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Automated Semantic Segmentation of Red
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Mo Zhang , Student Member, IEEE, Xiang Li , Member, IEEE, Mengjia Xu ,
and Quanzheng Li , Member, IEEE

Abstract—Red blood cell (RBC) segmentation and clas-
sification from microscopic images is a crucial step for
the diagnosis of sickle cell disease (SCD). In this work,
we adopt a deep learning based semantic segmentation
framework to solve the RBC classification task. A major
challenge for robust segmentation and classification is the
large variations on the size, shape and viewpoint of the
cells, combining with the low image quality caused by noise
and artifacts. To address these challenges, we apply de-
formable convolution layers to the classic U-Net structure
and implement the deformable U-Net (dU-Net). U-Net ar-
chitecture has been shown to offer accurate localization
for image semantic segmentation. Moreover, deformable
convolution enables free-form deformation of the feature
learning process, thus making the network more robust
to various cell morphologies and image settings. dU-Net
is tested on microscopic red blood cell images from pa-
tients with sickle cell disease. Results show that dU-Net can
achieve highest accuracy for both binary segmentation and
multi-class semantic segmentation tasks, comparing with
both unsupervised and state-of-the-art deep learning based
supervised segmentation methods. Through detailed inves-
tigation of the segmentation results, we further conclude
that the performance improvement is mainly caused by the
deformable convolution layer, which has better ability to
separate the touching cells, discriminate the background
noise and predict correct cell shapes without any shape
priors.

Index Terms—Automated semantic segmentation,
deformable convolution, RBC, sickle cell disease, U-Net.

I. INTRODUCTION

S ICKLE cell disease (SCD) is an inherited blood disorder,
where SCD patients have abnormal hemoglobin that can
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cause normal disc-shaped red blood cells (RBCs) to distort and
generate heterogeneous shapes. Differences in cell morphology
between healthy and pathological cells make it possible to per-
form image-based diagnosis, which is very important for faster
and more accurate diagnosis of potential SCD. Image-based
analysis of SCD is capable of performing highly specific and sen-
sitive sickle and normal erythrocyte classification through cell
shape statistics [1]. Most of the works reported in previous litera-
tures are based on multi-stage workflow, including steps such as
image preprocessing, cell segmentation, feature extraction and
single cell classification using various machine learning models
[2]–[5]. In recent years, Convolutional Neural Network (CNN)
has received increasing attention in the field of computer vision,
as it can automatically learn the low-to-high level features from
images, providing more robust and generalized representation
of objects comparing with handcrafted features. CNN has also
been applied for image analysis of SCD RBCs, which follows the
similar multi-stage workflow: constant-sized single cell patches
are extracted from raw cellular specimen images and fed into
the network for obtaining its label (i.e., cell type) [6], [7]. For
extracting cell patches, manual segmentation [8] and ground
truth bounding box methods [9] have been applied. Dong et al.
applied three well-known CNN models of LeNet-5, AlexNet,
and GoogLeNet on simulation studies for malaria-infected cell
classification [10]. In [11], Xu et al. applied a 10-layer CNN
on single cell patches with size normalization for SCD RBC
classification and achieved a mean accuracy of 89%.

In practice, there exists multiple challenges in automatic RBC
segmentation and classification, including: 1) There are many
stains and artifacts spreading on the microscopic images, some
of them share similar features with cells. 2) Some cells are
partially or entirely blurred. At the same time, touching and
overlapping cells can be commonly found in the images. The
combined effect from these two makes it difficult to perform
cell recognition even for humans. 3) Pixel-wise labels are highly
unbalanced. In the current dataset, pixel proportion between the
background and four RBC types is roughly 240:11:2:1:1. 4)
Large inter-patient variation exits on global image conditions
such as illumination and color hue. 5) Large inter-cell variation
exists for the same type of RBC in cellular morphology such as
size, shape, texture, and pose.

While some of the challenges such as touching and over-
lapping cells have been discussed and addressed in previous
cell segmentation works [12], fully automatic and accurate
segmentation of cells is still an unsolved problem. Further,
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for multi-stage cell segmentation and classification models, the
performance of classification relies heavily on the previous steps
such as image preprocessing and cell segmentation. One prob-
lem of such decoupled framework is the decreased robustness to
different image settings, as parameter tuning is usually needed
for preprocessing and segmentation steps. Also, overlapping and
touching cells that are not accurately identified in the segmen-
tation results will not be useful (and sometimes harmful) for
later classification models. For supervised classification, those
failed segmentation cases have to be abandoned from the training
set [11].

To address the above challenges, we formulate the problem of
SCD diagnosis based on RBC images as an end-to-end, pixel-
wise semantic segmentation task. Semantic segmentation is of
particular interest in the field of computer vision, as it can make
dense prediction for meaningful comprehending of scenes. In
recent years deep learning models have been widely used for
semantic segmentation [13], [14]. Among deep learning models,
Fully Convolutional Network (FCN) [15], which replaces fully
connected layers with convolutional layers, has the capability of
obtaining a prediction map with the same size as the input image,
making it particularly suitable for semantic segmentation. In
the field of biomedical image analysis, a popular FCN-based
network structure is U-Net [16] which adds skip connection for
more accurate localization.

In this work, we extend the U-Net architecture by adding de-
formable convolution [17] to implement the deformable U-Net
(dU-Net) model for RBC semantic segmentation, specifically to
address the challenge of inter-cell variation and the needs for spa-
tial invariance. It has been shown in the literature that deformable
convolution is more robust, as it can accommodate geometric
variations by learning an adaptive, data-driven receptive field
[17]. dU-Net is trained and tested on a multi-institutional RBC
microscopic image database consisting of both healthy and
pathological populations. We perform both binary segmenta-
tion (i.e. cell detection) and multi-class semantic segmentation
experiments, then evaluate the performance of dU-Net using
multiple metrics. We then compare the performance of dU-Net
with both unsupervised (region growing, Ilastik) and supervised
state-of-the-art image segmentation methods (U-Net, PSPNet,
DeeplabV3+).

The paper is organized as follows. Section II introduces the
related work and Section III describes the proposed method
in detail. In Section IV, experimental settings are presented,
including data description, experimental setup and evaluation
criteria. In Section V, we evaluate the proposed method through
three kinds of experiments. Then, we discuss the methods and
conclude the paper in Section IV.

II. RELATED WORK

A. Solutions on Cell Segmentation

In the field of biomedical imaging, cell segmentation plays a
critical role in quantitative analysis. Most of the cell segmenta-
tion methods can be divided into two categories: unsupervised
and supervised. For unsupervised cell segmentation, classical
methods including region growing [18], watershed transforma-
tion [19], active contours [20], gradient flow [21] as well as

semi-automatic methods [22] were used. For supervised cell
segmentation, deep learning methods such as CNN and FCN
have been applied [23]–[25], which have outperformed other
supervised segmentation methods.

CNN has been used to discriminate different blood cells by
using patches centered at each pixel as the input [26]. Although
this work can obtain a semantic segmentation map by aggre-
gating labels of each pixel, the sliding window approach for
patch extraction lowers the resolution of segmentation (limited
by stride of extraction) and is susceptible to patch size selection.
Yuexiang Li et al. utilized a FCN-based model to perform
HEp-2 cell semantic segmentation, yet their focus was the whole
specimen image classification by assigning label of the largest
population to an entire image [24]. More recently, some works
adopted various FCN-based frameworks to deal with blood cell
segmentation, such as U-Net [27], SegNet [28],2[9] and FCN-
AlexNet [30]. However, the issue of large variations in cellular
morphology still remains to be solved, making it necessary to
apply deformable convolutions.

B. Solutions for Spatial Invariance

For tasks in computer vision, one of the core challenges is
the presence of enormous geometric transformations and spatial
variations in object pose, shape, and scale. In addition to the data
augmentation techniques which enrich the training set with those
variations [31], transformation-invariant representations such as
SIFT (scale invariant feature transform) [32] are also used to in-
corporate the deformations. Spatial Transformer Network (STN)
proposed by Jaderberg et al., provides a learnable module within
the network to achieve spatial invariance [33]. Based on STN, Li
et al. recently proposed Dense Transformer Networks (DTN),
which restores spatial correspondence between inputs and out-
puts through a dense transformation [34]. For biomedical image
analysis, STN has been employed in [35] for cell differentiation
by deriving cell localization information. However, STN uses a
global parametric transformation which only works on the whole
feature map, making it unable to capture more sophisticated local
information needed by dense prediction. Instead, deformable
convolution [17] enhances spatial invariance by reforming the
fixed receptive field of traditional convolution unit. Deformable
convolution has been applied on biomedical image analysis as
well, including our preliminary work [36] and the subsequent
related work [37]. To perform blood vessel segmentation, the
method in [37] utilized a portion of deformable convolutional
layers in the U-Net architecture, which deals with a simple,
foreground/background segmentation task. However, in this
work, our model replaces all the convolutional layers in U-Net
with deformable convolutions, providing multi-class, semantic
segmentation results directly from the input RBC image.

III. METHODOLOGY

In this work we propose deformable U-Net (dU-Net) which
replaces regular convolution with deformable convolution-
throughout the U-Net structure, in order to overcome the lim-
itation of regular square receptive field thus enhancing the
network capability of dealing with object shape transforma-
tions. Traditional convolution kernel is defined with fixed shape
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Fig. 1. Illustration of deformable convolution, showing how the square sampling locations are adaptively deformed into irregular shape. In the
figure “conv” represents standard convolution kernel, and the parameter scope is used to regulate the scale of the sampling region.

and size to sample the input feature map on a regular grid.
For example, grid ℛ for a 3× 3 convolution kernel is ℛ =
{(−1,−1), (−1, 0), . . . , (1, 0), (1, 1)}. For each pixel p0 on the
output feature mapy, the convolution operation can be expressed
as:

y (p0) =
∑

pn∈ℛ
w (pn) · x (p0 + pn) , (1)

where y(p0) denotes the value of pixel p0 on the output feature
map,x(p0 + pn) denotes the value of pixelp0 + pn on the input
feature map, and w(pn)[n = 1, 2, . . . , 9] are weight parameters
of the 3× 3 kernel.

In contrast, deformable convolution adds extra offsets
Δpn[n = 1, 2, . . . , 9] (for a 3× 3 kernel) to the regular sam-
pling grid ℛ, thus Eq. (1) becomes:

y (p0) =
∑

pn∈ℛ
w (pn) · x (p0 + pn +Δpn) . (2)

OffsetsΔpn (eachp0 has 9 corresponding offsets) are learned
from data and used to adjust pn, making the sampling grid more
suitable for specific task comparing to a uniform square kernel.

As offset Δpn is typically fractional, coordinate p0 + pn +
Δpn may not lie exactly on the input regular grid, in such
case, the value of fractional coordinate needs to be interpo-
lated from integer coordinates on the input grid. The term
x(p0 + pn +Δpn) in Eq. (2) is implemented by bilinear in-
terpolation:

x (p) =
∑

q

f (qx, px) · f (qy, py) · x (q) , (3)

where p = p0 + pn +Δpn enumerates an arbitrary fractional
location on the input feature map, q denotes all integer locations
on the input feature map, px (py) denotes x and y-coordinate of
p, the function f is defined as:

f (q, p) = max (0, 1− |q − p|) . (4)

From the definition it can be seen that x(p) is only related
with the four integer coordinates qi[i = 1, 2, 3, 4] adjacent to
p, as the interpolation kernel f(qx, px) · f(qy, py) assigns 0 for
other pixels. A sample illustration for bilinear interpolation is
shown in Fig. 1, where the black dot is the fractional location p
and Si[i = 1, 2, 3, 4] are the areas of rectangles generated by the
four nearest integer coordinates qi[i = 1, 2, 3, 4]. Thus Eq. (3) is

Fig. 2. Architecture of the dU-Net. Dimensions (height, width, channel)
of the feature maps in each layer are shown beneath the networks. dU-
Net takes the raw images of size (512, 512, 3) as input and generates
prediction maps of the same resolution. In the first layer, the number of
channels is set to 8. In the last layer, n is the number of classes for the
semantic segmentation task.

equivalent to Eq. (5), based on the concept of “area of rectangle”:

x (p) =

4∑

i=1

x (qi) · Si, (5)

and more references can be found in [33] and [34].
As shown in Fig. 1, the detailed procedure of deformable

convolution starts with an additional classic convolution with
activation function TANH to learn offset field from the input
feature map, which is then normalized to [−1, 1]. The offset field
has the same height and width with the input feature map while
its number of channels is 2N (N = |ℛ|). Second, the offset field
is multiplied by the parameter scope which adjusts the scale of
receptive field and then added to the regular gridℛ to obtain new
sampling locations (each coordinate on the offset field has N
pairs of offsets corresponding to regular gridℛ). Finally, values
of the irregular sampling coordinates are computed via bilinear
interpolation as in Eq. (3) to obtain the deformed feature map.
Standard convolution is then applied on the deformed feature
map to get the output feature map. Through learning the offset
field, deformable convolution can sample the input feature map
in a more flexible and dense way, thus making it more adaptive
to geometric transformations in object shape and scale [17].

The main architecture of dU-Net is shown in Fig. 2, consisting
of the encoder path and the decoder path. In the encoder path,
each layer contains two 3× 3 deformable convolutions followed
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by a 2× 2 max pooling operation with a stride of 2, which
doubles the number of channels and halves the resolution of the
input feature map for down-sampling. The encoder ends with
two 3× 3 deformable convolutions called bottom layers. In the
right decoder path, each layer contains one 3× 3 deconvolution
followed by two 3× 3 deformable convolutions, which halves
the channel number and doubles the resolution of the input
feature map for up-sampling, except for the last layer where
the label map is predicted. Both the encoder and decoder paths
contain three layers, and the skip connection between encoder
and decoder path helps preserving contextual information for
better localization [16]. Implementation details are illustrated in
Supplementary I.

IV. EXPERIMENTAL METHODS

A. Data Description

du-Net is tested on the latest public SCD RBC image dataset
[11]. We use 314 raw microscopy images from 5 different SCD
patients for experiments, and a total number of around 3000 cells
are involved. The original blood sample is collected fromUPMC
(University of Pittsburgh Medical Center) and MGH (Mas-
sachusetts General Hospital). Raw images (resolution is 1920
× 1080) are preprocessed by removing the blank margins on
left and right sides and resizing to the same size of 512 × 512.

In our previous work [11], eight SCD RBC categories are
defined: Discocytes (Dic), Oval (Ovl), Reticulocytes (Ret),
Elongated (El), Stomatocyte (Sto), Echinocytes (Ech), Granular
(Grl) and Sickle (Sk). Based on these definitions, we merge
some of RBC patterns according to their image characteristics
such as shape and texture, resulting in four RBC categories:
1) Dic+Ovl, 2) El+Sk, 3) Grl, and 4) Ret+Sto+Ech. Fig. 3
illustrates some sample images in each category, showing that
major difference among the first three categories is shape, and
their internal textures are nearly indistinguishable. In contrast,
RBCs of the forth category have relatively messy texture with
diverse shape appearances. Note that the integration of cate-
gories is reasonable and meaningful for clinical diagnosis, as the
pathological changes of RBC are staged. For example, Dic+Ovl
represent the relatively healthy RBCs in the early stage, while
El+Sk are sick RBCs in the most severe cases. Additionally,
RBC regions and their labels (as four categories) are manually
annotated by the data provider.

B. Experimental Setup

The performance of dU-Net is evaluated based on the follow-
ing three experimental settings:

1) Binary RBC segmentation: differentiating RBC from
background. We employ 5-fold cross validation to obtain
a reliable model evaluation. The original 314 RBC images
are randomly partitioned into 5 subsets with size of 63,
63, 63, 63 and 62 respectively. During each experiment,
we use four subsets to train the model and the remaining
subset for testing. Also, we compare the performance
of dU-Net with Ilastik software, region growing, U-Net,
PSPNet [38] and DeeplabV3+ [39].

Fig. 3. Definition of the four categories of RBC. Note that these RBC
examples are from the previous work [11]. Compared to class 1, the
other three types of RBCs have more variations in shape and texture,
which makes the detection/classification more complicated.

2) Multi-class RBC semantic segmentation: differentiating
the four sub-types of SCD RBC as previously defined, as
well as detecting cells from background. We employ the
same 5-fold cross validation scheme.

3) Binary RBC segmentation under different data sizes: The
setting of this experiment is to investigate the impact of
data size on the network performance. Consequently, we
perform six experiments sharing the same testing data
(containing 64 images), while their training data contains
10, 20, 40, 80, 160, and 250 samples respectively.

C. Evaluation Criteria

Pixel-level evaluation: three types of indices including Dice
Coefficient, Jaccard Index, and Hausdorff Distance are calcu-
lated at pixel level. The detailed implications of these indices
are explained in Supplementary II.

Cell-level evaluation: We define three indices at cell level for
performance evaluation: Error I, Error II, and Error III by manu-
ally checking the prediction results. To ensure the credibility of
manually counting, each sample is handled by three experts and
finally we take the average for result. For binary segmentation,
Error I rate measures the number of cases where the model fails
to separate touching cells, which is a common yet important
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TABLE I
PIXEL-LEVEL PERFORMANCE FOR BINARY SEGMENTATION

TABLE II
CELL-LEVEL BINARY SEGMENTATION PERFORMANCE

challenge for tasks such as cell counting. Error II rate measures
thenumber of artifacts which are recognized as cells by the
model, as small dirty spots are commonly found in microscopic
images. Error III rate measures the number of incomplete seg-
mented cells in the prediction map, as it is desirable to maintain
the object integrity. For multi-class semantic segmentation, the
above cell-wise evaluation measurements work in the same way.
Except for Error III, where in multi-class case it measures the
number of cells that are identified as more than one classes (i.e.
at least one third of the total area of a cell is labeled as a different
class).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Binary RBC Segmentation

Table I reports the pixel-level performance evaluations for the
task of binary RBC segmentation using six methods (Ilastik,
region growing, U-Net, PSPNet, DeeplabV3+ and dU-Net).
These quantitative indicators are computed by averaging over
the five experiments, and the index after “±” means the standard
deviation on the testing set. Results show that the proposed
dU-Net outperforms the other five approaches in all metrics, and
deep learning models achieve superior performance compared
with unsupervised methods. In Supplementary III, confusion
matrices of U-Net and dU-Net are used to explore the advantage
of dU-Net, and we find that dU-Net can produce more accurate
predictions for cell boundaries.

As we aim at analyzing the function of deformable convolu-
tion, cell-level performance is only evaluated for U-Net and dU-
Net as listed in Table II. Results show that all three types of error
(touching cell, false cell identification caused by noise/artifact
and incomplete segmentation) can be reduced by using dU-Net
(by 36%, 70% and 55% respectively). Lowered Error I rate
indicates that dU-Net can separate the touching RBCs, and the
sample cases can be found in Fig. 4 (red squares). Splitting of
touching objects into individual instances is an important task
and has been discussed in various literatures using unsupervised
techniques [12]. While deep learning algorithms are in general
less capable of dealing with such cases due to its uniform kernel
over the whole feature map, dU-Net overcomes this limitation
thanks to its deformable operations on convolutional filters,

Fig. 4. Some patches of segmentation results of U-Net and dU-Net for
binary RBC segmentation. Visualizations of sampling locations in both
standard convolution (in U-Net) and deformable convolution (in dU-Net)
are displayed. Center pixels in these kernels are colored as red. In
red squares, dU-Net separates the touching cells perfectly; in yellow
squares, dU-Net correctly identifies background noise as negative la-
bels; and in blue squares, dU-Net maintains the integrity of segmented
cells. The whole prediction maps of different methods are shown in Fig. 3
of Supplementary.

providing a feasible solution for the crowding problem in neural
networks [40]. Lowered Error II rate indicates that dU-Net
is more robust to background noise (e.g. dirties, halos, etc.)
presented in microscopic images. As also visualized in Fig. 4
(yellow squares), U-Net mislabels background artifacts as cells
while dU-Net makes the correct negative predictions. According
to our observation, those artifacts usually have smaller size than
real cells. Therefore, the performance difference can be possibly
caused by the deformable kernel in dU-Net which learns more
spatial features to capture the size information of objects. Finally,
lowered Error III rate indicates that dU-Net is more capable
of obtaining integrated cell-level predictions without any shape
priors, which are also visualized in blue squares in Fig. 4. In the
figure, the indistinct cells with low contrast to the background,
as well as those cells located at the periphery of microscope
visual field with low illumination can only be fully identified
by dU-Net, where other methods fail to recover the entire cells.
It is difficult to fully segment those cells with only texture in-
formation, which can also be observed from the incomplete cell
segmentation results of U-Net. We thus conclude that dU-Net
can incorporate more local structure/shape information to ensure
the integration and smoothness of segmentation results.

In Fig. 4, we investigate the relationship between the seg-
mentation performance and the sampling kernel, as the only
difference between U-Net and dU-Net is the extra deformable
kernel used in dU-Net. For U-Net, we visualize its fixed square
sampling locations. For dU-Net, we visualize its data-dependent
transformative sampling regions. It can be observed that de-
formable convolution has more flexible receptive fields with
various deformed shapes learned from surroundings of the center
pixel, allowing it to be more adaptive to complicated segmenta-
tion cases, such as cell boundary, touching cells, image artifacts
and blurred regions.

B. Multi-Class RBC Semantic Segmentation

RBC semantic segmentation for 5 classes (4 classes of cells
and background) is performed by dU-Net, U-Net, PSPNet and
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TABLE III
PIXEL-LEVEL PERFORMANCE FOR MULTI-CLASS SEGMENTATION

Fig. 5. ROC curves of multi-class semantic segmentation. Colored
dashed curves represent results of U-Net, and colored solid curves
represent results of dU-Net. Different colors represent different classes
to segment.

DeeplabV3+. Corresponding quantitative results are listed in
Table III. dU-Net outperforms the other methods in the averaged
accuracy of all the five classes. We observed that certain cells
in SCD RBC dataset are small in sizes, thus their features
cannot be well captured by ASPP module with large dilation rate
(DeepLabV3+), nor by the pyramid pooling module (PSPNet).
This observation can explain why dU-Net performs better, as
the deformable convolution can preserve more fine details by
choosing the optimal receptive field for the specific task. This
is especially obvious for RBCs belonging to the categories 2–4,
which have relatively larger variations in cell shape but smaller
sample sizes. In practice, imbalanced data is common, where
minor classes with small sample sizes can play vital roles for
the diagnosis.

In addition, ROC curve of the U-Net and dU-Net are shown
in Fig. 5. All the AUC values of dU-Net are greater than
0.8, where U-Net obtains 0.77 AUC for segmenting class 3.

TABLE IV
CELL-LEVEL MULTI-CLASS SEGMENTATION PERFORMANCE

Moreover, compared to U-Net, dU-Net achieves a 7% and 5%
AUC improvement for class 2 and class 3 respectively. By
analyzing the confusion matrices (in Fig. 4 of Supplementary),
we find that RBCs of classes 1-3 are difficult to differentiate
due to their similar textures, but dU-Net makes more accurate
predictions for these classes. As the major difference among
these confusing classes is shape, it demonstrates that dU-Net
is more capable of capturing more morphological variations
and learning corresponding representative features without any
priors, which accounts for its higher AUCs for class 2 and 3.

In Table IV we report the cell-level performance evaluation
for multi-class RBC semantic segmentation using Error I, II
and III defined previously. Results show that dU-Net is superior
in predicting more integrated RBCs, while U-Net identifies
more cells as multiple classes simultaneously. This can also
be observed in Fig. 6 (highlighted in green blocks). Assigning
multiple labels to the same instance is a common challenge for
semantic segmentation [34] yet preserving cell integrity is an
important task especially for later analyses such as cell counting.

C. Binary RBC Segmentation Using Different Sizes
of Training Data

In this section, we train both U-Net and dU-Net with 6 differ-
ent sizes of training data (10, 20, 40, 80, 160 and 250 images),
and test the trained networks on the same testing data (64
images). Results are shown in Fig. 7, where dU-Net outperforms
U-Net in every experiment measured in Dice coefficient. While
both networks perform better with larger size of training data,
we find that dU-Net can achieve similar performance to U-Net
with only half of the data (limited to the sample quantity the last
“train250” experiment does not double the size of “train160”.).
Since dU-Net employs much more parameters than U-Net due
to the extra deformation layers, fewer training samples require-
ments of dU-Net indicate that dU-Net can utilize much more
information from the training data than U-Net. This conclusion
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Fig. 6. Prediction maps of U-Net and dU-Net for multi-class RBC semantic segmentation. Different colors in the map represent different RBC
types: red (Dic+Ovl), blue (El+Sk), yellow (Grl), and green (others). We highlight the cells that dU-Net maintains its shape integrity while U-Net
does not in green blocks. We also display the sampling locations centered at the key pixels (red points in the raw image).

Fig. 7. Performance comparisons (measured in Dice coefficient) be-
tween U-Net and dU-Net for binary RBC segmentation using different
sizes of training data. All the experiments use the same testing set (64
images), while “train10” represents the experiment using 10 images for
training.

is consist with the discussion of network generalizability in
[41], where it has been shown that patterns shared by training
samples are more useful than mere sample size for training the
network. So here we hypothesize that the ability of a network to
capture those shared patterns (e.g. because of extra deformable
operations) is also more important than simply increasing the
training data size.

VI. CONCLUSION

In this work, we apply an improved U-Net framework (dU-
Net) for automated SCD RBC semantic segmentation. Exper-
imental results show that dU-Net achieves better performance
than other segmentation models. It also achieves similar clas-
sification results comparing with works in [11], which was
performed on the pre-identified cell patches. Further, through
detailed investigation of segmentation results, we find that dU-
Net is more robust to the variations in cell size, texture and

shape, which is reflected in its ability of correctly segmenting
the cell boundary, separating touching cells, discriminating noise
objects from real cells and ensuring the integrity of cell shapes.
Overall, in this work we show that dU-Net is a robust method
for SCD detection and diagnosis. Moreover, its capability of
learning discriminative features from limited training samples
makes it especially a suitable solution for biomedical image
analysis, as it is usually difficult to collect sufficient biomedical
images with annotations for training a complex model. Also, we
are working on the implementation of post-processing steps for
further exploration of the prediction maps, providing detailed
statistics such as cell counts, density and average area, for better
clinical decision supporting.
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