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A B S T R A C T

Purpose: Prompt diagnosis and quantitation of pneumothorax impact decisions pertaining to patient manage-
ment. The purpose of our study was to develop and evaluate the accuracy of a deep learning (DL)-based image
classification program for detection of pneumothorax on chest CT.
Method: In an IRB approved study, an eight-layer convolutional neural network (CNN) using constant-size
(36*36 pixels) 2D image patches was trained on a set of 80 chest CTs, with (n=50) and without (n=30)
pneumothorax. Image patches were classified based on their probability of representing pneumothorax with
subsequent generation of 3D heat-maps. The heat maps were further defined to include 1) pneumothorax area
size, 2) relative location of the region to the lung boundary, and 3) a shape descriptor based on regional ani-
sotropy. A support vector machine (SVM) was trained for classification.
Result: We assessed performance of our program in a separate test dataset of 200 chest CT examinations, with
(160/200, 75%) and without (40/200, 25%) pneumothorax. Data were analyzed to determine the accuracy,
sensitivity, specificity. The subject-wise sensitivity was 100% (all 160/160 pneumothoraces detected) and
specificity was 82.5% (33 true negative/40). False positive classifications were primarily related to emphysema
and/or artifacts in the test images.
Conclusion: This deep learning-based program demonstrated high accuracy for automatic detection of pneu-
mothorax on chest CTs. By implementing it on a high-performance computing platform and integrating the
domain knowledge of radiologists into the analytics framework, our method can be used to rapidly pre-screen
large numbers of cases for presence of pneumothorax, a critical finding.

1. Introduction

Pneumothorax is a potentially life-threatening condition char-
acterized by the abnormal presence of free air in the pleural space
[1–3]. Pneumothorax is a critical finding, that often requires emergent
communication of the imaging results and intervention [4–6]. Com-
puted Tomography (CT) imaging of the chest and its quantative analysis
has been shown to be promising for lung disease diagnosis and prog-
nosis [7–9]. However, timely interpretation can be challenging when
chest CT examinations cannot be reviewed immediately as may occur
periodically when queues of cases waiting for interpretation accrue.
Moreover, not all imaging departments have on-site coverage by radi-
ologists 24 h a day. A rapid system for detecting pneumothorax on chest
CTs, run automatically upon their completion, could be used to send
alerts to radiologists and other healthcare providers, to reprioritize the

chest CT work list for cases with pneumothoraces.
Deep learning (DL) programs based on convolutional neural net-

works (CNN) have achieved very high performance for computer vision
tasks in natural image processing such as facial recognition [10], as
well as in medical image analysis including CT and PET image re-
construction [11,12] and skin cancer diagnosis [13]. The dense struc-
ture of CNNs with learned image filers (i.e. convolutional layers) and
classifiers (i.e. deep fully-connected layers) offers better data re-
presentation and generalizability than most traditional machine
learning approaches [14]. This improves robustness of performance in
real-world applications [15]. These advances in deep learning-based
image analysis have spurred research in radiology, such as segmenta-
tion, detection and diagnosis/prognosis in cardiovascular imaging [16],
detection and characterization of lung nodules [17], detection of pul-
monary tuberculosis [18] and detection of mass effects, hydrocephalus
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and hemorrhage in the brain [19].
The purpose of our study was to develop a rapid deep learning (DL)-

based image analysis program for automatic detection of pneu-
mothoraces on chest CT.

2. Materials and methods

This study was approved by the institutional review board. The
study was compliant with the Human Insurance Portability and
Accountability Act (HIPAA).

The algorithmic pipeline is illustrated in Fig. 1. The work consisted
of a training and a testing phase: within the training phase, a deep
convolutional neural network was trained and validated based on CT
images with their corresponding annotations of pneumothorax. Re-
gional features of pneumothorax including lesion size, relative location,
and shape were extracted from the regions with pneumothorax, and
used to train a Support Vector Machine (SVM) to map pneumothorax
image features with the patient-wise label (with/without pneu-
mothorax). Within the testing phase, labels of input patches predicted
by the network were combined to segment the region with pneu-
mothorax (i.e. heatmap). The SVM utilized these heatmaps to generate
patient-wise diagnoses of pneumothorax. Inputs to the proposed pro-
gram are DICOM images of chest CTs, and outputs of the proposed
program are patient-wise predicted labels (with/without pneu-
mothorax), thus achieving an end-to-end framework for pneumothorax
screening.

2.1. Patients

We identified chest CT cases of 280 patients with age range 2–115
years (mean 56.04± 22.81), of 194 males and 86 females, including
210 with pneumothorax (positive) and 70 without pneumothorax (ne-
gative), using a free text search in a radiology report repository with
keywords (“pneumothorax” and “chest CT”) and subsequent consensus
of two expert thoracic radiologists. Mean values of CT dose index
(CTDIVOL) and Dose Length Product (DLP) for the 280 CT scans were
7.3 mGy and 239.1mGy·cm, respectively. Identified cases were ran-
domly assigned to either training (n=76, 46 with pneumothorax, 30
without pneumothorax), validation (4, all with pneumothorax) or
testing (n=200, 160 with pneumothorax, 40 without pneumothorax)
datasets.

2.2. CT image data and preprocessing

All chest CT scans were performed with routine chest CT protocols
for clinically indicated reasons. The CT examinations were performed
on one of the 18 CT scanners in our hospital (ranging from 16- to 128-
detector row multidetector CT). The scanners belonged to three dif-
ferent CT vendors (GE, Siemens and Philips).

We exported transverse DICOM image series reconstructed with
2.5–3mm section thickness and standard reconstruction techniques
(commercial filtered back projection or iterative reconstruction, based
on scanner type). The exported DICOM images were preprocessed to
lung window settings [−500, 1400], with lung segmentation and
normalization using well-established unsupervised algorithms.
Additional details of the lobe and main trachea segmentation are in-
cluded in the Appendix and have been described previously in [20].

2.3. Annotation and diagnostic standard

Manual annotation of regions with pneumothorax was performed on
an image-by-image basis in the transverse CT images of each patient in
the learning set. The annotation was represented as a 3D binary mask
indicating the presence of pneumothorax on each voxel, i.e. positive,
with label of “1” or negative, with label of “0”. Uniform image patches
of 36×36 pixels extracted from the lung regions were used as CNN
input with a stride of 4 (i.e. distance between the center of two
neighboring patches is 4 pixels in any direction). The label of each
patch was determined based on the annotation label of its center voxel.
See Appendix for additional discussion of image patches.

Manual image annotation in the training set was performed by re-
search fellows under the supervision of three radiologists (JHT with 40
years of experience, SRD with 22 years of experience, and MKK with 19
years of experience).

2.4. CNN architecture and classification model for diagnosis: training phase

In this project, an eight-layer Convolutional Neural Network (CNN)
was trained. The architecture of the network is shown in the bottom
panel of Fig. 1, where we used five stacked 2× 2 convolutional kernels
with pooling for image feature representation and three fully connected
networks for patch classification. This network structure has been ap-
plied for classification and diagnosis of interstitial lung diseases (mi-
cronodules, reticulation, etc.) and achieved superior performance [21].
The system is implemented in the Caffe Deep Learning Framework in
the Python programming language, and deployed on a NVIDIA DGX
station equipped with 8 T P100 GPUs (NVIDIA Inc). Input of the net-
work is constant-sized (36×36) 2D image patches extracted from the
training set. In this work, we adopted 2D image analysis rather than 3D
because slice thickness (i.e. z-axis resolution) varied across patients due
to different scanner settings.

The teaching output of the network is the manually-annotated labels
of the corresponding patches. The training was performed to minimize
the error between the true labels of the patches and the predicted labels
from the network, where the residual was back propagated to update
the parameters of each layer in the network. The training process
consisted of 25 total passes through the whole training dataset for
backpropagation optimization (i.e. epoch= 25), where the epoch

Fig. 1. The algorithmic pipeline of the system, showing the data flow from DICOM inputs to the diagnostic result within the training and testing phases.
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number was determined according to training loss and validation loss
with early stopping, as shown in Fig. 3. We used Adam optimizer for
optimization with exponential decay learning rate (initial learning
rate= 10−3, weight decay=10−8). After each training epoch, the
network performance was evaluated on the validation dataset. In ad-
dition to training the CNN, we also trained an SVM from the image
features of the annotation map as shown in Fig. 2c. Specifically, for
each patient with pneumothorax, we extracted the following image
features from the 3D annotation region: 1) relative size of the pneu-
mothorax, that is, ratio between the size of pneumothorax and the size
of the lung, 2) relative location of the pneumothorax, measured by the
distance between the centroid of the pneumothorax region to the

nearest lung boundary, and 3) a shape descriptor based on regional
anisotropy. The above image features were used as inputs for training
the SVM with a Gaussian Radial Basis Function (RBF) kernel, where the
training output of the SVM is the patient-wise label as either positive
[1] or negative (0) for pneumothorax, as similarly performed in pre-
vious radiomics studies [22].

2.5. CNN architecture and SVM model for diagnosis: testing phase

After training the DL program, we assessed the performance on the
test dataset with 80% (160/200) positive and 20% (40/200) negative
cases. First, image patches extracted from each patient in the test set
were classified based on probability of pneumothorax by the previously
trained CNN. Patch-wise prediction results were then aggregated into a
3D heat-map for regions with pneumothorax. Afterwards, the heat-map
was postprocessed by segmenting out the largest connected component
based on the region growing algorithm, resulting in a single region of
pneumothorax (Fig. 2e). Image features calculated from the post-
processed result were then fed into the previously trained SVM, which
performed the prediction (i.e. diagnosis) of whether a given patient had
a pneumothorax or not [22].

2.6. Testing DL and human observer study

The SOR (standard of reference) of the 200-CT test set was provided
by two thoracic subspecialty radiologists (SRD and MKK) through
consensus evaluation for presence of pneumothorax (per patient true-
positive cases of pneumothorax=160, true-negative cases= 40). In
addition, three radiologists (CN with 4 years of experience; RS with 2
years of experience; RDK with 1 year of experience) independently
evaluated these 200 chest CT examinations without knowledge of DL or

Fig. 2. Running example of a pneumothorax lesion region detection process output at various intermediate steps within the system; starting with a single transverse
image (a), image patches extraction (b), annotated image (c), lung segmentation (d), heat map (e) and segmentation of the pneumothorax (f).

Fig. 3. Learning curve of the CNN model along the training process. x-axis:
epoch number (training progress), y-axis: training/validation loss of the net-
work.
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SOR findings about pneumothorax, thus serving as test radiologists.

2.7. Statistical analysis

Differences in performance metrics (accuracy, sensitivity and spe-
cificity) between each test radiologist and the DL system, were eval-
uated using the Chi-Squared test. The generalized kappa (Fleiss' Kappa)
statistic was also calculated to evaluate the interobserver agreement
among the three radiologists. A significance level of p<0.05 was used
to determine whether the tests are statistically significant.

3. Results

SOR found unilateral pneumothorax in 138 chest CTs and bilateral
pneumothoraces in 22 chest CTs; 40 chest CTs had no pneumothorax.
Metallic hardware or image artifacts were noted in 11/200 chest CT
examinations. Accuracies of the three test radiologists were 91.0%,
94.5%, 86.0% with respective sensitivities of 91.3%, 95.6%, 86.3%, and
specificities of 90.0%, 90.0%, 85.0%. Sizes of pneumothorax ranged
from small (few tens of voxels) to large (occupying the entire hemi-
thorax). Locations of pneumothorax were variable and included apical,
lateral, medial, and basilar distribution.

Overall patch-wise accuracy of the CNN was 94% (37,025,649/
39,452,819 patches) for detecting the true label (with or without
pneumothorax) of each patch, which effectively measures the over-
lapping areas between the predicted heat map and annotation. After the
patch-wise results were aggregated, postprocessed and analyzed by the
SVM model, the overall patient-wise accuracy for detection of pneu-
mothorax was 96.5% (193/200 patients), which serves as the evalua-
tion criterion for the system. The respective sensitivity and specificity
were 100% (all 160/160 pneumothoraces detected) and 82.5% (33 true
negative/40 patients without pneumothorax).

The DL program had 7 false positive classifications of pneumothorax
in patients with large lung cysts or bullae (4 patients) and metal-related
streak artifacts (3 patients). Two sample cases of false positive results
from the model are in Fig. 4.

Using the Chi-Squared test, overall accuracy (96.5%) of the DL
system was found significantly higher than the performance of two of
the three human readers: (91% p=0.02, 86% p=0.0002). Sensitivity
of the DL system was significantly higher than all three human readers:
(91.3% p=0.0002, 95.5% p=0.0007 and 86.3% p<0.0001).
Specificity of the DL system is lower than all human observers, but was
not significantly different (90% p=0.37, 90% p=0.37 and 85%
p=0.76). Fleiss’ Kappa statistic shows that reliability for the three
radiologists was found to be Kappa= 0.711 (p<0.0001), which in-
dicates that reader agreement is not due to chance.

Time cost for training (i.e. backpropagation algorithm for updating
network parameters) the CNN on the patches extracted from the 80-
subject training set was around 20min, not including time cost for data

preparation, preprocessing and postprocessing. The predicted in prac-
tice, average processing time for each CT examination on the NVIDIA
DGX station was 151 s (< 3min) with the following breakdown:

• DICOM files conversion to Python data: 23 s
• Preprocessing (windowing, segmentation and normalization): 82 s
• Patch extraction for preparing CNN input (about 2 million patches
per patient): 30 s.

• CNN prediction on patches extracted: <1 s.
• Postprocessing (heatmap generation from prediction results): 14 s
• Feature extraction from the heatmap and SVM classification: <1 s

4. Discussion

To be effective for the stated purpose of surveilling just completed
chest CTs for pneumothorax, an analytic program should run auto-
matically, have high sensitivity and reasonable specificity and be fast
enough to make a meaningful difference in prioritizing the work list.
The high sensitivity of our automated DL enabled program coupled
with the short processing time (< 3min) meet these criteria.

Although small pneumothoraces may not be life threatening or re-
quire treatment, monitoring for stability or resolution is important as
these can rapidly increase, and lead to catastrophic outcome. Such in-
crease can happen spontaneously, or during air travel where air is
subject to Boyle’s law and can expand in volume as cabin pressure drops
[23]. Hu et al have estimated that trapped air in the human body can
expand by 25–30% at commercial airline cabin pressures that are ty-
pically equivalent to 8000 feet in altitude [20]. The current guidelines
recommend delaying air travel for one to three weeks after thoracic
surgery or resolution of a pneumothorax [20]. Per departmental policy,
we try to notify attending physicians about all unexpected, new and
increasing pneumothoraces as soon as possible, ideally while patients
are still in the institution, so they can alert and advise their traveling
patients before they have left the institution. Having a DL enabled
surveillance program in place will help achieve this goal.

Although chest CT has been considered as the de facto “gold stan-
dard” or “ground truth” for the diagnosis of pneumothorax for more
than three decades [24–28], to our best knowledge and literature re-
view, there are no published reports on its accuracy for diagnosing
pneumothorax or for assessing individual observer performance or in-
terobserver variability. This underscores one of the overarching chal-
lenges for DL applications in medical imaging—the need for explicit
descriptions of how ground truth was established [29]. In pneu-
mothorax, release of free air at chest tube placement is more definitive
than chest CT [25]. However, chest tube placement is reserved for
patients with larger pneumothoraces, and is unnecessary for patients
with smaller pneumothoraces. Thus, we used expert consensus as the
standard of reference (SOR) in this work. It was also found that false
positive pneumothorax diagnoses from human observation studies (test

Fig. 4. False positive predictions of pneumothorax with the DL system. Segmentation results from the DL system for false positive pneumothoraces are highlighted in
red. Apparent reasons for the false positives were (a) lung cyst, and (b) image artifact secondary to metallic implant (marked by yellow arrow) at the ventro-apical
left area.
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radiologists) are mainly due to presence of emphysema, image artifacts,
and lung cystic fibrosis, conditions that can make it difficult to assess
pneumothorax and result in artefactual appearance of pneumothorax.

Although there are no similar or historic studies with which to
compare the entirety of our results, the work of Cai et al is partly
comparable [30]. Cai et al described a non- DL approach to automated
computer detection of pneumothoraces in selected trauma patients
aimed also at measuring pneumothorax sizes. All included cases had an
original radiologic diagnosis of pneumothorax. Seven of the 68 (10.3%)
cases were determined by subsequent expert consensus review to not
have pneumothoraces, i.e. were false positives on original interpreta-
tion.

The computer program developed by Cai et al [30] demonstrated a
sensitivity of 100% for pneumothorax detection, the same as in our
work, but had an overall false positive rate per case of 0.90 (area-wise),
primarily due to the high prevalence of small false positive areas,
limiting the usefulness of the approach for pneumothorax screening in
unselected cases.

Cai et al applied an improved version of their program in pediatric
patients [31]. Among 58 cases selected for having a proven pneu-
mothorax, the program was 100% sensitive for detecting observer di-
agnosed pneumothoraces (63/63) but returned 5 additional areas
(0.9% of cases) falsely determined to represent pneumothorax.

Although the method of case selection in Cai’s studies [30,31] does
not allow accuracy, sensitivity and specificity to be calculated for the
original readers or compared directly to our results, the presence of
false positives among the included cases for both human observers [30]
and the computer program [30,31] is notable and at least qualitatively
similar to the findings in our study.

In future years, as DL workflows evolve to prioritize multiple types
of life-threatening findings on imaging studies, there will likely need to
be further emphasis placed on specificity. The rationale for this delayed
need is that in its infancy, DL workflows such as that described here will
be used for a limited number of applications (e.g. pneumothorax, free
intraperitoneal air, etc.), and on specialty or modality-specific worklists
(e.g. chest x-rays). As such applications grow, if too many false-positive
results occur – because of prioritizing sensitivity over specificity – less
common life-threatening findings will be paradoxically de-prioritized.
To avoid such a circumstance, as the number of successful AI algorithms
grow, a data-driven, computational approach will be necessary to
identify the optimal prioritization of each algorithm, considering the
sensitivity and specificity of each algorithm, as well as the acuity and
prevalence of the target finding.

There are limitations to our study. The study was retrospective with
enriched numbers of positive cases. In an unselected prospective set-
ting, the ratio of true positive cases versus all positive cases (positive
predictive value) is likely to be quite different than in our learning and
test sets. Therefore, it is important that interpreting radiologists un-
derstand the optimization strategy and are prepared to deal with false
positives. This conundrum is likely to apply in many AI/DL applications
where it is more practical to use enriched data sets for training and
testing than unselected cases [16–18].

In our study, all patients came from a single institution. Even though
we used separate training and test sets, there is still a possibility of
“overfitting” the data due to the nature of our case mix. For example,
given the false positives associated with lesions judged to be bullae, an
institution with higher or lower percentages of patients with chronic
lung disease might experience different results. This possibility can be
addressed by testing the program in other institutional settings.
Although processing time did not include image transfer time to our
processing workstation, which can span several minutes, this limitation
can be addressed with installation of DL programs directly on the CT
scanners or the PACS.

Metallic implant related image artifacts are likely to represent a
recurring challenge in imaging applications of DL. For example,
Prevedello et al noted a false positive due to a metallic implant in their

work on AI analysis of brain scans [18]. Wider availability of com-
mercial metal artifact reduction algorithms, currently available on
more advanced scanners, should substantially reduce artifacts related to
metal implants and may decrease related errors in detection (17,32).
These algorithms were not used in our study.

In conclusion, our highly sensitive DL enabled program enables
rapid detection of pneumothorax on chest CT providing a DL-driven
approach for optimization of clinical data management and processing.
The program is not intended to be a stand-alone program to diagnose
pneumothorax or replace the role of the radiologist. Rather, it is in-
tended as a new tool to help radiologists optimize the flow of work for
earlier detection of this important potentially life-threatening and often
unsuspected finding. If successful, the clinical implementation of this
program can serve as a model for other surveillance programs aimed at
other potentially life-threatening diseases and conditions as well as
programs aimed at segmenting cases into higher versus lower risk-of-
disease categories more generally.
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