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Abstract. Extracting multi-scale information is key to semantic seg-
mentation. However, the classic convolutional neural networks (CNNs)
encounter difficulties in achieving multi-scale information extraction: ex-
panding convolutional kernel incurs the high computational cost and
using maximum pooling sacrifices image information. The recently devel-
oped dilated convolution solves these problems, but with the limitation
that the dilation rates are fixed and therefore the receptive field cannot fit
for all objects with different sizes in the image. We propose an adaptive-
scale convolutional neural network (ASCNet), which introduces a 3-layer
convolution structure in the end-to-end training, to adaptively learn an
appropriate dilation rate for each pixel in the image. Such pixel-level
dilation rates produce optimal receptive fields so that the information of
objects with different sizes can be extracted at the corresponding scale.
We compare the segmentation results using the classic CNN, the dilated
CNN and the proposed ASCNet on two types of medical images (The
Herlev dataset and SCD RBC dataset). The experimental results show
that ASCNet achieves the highest accuracy. Moreover, the automatically
generated dilation rates are positively correlated to the sizes of the ob-
jects, confirming the effectiveness of the proposed method.

Keywords: Multi-scale, dilated convolution, feature learning, semantic
segmentation

1 Introduction

Medical image segmentation is challenging despite the substantial advance in
deep convolutional neural networks (CNNs). To segment objects of different
sizes, CNNs should be able to extract multi-scale information. However, due to
the limited kernel size, the classic convolutional layer can only extract image
information within a certain range (called the receptive field). Traditionally, two
types of methods are proposed to enlarge the receptive field. One is to expand
the convolutional kernel with substantially increased computational cost and
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time [8]. The other introduces the maximum pooling operation, which roughly
doubles the receptive field but loses part of image information [6].

Recent works aim to find better solutions to this problem. Yu et. al. [11, 12]
first propose to use the dilated convolution to increase the sizes of receptive
fields without losing information. Two types of studies have further improved the
method. The first is to arbitrarily assign the dilation rate for each convolutional
layer. For example, in order to solve the problem of small and dense target
segmentation, Hamaguchi et al. [2] and Li et al. [5] use different configurations
of dilation rates in the deep segmentation models and achieve high accuracies.
The second category is to use a pyramid structure of dilated convolutions to
fuse the information from multiple scales. Chen et al. develop a module called
Atrous Spatial Pyramid Pooling (ASPP), in which multi-scale information is
extracted by parallel convolutions with different dilation rates [1]. Mehta et al. [7]
and Wang et al. [10] also report similar pyramid (hybrid) dilated convolutional
modules to improve the semantic segmentation.

Although the aforementioned methods show that the dilated convolution is
effective, it has two major limitations: 1) training a dilated CNN requires ex-
tra efforts on tuning the dilation rates; 2) manually designed dilation rate only
provides a fixed-size receptive field, which may not be suitable for different ob-
jects in the same image. So following the idea of dilated convolution, we propose
a new convolutional network architecture, referred as Adaptive-Scale Convolu-
tional Network (ASCNet). By introducing a small 3-layer convolutional structure
(called additional network), ASCNet adaptively learns the dilation rate for each
pixel on the input feature map. Such pixel-level dilation rates form a dilation
rate field, which is applied to all convolutional layers. The proposed network is
optimized in an end-to-end training process, where the convolutions are able to
extract image information of different objects in the optimal receptive fields.

We compare the classic CNN, the dilated CNN and the proposed ASCNet
on both Herlev [3] and RBC datasets [13]. The experimental results show that
ASCNet improves the accuracy of image segmentation on both datasets with a
slight increment of computational cost. Furthermore, the dilation rates learned
by the proposed ASCNet are positively correlated to the sizes of the objects
from both datasets. It confirms that the proposed method effectively finds the
optimal dilation rates for objects with different sizes.

2 Method

2.1 Classic and dilated convolutions

The classic convolutional kernel samples the input feature map on an inte-
ger grid, for example, the grid R for a 3 × 3 convolutional kernel is R =
{(−1,−1), (−1, 0), · · · , (1, 0), (1, 1)}. Classic convolution can be expressed as:

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn), (1)
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where x(p0 +pn) denotes the input value at pixel (p0 +pn), y(p0) denotes the
output value at pixel p0, and w(pn)[pn ∈ R] is the weight at the offset pn in the
kernel. The classic convolution has small receptive field because of the limited
grid size, so it usually works with successive downsampling process to enlarge
the receptive field at a cost of spatial resolution.

Dilated convolution [9,11] provides an alternative way to enlarge the receptive
field by inserting “holes” into the convolutional kernel with a dilation rate of r,
which can be defined as:

y(p0) =
∑

pn∈R
w(pn) · x(p0 + r · pn), (2)

where r is an integer, so dilated convolution is a discrete operation and it degen-
erates into classic convolution when r = 1. Compared to successive downsam-
pling process, dilated convolution is able to systematically integrate multi-scale
contextual features without losing spatial information.

2.2 Adaptive-scale convolution (ASC)

Following the idea of the dilated convolution, we design a novel convolutional
module called adaptive-scale convolution (ASC). ASC has three distinctions from
the dilated convolution: 1) the dilation rate r is learned from raw data instead of
manually assigned; 2) different pixels on a certain feature map employ adaptive
dilation rates rather than the same one; 3) the dilation rate r is a float value
rather than an integer.

More specifically, we use an additional network to learn the pixel-level dila-
tion rates, which form a rate field with one channel and the same size as the
input feature map. Different dilation rates can thus be used on the feature map
simultaneously, providing optimal receptive fields to objects with different sizes.
The ASC can be expressed as:

y(p0) =
∑

pn∈R
w(pn) · x(p0 + r(x0, θ) · pn), (3)

Fig. 1: The sampling process of ASC module. In the left panel, the colored dots
represent the sampling locations of the ASC kernel. In the right panel, a bilinear
interpolation is adopted when the dilation rate is a float number.
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where r is learned by the network with the input of raw image x0 and the
parameters of θ.

As shown in Fig. 1, the learned dilation rate in our proposed ASC is usually
a float value and the sampling location p (p = p0 + r(x0, θ) · pn) may not lie
exactly on the regular grid. We therefore introduce a bilinear interpolation to
compute the value x(p) at p from the integer coordinates on the input feature
map [4],

x(p) =
∑
q

fint(q,p) · x(q), (4)

where q enumerates all integer locations on the input feature map, fint is the
bilinear interpolation kernel defined as:

fint(q,p) = max(0, 1− |qx − px|) ·max(0, 1− |qy − py|), (5)

where px(py) and qx(qy) denote x-(y-)coordinate of p and q, respectively. In
fact, only the four integer locations qi[i = 1, 2, 3, 4] adjacent to p will contribute
to the interpolated value, because fint equals 0 on other locations. The right
panel of Fig. 1 demonstrates an example of p falling inside the grid. The Eq.(3)
is further defined as:

y(p0) =
∑

pn∈R
w(pn)·x(p0+r(x, θ)·pn) =

∑
pn∈R

w(pn)·
∑
q

fint(q,p)·x(q). (6)

2.3 Adaptive-scale convolutional neural network (ASCNet)

Based on the ASC module, we present adaptive-scale convolutional neural net-
work (ASCNet) to deal with pixel-wise semantic segmentation. As shown in
Fig. 2, ASCNet contains an additional network and a series of ASC modules
connected in a sequential order. First, the dilation rate field is learned from the
input image by an additional network which is formed by 3 3× 3 standard con-
volutions with the activation of RELU. We set the channel numbers of the 3
convolutions to 8, 4, and 1, respectively. Second, the learned rate field is trans-
mitted to each ASC module, providing pixel-level dilation rates. The ASCs thus
sample the multi-scale information with the optimal receptive fields as men-
tioned in Section 2.2. The proposed ASCNet is trained in an end-to-end fashion,
on which the rate field and segmentation output are optimized simultaneously.

3 Experiments

Data Description. We evaluate the proposed method on two public datasets
(The Herlev dataset [3] and SCD RBC dataset [13]): 1) The Herlev dataset con-
sists of 917 cervical cell images (562 for train, 171 for valid and 184 for test)
from Pap smear tests. All images are normalized to have zero mean with unit
variance intensity and are resized to 256 × 256; 2) The SCD RBC dataset con-
sists of 314 microscopy images (250 for train and 64 for test) from 5 Sickle Cell
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Disease (SCD) patients. Binary annotations (red blood cells VS background) are
provided. We remove the blank margins of the raw images and resize them into
256× 256. More information about the two datasets can be found in [3, 13].

Experiments. To further evaluate the effectiveness of the proposed ASCNet,
we compare five models: 1) the classic CNN, which consists of 7 standard convo-
lutions, and the channel numbers of the first 6 convolutions are set to 8 and that
of the last layer is consistent with the number of class to generate the segmen-
tation result; 2) the dilated CNN, which contains 7 dilated convolutions with
the dilation rates of 1,1,2,4,8,16, and 1, respectively. Such setting follows the
“exponential expansion” scheme reported in [11]; 3) U-Net, the previous state-
of-the-arts on these two datasets; 4) ASCNet-7, the proposed ASCNet with 7
adaptive-scale convolutions, while the channel number is regulated in the same
way as the classic CNN; 5) ASCNet-14, the proposed ASCNet with 14 adaptive-
scale convolutions, where the channel numbers of the first 13 convolutions are
set to 32 and that of the last layer is set to the number of class. The kernel sizes
are 3 for all convolutions in the experiments.

Implementation Details. We train the models on a single NVIDIA GTX
1080ti GPU. To minimize the softmax cross entropy loss, networks are trained
with Adam optimizer for 50000 epochs. Limited to GPU memory, each batch
only contains one sample. Furthermore, we employ RELU as the activation func-
tion in all the convolutional layers (including the classic convolutions, the dilated

Fig. 2: Architecture of the adaptive-scale convolutional neural network. Note
that raw image, rate field and intermediate feature maps have the same spatial
dimensions.
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Fig. 3: Two examples of the segmentation results of the different models on the
Herlev dataset.

convolutions and the ASCs). The networks are implemented in TensorFlow 1.2.1.

4 Results

Evaluation of the performance of ASCNet. Table 1 reports the results
of cell segmentation on the two datasets, where we use Dice, Precision, and
Recall to measure the performance of five different approaches. The first three
approaches, the classic CNN, the dilated CNN, and the proposed ASCNet-7,
share the same network backbone of 7 convolutions with a kernel size of 3. As
shown in Table 1, ASCNet-7 outperforms the other two, suggesting that the
proposed ASC module is effective. Moreover, between the last two approaches,
ASCNet-14 outperforms U-Net on both datasets, indicating that the proposed
ASCNet can achieve accuracy comparable to that of the state-of-the-art meth-
ods. Lastly, compared to the ASCNet-7, ASCNet-14 benefits from the deeper
(more convolutions) and wider (more channels) network architecture which is
important to extract image information.

Fig. 3 illustrates two examples of the segmentation of different models on the
Herlev dataset. It shows clearly that segmentation errors reduce significantly
after we introduce ASC modules.

Table 1: Quantitative analysis of different methods in cell segmentation.
The Herlev dataset SCD RBC dataset

Dice Precision Recall Dice Precision Recall

Classic CNN 0.745 0.765 0.767 0.958 0.967 0.949
Dilated CNN 0.824 0.817 0.890 0.956 0.960 0.953

ASCNet-7 0.857 0.863 0.891 0.959 0.960 0.958
U-Net [13,14] 0.869 0.897 0.879 0.957 0.955 −
ASCNet-14 0.906 0.909 0.925 0.967 0.973 0.961
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Fig. 4: Visualization of the learned dilation rate. (a) Examples of the segmenta-
tion labels and learned rate fields. Top row: Herlev dataset; Bottom row: SCD
RBC dataset. (b) An illustration of the distributions of the learned dilation
rates. The red spike at approximately 6 is caused by the learned rates of image
background in the four corners.

Discussion about the learned dilation rate. To better understand the
mechanism of the ASC module, we display an example of rate fields generated
by ASCNet-14 on both datasets in Fig. 4 (a). Additionally, in Fig. 4 (b), we
display the corresponding distributions of learned dilation rates. For the Herlev
dataset (top row in Fig. 4 (a)), the cervical cells are imaged at high magnifi-
cation. The ASCNet thus produces larger dilation rates accordingly, which are
more capable of aggregating global information of the large objects. For the SCD
RBC dataset (bottom row in Fig. 4 (a)), the red blood cells are imaged at low
magnification, so the ASCNet chooses to capture more local and fine details by
producing smaller dilation rates. Another interesting finding is that the ASCNet
can produce dilation rates less than 1, while the dilated convolution is incapable
of doing so due to the integer dilation rate. In summary, the proposed ASCNet
can adaptively learn the appropriate dilation rates for targets with different sizes,
allowing the convolutions to better collect multi-scale features systematically.

The dilation rates produced by ASCNet-14 are smaller than that produced
by ASCNet-7 (see Fig. 4 (b)). One possible explanation is that the final size
of receptive field (accumulated by successive convolutional layers) required to
extract information in a deep model is roughly constant for the same object.
As all convolutions in ASCNet share the same dilation rate field, the receptive
field in the deeper ASCNet is linearly magnified more times and each convolu-
tional layer then requires smaller dilation rates. Such behaviors are worth further
investigation with quantitative analysis in future work.

5 Conclusion

In this work, we have proposed an adaptive-scale convolutional neural network
(ASCNet) for image segmentation, which adaptively learns pixel-level dilation
rates to form a dilation rate field, and ultimately, produces appropriate receptive
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fields for objects with different sizes. Experimental results demonstrate that the
proposed ASCNet is effective in extracting multi-scale information and achieves
the state-of-the-art accuracy on cell segmentation. Based on the visualization of
the learned rate fields on the Herlev and the SCD RBC datasets, we discover
a positive correlation between the optimal dilation rates and the sizes of the
segmentation targets. This finding confirms that a key to improving multi-scale
information extraction is to set the most appropriate receptive field for each ob-
ject in the image. In addition, compared to its plain counterparts, ASCNet only
introduces an additional 3-layer network with a slightly increased computational
cost. This allows us to easily replace the classic and dilated convolutions with
ASCs in the existing deep models. In future work, we will test the proposed
method on other computer vision tasks and further study the mechanism of
multi-scale feature learning with ASC modules.
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