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Abstract

Worldwide interest in artificial intelligence (AI) applications, including imaging, is high and growing rapidly, fueled by availability of large
datasets (“big data”), substantial advances in computing power, and new deep-learning algorithms. Apart from developing new AI methods
per se, there are many opportunities and challenges for the imaging community, including the development of a common nomenclature,
better ways to share image data, and standards for validating AI program use across different imaging platforms and patient populations. AI
surveillance programs may help radiologists prioritize work lists by identifying suspicious or positive cases for early review. AI programs can
be used to extract “radiomic” information from images not discernible by visual inspection, potentially increasing the diagnostic and
prognostic value derived from image datasets. Predictions have beenmade that suggest AI will put radiologists out of business. This issue has
been overstated, and it is muchmore likely that radiologists will beneficially incorporate AImethods into their practices. Current limitations
in availability of technical expertise and even computing power will be resolved over time and can also be addressed by remote access
solutions. Success for AI in imaging will bemeasured by value created: increased diagnostic certainty, faster turnaround, better outcomes for
patients, and better quality of work life for radiologists. AI offers a new and promising set of methods for analyzing image data. Radiologists
will explore these new pathways and are likely to play a leading role in medical applications of AI.
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INTRODUCTION
The invention of the programmable digital computer in
the 1940s stimulated mathematicians and philosophers to
speculate on the limits of what machines could do. Could
machines learn to think? How close could machine
capabilities come to those of human beings? A conference
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at Dartmouth University in 1956 explored these ques-
tions and led to the coining of the term artificial intelli-
gence (AI) [1]. The race was on.

In the ensuing 60 years, enthusiasm for AI has waxed
and waned but has reignited recently with the availability of
ever less expense,massively parallel computing systems. The
term deep learning was added to the AI lexicon to reflect the
ability to harness new computing power to develop more
powerful AI approaches with more layers of analysis than
heretofore possible. The successes of AI programs from IBM
(Armonk, New York) in the games of chess and the quiz
show Jeopardy! (Deep Blue) and from Google (Mountain
View, California) in the game of Go (DeepMind) [2] were
exciting milestones that made people outside of the
scientific community aware of AI and its potential.
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Major corporations and governments around the
world have embraced AI technology as one of the
important strategies for dealing with the enormous
amounts of digital data being generated in the informa-
tion age—the age of “big data.” AI is also on the doorstep
of medical practice. The trickle of publications now
appearing in journals will soon turn into a flood.

The radiology community has played a leading role in
propelling medicine into its digital age and now has the
opportunity to become a leader in exploring medical
applications of AI. The tens of millions of radiology re-
ports and billions of images now archived in digital form
exemplify the concept of “big data” and constitute the
required substrate for AI research.

The fundamental question is whether AI applications
in radiology can add value. Adding value includes the
discovery of new knowledge and extraction of more and
better information from imaging examinations to achieve
better outcomes for patients at lower cost. For radiolo-
gists, adding value includes establishment of more effi-
cient work processes and improved job satisfaction.

The goal of this perspective is to help create a frame-
work—apart from a discussion of AI technology per se—
for developing strategies to explore the potential of AI in
radiology and to identify a number of scientific, cultural,
educational, and ethical issues that need to be addressed.

OPPORTUNITIES
Two areas of opportunity that can help provide a
framework for approaching AI in imaging deserve dis-
cussion: the desirability of establishing standards and
infrastructure and the opportunity to establish a cate-
gorical model for approaching the spectrum of clinical
and research applications of AI to help identify and un-
derstand their respective value propositions.

Standards and Infrastructure
AI imaging research would benefit from the establish-
ment of (1) national and international image sharing
networks, (2) reference datasets of proven cases against
which AI programs can be tested and compared, (3)
criteria for standardization and optimization of imaging
protocols for use in AI applications, and (4) a common
lexicon for describing and reporting AI applications.

Access to large numbers of proven cases is necessary to
test and validate AI programs and, for many applications,
to train them. Taking face recognition as an example, the
DeepFace system used 4.4million labeled faces from 4,030
people collected by Facebook (Menlo Park, California) as
training data. Its accuracy consistently approaches human-
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level performance [3]. Thus, for the purpose of analyzing
medical images, even for relatively common conditions,
it would be advantageous to be able to aggregate material
from multiple institutions. The technical basis for
accomplishing this already exists through networks
created by the RSNA and the ACR as well as work such
as The Cancer Imaging Archive at the National Cancer
Institute to establish systems for image sharing [4]. The
existence of these networks represents a unique
opportunity to create shared image repositories for AI
research. The new ACR Data Science Institute could
serve as a convening organization.

As a corollary to the foregoing, robust methods are
needed for quality control of shared images and
ensuring the integrity of image data. Standards still
need to be developed that address curation of images. If
image data are corrupted in transmission or storage or
during processing, it will be difficult to duplicate work
or confirm its validity. Although several scientific
informatics systems to support data transfer, storage,
quality control, and query have been applied across
institutions, such as those provided by the National
Center for Biotechnology Information [4], the
complete needs of such a shared informatics system
are not yet defined for radiology.

An image sharing network would support and facili-
tate use of reference datasets of proven cases on which to
test and compare new AI programs for accuracy and other
measures of performance, such as required processing
power. Such datasets also could be used in optimizing
programs and selecting the best programs for further
development and clinical use. Ideally, a sufficient number
of reference datasets would be established in each appli-
cation area to reflect the demographics of different patient
populations. A database conceptually similar to the
“ImageNet” [5], which has been used as the benchmark
for object recognition tasks, would be valuable for
advancing AI in radiology.

The high variability in imaging protocols between
institutions and even variability in the execution of a
given protocol within an institution are potential im-
pediments to development and use of AI applications in
imaging [6]. For example, subjective analysis of a CT
scan may be somewhat tolerant of the timing of
contrast material administration, and variable timing
can create an “apples-to-oranges” problem for AI
programs that rely on quantitative factors and may
require scaling or a background subtraction step. The
impact of protocol variability needs to be more fully
studied.
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The development of a common lexicon is a corollary
to this concept to help improve communication and
understanding between users. “AI-RADS” would fit in
with BI-RADS and LI-RADS.

Categories of AI Applications
The principle focus of much initial clinical AI research in
imaging has been on improving diagnostic accuracy, the
importance of whichwas recently emphasized in the Institute
of Medicine report entitled “Improving Diagnosis in Health
Care.” [7] A number of encouraging results have been
reported in AI-enabled computer-aided diagnosis [8-14]
with two achieving human-level performance [12,14].

Beyond the core goal of better diagnostic accuracy [15],
AI methods can be used to address a number of practical
issues faced in daily practice that are worthy of
consideration: (1) optimization of work lists to prioritize
cases, (2) preanalysis of cases in high-volume applications
where observer fatigue may be a factor, (3) extracting in-
formation from images that is not apparent to the naked
eye, and (4) improving the quality of reconstructed images.

Timeliness in the diagnostic process is important,
especially when urgent or life-threatening conditions are
present. Long unread case queues in busy departments can
delay diagnosis and are particularly problematic if clinical
presentation is not typical. One can imagine a suite of AI
programs optimized for sensitivity, rather than overall ac-
curacy, and aimed at detecting pulmonary emboli, pneu-
mothoraces, strokes, free air in the abdomen, and other
immediate life-threatening conditions. These programs
could run automatically and immediately as soon as ex-
aminations were completed, alerting the radiologist to
prioritize the case for immediate attention. The likelihood
of earlier identification of important findings would be
increased. Any associated false-positive cases need to be
interpreted at some point anyway.

Observer fatigue is an unavoidable aspect of radiology
practice and a particular issue in screening examinations
where the likelihood of finding a true positive is low. In
this setting, an AI program optimized for very high
negative predictive value could identify an “enriched”
subset of cases likely to harbor any true-positive cases for
early review.

AI applications offer an important new way to extract
heretofore unavailable information from images and are a
new portal for imaging contributions to the era of pre-
cision medicine. The age of big data and deep learning
has spawned the concept of “radiomics” wherein hun-
dreds of abstract mathematical features of images can be
defined or detected and through AI programs correlated
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with other data on genomics or response to therapy.
These radiomic features are not discernible to human
observers and represent a kind of mathematical imaging
phenotype of disease expression [16]. Early work in
establishing radiomic “signatures” predictive of response
to therapy is promising. In the broad context of
precision medicine, the complete imaging phenotype
may be thought of as encompassing both imaging
manifestations of disease detected by conventional
means as well as identifying new features in which AI
will play the key role [16].
CHALLENGES
The challenges in exploiting the potential of AI in
medicine may be thought of as circumstantial, relating to
human societal behaviors, and intrinsic, relating to
the capabilities of the underlying science and technology.
None of the challenges alone will be a showstopper but
all may slow progress and need to be addressed.
Circumstantial Challenges
Radiology, as a specialty, has had to deal with rapid
technological change as much as any other discipline in
medicine. Radiologists have benefitted greatly from
working with digital systems, but concerns exist about
machines taking jobs away from humans, reflecting a
possible, even likely, cultural barrier to adoption of AI in
radiology. Stoking these concerns, Obermeyer and
Emanuel [17], writing in the New England Journal of
Medicine, have already predicted that “machine learning
will displace much of the work of radiologists and
anatomic pathologists” and “machine accuracy will soon
exceed that of humans.” Chockley and Emanuel [18],
writing in the JACR, comment that “machine learning
will become a powerful force in the next 5-10 years and
could end radiology as a thriving specialty.”

Biology is far more complex than chess or Jeopardy! or
Go, and the foregoing predictions go far beyond what has
been accomplished with AI in imaging to date. Medical
images are highly heterogeneous at both an individual
and a population level. Moreover, for a given application,
if the number of available labeled images is limited, it will
be challenging to train AI systems [19], and there is a risk
of “overfitting” the data with loss of generalizability
[6,13]. Rather than replacing radiologists, the much
more likely prospect is that practice of radiology will
beneficially assimilate AI methods, improving quality
and efficiency similar to the experience with other
digital imaging methods.
Journal of the American College of Radiology
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The pool of investigators trained in radiology AI
methods is limited. This can be addressed by recruiting
scientists with backgrounds in AI into radiology and
through the educational programs already being under-
taken by radiology professional societies. Historically,
once an area is recognized as important, capable people
quickly populate it, so this is not likely to be a long-term
issue. Practicing radiologists will need to learn about AI
but will not need to become experts in AI research or
design of AI programs to beneficially use AI-based results.

Upfront costs for AI—investigator salaries and hard-
ware and software—are substantial. Forward-looking
departments and institutions will bear these costs
to support researchers and create AI core laboratories
that others can access much as other core laboratories are
run.

The FDA is likely to play an important role in
approving AI programs for clinical use, but it is unclear
what the process will be for validating AI programs or
whether and how credentialing of individuals in their use
will happen. It is also unclear how the “black box” nature
of AI programs will affect liability. A legal issue within
institutions will be the need to define ownership of data
and to determine who has the right to use it.

Intrinsic Challenges
Among the intrinsic challenges for AI in imaging are (1)
how best to establish the source of truth for validating
results, (2) whether processing speeds will be fast enough
for relevance to clinical practice, (3) whether protocol-
tolerant AI programs can be developed, and (4) whether
criteria can be established for determining in what patient
population or populations a given program is valid.

With artificial intelligence programs that are trained
on known or proven cases (“supervised” learning [6]), a
robust “source of truth” for each diagnosis is required
and is always required for validation, whether learning
is supervised or unsupervised. The source of truth can
come from patient outcomes or results of other “gold
standard” testing methods apart from the imaging
method being studied, but the source of truth used
must be rigorous and should be explicitly stated for
each AI program that is developed and used clinically.

At present, computing systems fast enough to supply
results in a clinically relevant time frame for emergency or
urgent diagnoses are not generally available in medical
institutions. However, this is not likely to be a practical
problem going forward because of rapid development of
lower-cost graphics processing unit–based computing
systems and easy access to cloud computing solutions.
Journal of the American College of Radiology
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A generic challenge in clinical research is trying to
generalize results beyond the patient population in
which the research was performed. This is often
addressed in drug trials by doing research in a large,
diverse, inclusive population. However, as more has
been understood about precision medicine, the opposite
approach is turning out to be better in many cases, that
is, to perform research in smaller, more homogeneous,
and better-defined populations, where the results apply
more reliably to the patients in that specific population.
This approach is used in clinical trials of molecularly
targeted drugs. It is not clear how this will play out in
imaging applications of AI, but the issue of patient
population must be considered with careful definition of
population being studied. The trade-off will be between
more robust generalizable programs with lower accuracy
versus narrow solutions for well-defined patient pop-
ulations that are less robust [6].
PITFALLS
AI programs typically require substantial numbers of
cases for training. Institutional xenophobia and other
proprietary interests may restrict access to image data
between institutions. Failure to assemble a sufficiently
large enough training set is a potential pitfall that could
have the effect of making the results less accurate or
generalizable [19]. The risk of overfitting was noted
previously [6,13].

The tolerance of using AI programs in imaging
between different patient populations is not yet known.
Failure to recognize that a program is not generalizable,
for example, from adults to children or between
different ethnic groups, could lead to incorrect results.
Among other issues, organ sizes and prevalence of
disease vary widely between different patient
populations.

Likewise, the tolerance or latitude for variations in
image acquisition protocols is unknown for AI programs
[6]. Applying AI programs on image data from protocols
other than the one used for program training may
introduce errors. Simplistically, IBM’s Deep Blue
program for Jeopardy! was trained on questions in the
English language and would not have worked without
further training had it been given questions in a
different language.

The biggest limitation for AI in imaging may be
inherent limitations in defining normal versus abnormal
in continuously variable biologic data. Ranges for
normal are set as a certain number of standard deviations
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from the mean of a supposedly “normal” population.
This means for any test or measurement, a given per-
centage of truly normal people will have “abnormal”
results. Investigators in AI will face this conundrum
where nominal criteria for normal versus abnormal can
be difficult to define when, for example, setting limits
for organ sizes.

CRITERIA FOR SUCCESS
The most important criteria for success follow directly
from the discussion of opportunities. The name of the
game is to create value in the delivery of medical care and
delivery of radiology services—increased diagnostic cer-
tainty, decreased time on task for radiologists, faster
availability of results, and reduced costs of care with
better outcomes for patients [15]. As with any new
technology, substantial time and experience will be
required to establish whether these benefits apply and
understand their relative magnitudes.

Achieving these outcomes will be enhanced if AI
programs can be developed that are tolerant of different
data acquisition protocols and work in diverse patient
populations. Absent that, success will require full un-
derstanding of the circumstances under which a given
program is valid.
CONCLUSION
It is not yet clear what the full or final role of AI methods
will be in imaging or their impact on radiologists. What
is clear is that AI provides a promising new set of tools
for interrogating image data that should be explored
with vigor. The growing interest in AI in the
imaging community bodes well for its potential leader-
ship role [6].
5

TAKE-HOME POINTS
- Worldwide interest in AI applications, including
imaging, is high and growing rapidly.

- The large amount of image and report data now in
digital form (“big data”) provides a substrate for
development of AI applications.

- Development of AI applications in imaging would
benefit from the development of standards and
infrastructure—acquisition protocols, validation
criteria, lexicon for communication.
08
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