary size K, recruiting 16
cores, using the in-house solution.

5.5 Performance of D-r1DL in multi-worker
mode using AWS-EC2 solution
In addition to the experiments of the single-machine multi-core
configurations conducted using the in-house solution, we have
also applied the D-r1DL on the same datasets using the cloud
computing service provided by AWS-EC2 as introduced in 4.2.
We aimed to investigate the performance of D-r1DL when applied
over multiple machines through a network interface. Specifically,
as the Spark Python architecture and the resilient distributed
dataset abstracts have been designed for supporting large-scale,
high efficient analytic framework, we are interested to test its
capability of utilizing the distributed computational resources
provided by AWS-EC2. In this work, we tested the performance
in terms of time and memory cost of the D-r1DL model using 1,
2, 4, 8 and 16 workers on three datasets, while each worker has
two cores for the computation. It should be noted that for normal
usage, 16 is the maximum number of workers allowed for one
instance for the EC2 configuration. The D-r1DL would be running
in stand-alone mode under single-worker configuration, similar to
the configuration used in the in-house solution. As discussed in
4.1, the communications through network interfaces caused by the
parallelization of computation (e.g. the broadcasting of u and v)
will potentially increase the time cost mainly due to latencies.
Thus the single-worker configuration serves as the baseline for
testing whether recruiting more workers will be beneficial from
the performance perspective. The performance results of the time
and memory cost are summarized in Fig. 9, with the baseline
results from single-worker configuration highlighted.

Figure 9. Time cost for decomposing one functional network
from three different fMRI datasets by recruiting varying
numbers of workers, using the AWS-EC2 solution. The results
from single-worker (standalone mode) configuration are
highlighted as blocked markers.

First of all, from the results it can be seen that the AWS-EC2
solution recorded faster computation speed (10%~80% faster)
comparing with the in-house solution, especially on larger dataset,
when both of them use two cores. Considering the fact that the
hardware configuration of AWS-EC2 features larger memory
capacity better optimized for computation purposes, such
difference in performance is within our expectation.

On the other hand, it is interesting to observe that for AWS-EC2
solution, there exists the break-even point at which the multiple-
worker mode outperformed the stand-alone mode, but only for the
two larger datasets. The ratio between the time cost using
standalone mode and the time cost using multiple workers are for
the three datasets summarized in Table 3. It can be observed that,
for the 700MB WM and the 2GB RS dataset, using 4 or more
workers could lead to faster speed comparing with the standalone
mode using 1 worker. While for the smaller 300MB Emotion data,
the standalone mode is the fastest among all experiments. Thus it
can be concluded that the multi-worker configuration will be more
suitable for analyzing larger datasets, while standalone mode or
the simpler in-house server solution might be preferred for
datasets with typically smaller sizes.

Table 3. Ratios of time cost changes by recruiting various
number of workers comparing with standalone mode

 Emotion WM RS

2 workers 3.1 2.8 1.8

4 workers 6.0 5.1 3.3

8 workers 6.6 7.7 6.3

16 workers 6.8 8.6 6.7

The memory cost on each worker as summarized in Fig. 10
indicates that the multi-worker mode under AWS-EC2 solution
scales good with the increasing input file size, as it maintains
reasonable small (~100MB) memory cost for all configurations
including the single-worker standalone mode. That is the major
advantage of using Spark Python model and its resilient
distributed dataset for the parallelization: one or multiple workers
need not to load the whole dataset at once, but only its
corresponding portion of the data according to the data
partitioning strategy implemented in the RDDs abstract.

0.0

250.0

500.0

5 10 20 40 80 160

T
im

e
C

os
t (

se
co

nd
s/

di
ci

to
na

ry
)

Dictionary Size K

50.0

75.0

100.0

5 10 20 40 80 160

M
em

or
y

C
os

t (
M

B
)

Dictionary Size K

0

1000

2000

3000

1 2 4 8 16

Emotion WM RS

T
im

e
C

os
t (

se
co

nd
s/

di
ci

to
na

ry
)

Number of Workers

517

Figure 10. Memory cost for decomposing three different fMRI
datasets by recruiting varying number of workers, using the
AWS-EC2 solution. The results from single-worker
(standalone mode) configuration are highlighted as blocked
markers.

6. CONCLUSIONS
In this paper, we proposed a novel and effective distributed
dictionary learning model based on iterative rank-1 basis
estimation. The model was implemented and parallelized in
Spark, and then deployed using the in-house solution as well as
the AWS-EC2 solution. The aim of this work is to meet the
challenges posed by fMRI big data for more efficient and scalable
data analytics methods. The testing results from running both
solutions on the HCP Q1 dataset show that functional network
decomposition using rank-1 dictionary learning could benefit
from parallelization for both single-worker multi-core
configuration and the multi-worker cluster configuration, with
significant performance improvement especially on larger
datasets. In the current work, we have only analyzed individual-
level fMRI data, with the largest data size of 2GB. As it has been
shown from the performance statistics that the Spark engine
supported by RDDs abstract could effectively perform the data
partition and reduce the memory cost for large-scale input data,
we will test the model performance on larger, population-level
datasets (e.g., the HCP full dataset) with the size of dozens or
hundreds of terabytes in the near future. The ultimate goal of the
proposed D-r1DL model with the HELPNI neuroinformatics
system is to provide an integrated solution for functional
neuroimaging big data management and analysis, enabling high-
throughput neuroscientific knowledge discovery. In addition, the
similar parallelization scheme used in this work for D-r1DL could
be implemented on other algorithms as well. Thus the experience
of this work also offers a practical perspective for improving the
efficiency and scalability of general machine learning and data
mining algorithm developments.

7. REFERENCES
[1] https://aws.amazon.com/ec2/

[2] http://hafni.cs.uga.edu

[3] https://spark.apache.org

[4] Aharon, M., Elad, M., and Bruckstein, A., 2006. K-SVD: An
Algorithm for Designing Overcomplete Dictionaries for
Sparse Representation. Signal Processing, IEEE
Transactions on 54, 11, 4311-4322. DOI=
http://dx.doi.org/10.1109/TSP.2006.881199.

[5] Biswal, B.B. and Ulmer, J.L., 1999. Blind Source Separation
of Multiple Signal Sources of fMRI Data Sets Using
Independent Component Analysis. Journal of Computer
Assisted Tomography 23, 2, 265-271.

[6] D'aspremont, A., Ghaoui, L.E., Jordan, M.I., and Lanckreit,
G.R., 2004. A Direct Formulation for Sparse PCA Using
Semidefinite Programming. In Advances in Neural
Information Processing Systems.

[7] Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F.,
Scheltens, P., Stam, C.J., Smith, S.M., and Beckmann, C.F.,
2006. Consistent resting-state networks across healthy
subjects. Proceedings of the National Academy of Sciences of
the United States of America 103, 37, 02/20/received),
13848-13853. DOI=
http://dx.doi.org/10.1073/pnas.0601417103.

[8] Elad, M. and Aharon, M., 2006. Image Denoising Via Sparse
and Redundant Representations Over Learned Dictionaries.
Image Processing, IEEE Transactions on 15, 12, 3736-3745.
DOI= http://dx.doi.org/10.1109/TIP.2006.881969.

[9] Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson,
T.S., Fischl, B., Anderson, J.L., Xu, J., Jbabdi, S., Webster,
M., Polimeni, J.R., Van Essen, D.C., and Jenkinson, M.,
2013. The minimal preprocessing pipelines for the Human
Connectome Project. NeuroImage 80, 105-124. DOI=
http://dx.doi.org/http://dx.doi.org/10.1016/j.neuroimage.2013
.04.127.

[10] Gonzalez, J.E., Xin, R.S., Dave A., Crankshaw, D., Franklin,
M.J., and Stoica, I., 2014. GraphX: graph processing in a
distributed dataflow framework. In Proceedings of the
Proceedings of the 11th USENIX conference on Operating
Systems Design and Implementation, USENIX Association,
2685096, 599-613.

[11] Kangjoo, L., Sungho, T., and Jong Chul, Y., 2011. A Data-
Driven Sparse GLM for fMRI Analysis Using Sparse
Dictionary Learning With MDL Criterion. Medical Imaging,
IEEE Transactions on 30, 5, 1076-1089. DOI=
http://dx.doi.org/10.1109/TMI.2010.2097275.

[12] Lee, H., Battle, A., Raina, R., and NG, A.Y., 2006. Efficient
sparse coding algorithms. In Advances in Neural Information
Processing Systems.

[13] Lin, B., Li, Q., Sun, Q., Lai, M.-J., Davidson, I., Fan, W.,
and Ye, J., 2014. Stochastic Coordinate Coding and Its
Application for Drosophila Gene Expression Pattern
Annotation. arXiv:1407.8147.

[14] Liu, B.-D., Wang, Y.-X., Zhang, Y.-J., and Shen, B., 2013.
Learning dictionary on manifolds for image classification.
Pattern Recognition 46, 7, 1879-1890. DOI=
http://dx.doi.org/10.1016/j.patcog.2012.11.018.

[15] Lv, J., Jiang, X., Li, X., Zhu, D., Zhang, S., Zhao, S., Chen,
H., Zhang, T., Hu, X., Han, J., Ye, J., Guo, L., and Liu, T.,
2015. Holistic atlases of functional networks and interactions
reveal reciprocal organizational architecture of cortical
function. Biomedical Engineering, IEEE Transactions on 62,
4, 1120-1131. DOI=
http://dx.doi.org/10.1109/TBME.2014.2369495.

[16] Mackey, L.W., 2008. Deflation Methods for Sparse PCA. In
Advances in Neural Information Processing Systems.

[17] Makkie, M., Zhao, S., Jiang , X., Lv , J., Zhao, Y., Ge, B., Li,
X., Han, J., and Liu, T., 2015. HAFNI-enabled largescale

60

75

90

105

120

1 2 4 8 16

Emotion WM RS
M

em
or

y
C

os
t (

M
B

)

Number of Workers

518

platform for neuroimaging informatics (HELPNI). Brain
Informatics 2, 4, 225-238. DOI=
http://dx.doi.org/10.1007/s40708-015-0024-0.

[18] Mairal, J., Bach, F., Ponce, J., and Sapiro, G., 2010. Online
Learning for Matrix Factorization and Sparse Coding. J.
Mach. Learn. Res. 11, 19-60.

[19] Mennes, M., Biswal, B.B., Castellanos, F.X., and Milham,
M.P., 2013. Making data sharing work: The FCP/INDI
experience. NeuroImage 82, 683-691. DOI=
http://dx.doi.org/ 10.1016/j.neuroimage.2012.10.064.

[20] Poldrack, R.A., Barch, D.M., Mitchell, J.P., Wager, T.D.,
Wagner, A.D., Devlin, J.T., Cumba, C., Koyejo, O., and
Milham, M.P., 2013. Toward open sharing of task-based
fMRI data: the OpenfMRI project. Frontiers in
Neuroinformatics 7, 12. DOI=
http://dx.doi.org/10.3389/fninf.2013.00012.

[21] Ravishankar, S. and Bresler, Y., 2011. MR Image
Reconstruction From Highly Undersampled k-Space Data by
Dictionary Learning. Medical Imaging, IEEE Transactions
on 30, 5, 1028-1041. DOI=
http://dx.doi.org/10.1109/TMI.2010.2090538.

[22] Sindhwani, V. and Ghoting, A., 2012. Large-scale distributed
non-negative sparse coding and sparse dictionary learning. In
Proceedings of the Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data
mining 2339610, 489-497. DOI=
http://dx.doi.org/10.1145/2339530.2339610.

[23] Smith, S.M., Hyvarinen, A., Varoquaux, G., Miller, K.L.,
and Beckmann, C.F., 2014. Group-PCA for very large fMRI
datasets. NeuroImage 101, 0, 738-749. DOI=
http://dx.doi.org/ 10.1016/j.neuroimage.2014.07.051.

[24] Smith, S.M., Miller, K.L., Moeller, S., XU, J., Auerbach,
E.J., Woolrich, M.W., Beckmann, C.F., Jenkinson, M.,

Andersson, J., Glasser, M.F., Van Essen, D.C., Feinberg,
D.A., Yacoub, E.S., and Ugurbil, K., 2012. Temporally-
independent functional modes of spontaneous brain activity.
Proceedings of the National Academy of Sciences 109, 8,
3131-3136. DOI=
http://dx.doi.org/10.1073/pnas.1121329109.

[25] Thirion, B. and Faugeras, O., 2003. Dynamical components
analysis of fMRI data through kernel PCA. NeuroImage 20,
1, 34-49. DOI= http://dx.doi.org/ 10.1016/S1053-
8119(03)00316-1.

[26] Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J.,
Yacoub, E., and Ugurbil, K., 2013. The WU-Minn Human
Connectome Project: An overview. NeuroImage 80, 0, 62-
79. DOI= http://dx.doi.org/
10.1016/j.neuroimage.2013.05.041.

[27] Zharia, M., Chowdhury, M., Das, T., Dave, A., MA, J.,
Mccauley, M., Franklin, M.J., Shenker, S., and Stoica, I.,
2012. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In Proceedings
of the Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, 2228301, 2-
2.

[28] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and
Stoica, I., 2013. Discretized streams: fault-tolerant streaming
computation at scale. In Proceedings of the Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems
Principles, 2522737, 423-438. DOI=
http://dx.doi.org/10.1145/2517349.2522737.

519

