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ABSTRACT In the field of neuroimaging and cognitive neuroscience, functional Magnetic Resonance
Imaging (fMRI) has been widely used to study the functional localization and connectivity of the brain.
However, the inherently low signal-to-noise ratio (SNR) of the fMRI signals greatly limits the accuracy
and resolution of current studies. In addressing this fundamental challenge in fMRI analytics, in this
work we develop and implement a denoising method for task fMRI (tfMRI) data in order to delineate the
high-resolution spatial pattern of the brain activation and functional connectivity via dictionary learning and
sparse coding (DLSC). In addition to the traditional unsupervised dictionary learningmodel which has shown
success in image denoising, we further utilize the prior knowledge of task paradigm to learn a dictionary
consisting of both data-driven andmodel-driven terms for a more stable sparse representation of the data. The
proposed method is applied to preprocess the motor tfMRI dataset from Human Connectome Project (HCP)
for the purpose of brain activation detection and functional connectivity estimation. Comparison between
the results from original and denoised fMRI data shows that the disruptive brain activation and functional
connectivity patterns can be recovered, and the prominence of such patterns is improved through denoising.
The proposed method is then compared with the temporal non-local means (tNLM)-based denoising method
and shows consistently superior performance in various experimental settings. The promising results show
that the proposed DLSC-based fMRI denoising method can effectively reduce the noise level of the fMRI
signals and increase the interpretability of the inferred results, therefore constituting a crucial part of the
preprocessing pipeline and provide the foundation for further high-resolution functional analysis.

INDEX TERMS Task fMRI, fMRI denoising, dictionary learning and sparse coding.

I. INTRODUCTION
In neuroimaging field, functional Magnetic Resonance Imag-
ing (fMRI) is widely used to localize the task-evoked brain
activation and to delineate the temporal and spatial correla-
tion patterns of functional connectivity as well as to perform
the early diagnosis of various brain disorders [1]–[7]. How-
ever, the inherently low signal-to-noise ratio (SNR) of fMRI
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signals due to the low signal change of BOLD recording,
plus various types of modality-specific noise and artifacts
limits the reliability, accuracy, as well as reproducibility of
the fMRI-based analysis and applications. The presence of
noise in the fMRI data makes it difficult to identify the
subtle differences in activation and functional connectivity,
and therefore leads to the low sensitivity of the statistical
inferences. In order to reduce the noise and enhance the
SNR, fMRI images are typically preprocessed prior to the
analysis via filtering [1]–[3], [7]–[10]. Specifically, in [2],
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the fMRI data are further preprocessed by low-pass tem-
poral filtering, head-motion regression, whole brain signal
regression, and ventricular and white matter signal regres-
sion after compensating the T1-equilibration effects, slice
acquisition-dependent time shifts via SPM2 [11] and head
motion via FMRIB Software Library (FSL) [12]. The fMRI
data in [9] are temporally filtered using a high pass filter
to maximize alignment across image modalities, to mini-
mize distortions relative to the subject’s anatomical space
and to minimize spatial smoothing (blurring) of the data.
[10] proposes a general wavelet-based denoising scheme for
fMRI data by using Gaussian-based filter that is verified
to introduce the less smoothing preserve the sharpness of
the images and retain the original shapes of active regions.
The temporal non-local means (tNLM) filtering [8] has been
shown to be able to reduce the local fluctuations without too
much spatial blurring by exploiting the temporal information
for the weighting.

With the advances in MRI imaging techniques for
the high-resolution acquisitions, more robust and effective
denoising methods beyond image filtering are needed for
more precisely pinpointing the analytics results. To address
the demands for denoising the neuroimaging data, motivated
by the recent advances of denoising in the natural image
processing field [13], in this work we propose a dictionary
learning and sparse coding-based task fMRI (tfMRI) denois-
ing method to enable the high-resolution brain activation and
functional connectivity analysis. The dictionary learning and
sparse coding (DLSC) methodology introduced in machine
learning and pattern recognition fields [14], [15] has been
applied for natural image denoising [13]. In addition, a variety
of the fMRI studies are motivated by the finding of the sparse
response principle of the neural activity in brain [16], [17]
which facilitates the development of DLSC-based techniques
for fMRI data [18]–[23]. The basic idea of the DLSC-based
fMRI analysis is to learn a set of the underlying hemody-
namic signals and represent the original huge data matrix
aggregating all the fMRI signals within the whole brain of
one subject as a sparsity-regularized linear combination of the
learned basis signals. In general, the DLSC-based methods
are data-drivenwhich can be efficient in learning adaptive and
over-complete representations [14], [15]. Moreover, it has
been reported in the literatures [18], [20], [23]–[25] that
the performance of DLSC-based methods can be further
improved by utilizing the prior knowledge in a supervised
way.

In our proposed method, in order to overcome the limita-
tions of the unsupervised DLSC techniques such as absence
of the interpretation of the model output and lack of statis-
tical power [9], [21], [26], [27], we utilize the prior knowl-
edge of task paradigm during the learning steps to train
the model-driven and data-driven dictionaries separately and
model their corresponding sparse representations, yielding an
enhanced denoising performance. Specifically, we consider
two different sets of dictionary basis functions: fixed atoms
and learned atoms. The fixed atoms are predefined as the task

stimulus curves which are generated by the convolution of
a canonical hemodynamic response function (HRF) and the
simple boxcar stimulus function indicating each occurrence
of a generation event. On the other hand, the learned atoms
are trained in an unsupervised approach from the reduced
signal matrix which is only a portion of the original signal
matrix. The reduced signal matrix is constructed by selecting
fMRI signals from the original data which are not correlated
with the task stimulus, based on the rationale that signals
correlated with the tasks can be represented and reconstructed
by the fixed atoms. Using a reduced input for the training is a
unique feature of our proposed method and makes it different
from the existing supervised/semi-supervised DLSC-based
techniques [18], [20], [23]–[25], and it has been shown in
the results that such feature can resolve the challenges caused
by the enormous size of voxel-wise fMRI data as well as the
collinearity among signals. The final dictionary consisting of
the fixed and learned atoms is then used to sparsely code the
input fMRI signals on each voxel for denoising, as the noise
patterns in the result signals will be partially removed during
the sparse coding process [24], [25].

For model validation and performance evaluation,
we apply the proposed DLSC-based denoising method to
both the synthetic dataset and the Human Connectome
Project (HCP) motor tfMRI dataset [28]. It is observed from
the results that the proposed denoising method can con-
serve and strengthen the meaningful activation pattern, while
recovering the missing activation (false negative activation
detection results from analytics such as GLM) disrupted
by noise from the fMRI signals. Furthermore, functional
connectivity analysis on the denoised data shows pronounced
effects on the connectivity strengths, revealing consistent and
neuroscientifically meaningful high-resolution connectivity
patterns in the brain.

II. MATERIALS AND METHODS
A. DATA ACQUISITION AND PREPROCESSING
In this work, we focus on the Motor task, while the proposed
method can be easily adopted to and have been validated in
other types of tfMRI data as well, including (but not limited
to) Working Memory, Gambling, Language, Social Cogni-
tion, Relational Processing and Emotion processing within
the HCP database. The HCP tfMRI data is acquired with
the following parameters: TR = 720ms, TE = 33.1ms, flip
angle = 52◦, BW = 2290Hz/Px, in-plane FOV = 208 ×
180mm, 72 slices and 2.0mm isotropic voxels. During the
experiments, the participants are informed with the visual
cues to tap their left or right fingers, squeeze their left or
right toes and move their tongues. These movements are
verified to identify the effector corresponding to the spe-
cific activation individually in motor areas [2], [7]. Each
run consists of 13 blocks with 2 left hand (LH) and 2 right
hand (RH) movements, 2 left foot (LF) and 2 right foot (RF)
movements, 2 tongue (T) movements and three 15s fixation
blocks. Each block is 12s and preceded by the 3s visual cue.
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The number of frames per run for each subject is 284 and the
total run duration is 214s. The HCP minimally preprocessing
pipeline [28] includes motion correction, slice time correc-
tion, spatial smoothing, high-pass filtering and non-linear
(FNIRT) registration [29] into MNI152 space. For each sub-
ject, the fMRI signals are extracted on each gray matter voxel
and arranged into a single 2D matrix. The details for data
acquisition and experiment design can be found in [28].

B. DICTIONARY LEARNING AND SPARSE CODING
(DLSC)-BASED DENOISING
The DLSC technique is an unsupervised learning algorithm
developed in machine learning and pattern recognition fields
[14], [15]. By learning a set of basis vectors with the sparsity
constraint and representing the original signals as the linear
combinations of the learned bases, the DLSC approach can
reconstruct the audio, image and video data. In addition, it has
been reported that incorporating the prior information into the
basis vector estimation can provide further improvements of
the DLSC-based methods in a supervised or semi-supervised
way, which has been applied to the fMRI analysis aswell [18],
[20], [23]–[25].

In this work, we propose a DLSC-based denoising method
as illustrated in Fig. 1. The basic principle is to utilize the two
different types of dictionary atoms such as i) fixed atoms and
ii) learned atoms. The fixed atoms are predefined as the task
stimulus curves. The curves are generated by convoluting a
SPM [11] canonical HRF with the boxcar stimulus function,
as shown in Supplemental Fig. 1. The canonical HRF is the
basis of the parametric model that can estimate the changes
in the fMRI blood oxygen level dependent (BOLD) signal
evoked by an instantaneous burst of activation. Accordingly,
the number of fixed atoms is equal to the number of stimuli
in the task of interest. We consider the six different stimulus
curves for the visual cues and the mentioned five movements,

FIGURE 1. The algorithmic pipeline of the proposed DLSC-based
denoising method. There are two different types of dictionary bases: fixed
atoms and learned atoms. These two types of atoms construct the
sub-dictionary matrices Df and Dl , which lead to the corresponding
sub-coefficient weighting matrices Af and Al , respectively.

namely LF, LH, RF, RH, T, according to the HCP Motor
task paradigm. These curves will also be applied to construct
the regressors for the general linear model (GLM) analy-
sis to find the activation maps of the particular movements
whose details will be discussed in Section III-A. The use
of HRF-convoluted task paradigm during the learning has
two motivations. Firstly, the stimulus curves are designed
to be used for making more clear inferences about regional
brain activities and connectivities in functional neuroimag-
ing, which is also the goal of our denoising method. In addi-
tion, from an algorithmic perspective, by incorporating the
fixed atoms, we can improve the effectiveness of the learning
procedure and avoid converging to the local minimum. Fur-
thermore, the fact that a large portion of variation in the tfMRI
signal is related to the stimulus will inevitably cause the
intra-correlation among atoms which is a major malfunction
factor for the learning, while the correlation constraint in the
proposed method can overcome this difficulty.

Specifically, for each subject, the entire brain fMRI signals
are extracted and the signal at each voxel is normalized
to zero-mean and unit variance, yielding the N × V fMRI
signal matrix SSS, where N is the number of time samples or
frames and V is the number of voxels. By using the proposed
DLSC-based denoising method, the signal matrix SSS can be
factorized into:

SSS = DDD×AAA, (1)

where DDD is the N × K dictionary matrix consisting of the
K atoms {dddk} with k = 1, . . . ,K of the underlying hemo-
dynamic signals and AAA is the corresponding K × V coeffi-
cient matrix to collect the sparse representations {aaav} with
v = 1, . . . ,V for fMRI signal. In (1), the dictionary matrixDDD
is defined asDDD = [DDDf ,DDDl].DDDf is the N × Kf sub-dictionary
matrix consisting of theKf fixed atomswhich are the stimulus
curves related to the task design (Supplemental Fig. 1).DDDl is
the N ×Kl sub-dictionary matrix consisting of the Kl learned
atoms, satisfying the condition of K = Kf + Kl .
In order to train the learned dictionaryDDDl , we construct the

N × Vr signal matrix SSSr , which is a subset of SSS and only
includes fMRI signals whose correlation value with the fixed
atoms is less than a predefined threshold Cth: ]

SSSr = {(sssi) ∈ RN×Vr |corr(sssi,dddk ) ≤ Cth,

i = 1, . . . ,V , k = 1, . . . ,Kf }, (2a)

where corr(·) represents the Pearson correlation operation.
With the sub-matrix SSSr , we then train the learned dictionary
DDDl by solving the following l-0 regularized minimization
problem:

minimize
DDDl ,AAA∗

∥∥SSSr −DDDlAAA∗∥∥2F (3a)

s.t.,
∥∥aaa∗v∥∥0 ≤ λ v = 1, . . . ,V , (3b)

where ‖ · ‖F and ‖ · ‖0 indicate the Frobenius norm and the
zero norm (i.e. counting the non-zero elements in the matrix),
respectively.AAA∗ is theKl×Vr coefficient matrix composed of
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the sparse coding {aaa∗v}v=1,...,Vr of the Vr voxels in the matrix
SSSr , and λ represents the sparsity constraint on the maximum
number of non-zero coefficients for the signal at each voxel.
The threshold Cth is selected to satisfy the condition that
the number of voxels in reconstructed matrix SSSr is larger
or equal to the number of learned atoms, i.e. Vr ≥ Kl .
The use of the submatrix SSSr of the original signals for the
learning can mitigate the potential malfunction caused by
the intra-correlation between fixed atoms and learned atoms.
It can resolve the difficulties in processing the large-scale
fMRI data by excluding the substantial number of voxels
from the original signal matrix. The analytic procedure of
splitting the data and the dictionary into the fixed and learned
parts, then using the submatrix Sr for the dictionary learning
is the main innovation of our proposed method. Compar-
ing with previous DLSC-based fMRI studies [20], [23], this
semi-supervised procedure enables more accurate analysis
as well as reduces the computational cost for the learning.
In order to solve the optimization problem in (3), K-SVD
algorithm [13] and Orthogonal Matching Pursuit (OMP) [30]
are adopted, where K-SVD algorithm coupled with OMP
updates the learned dictionary DDDl in an iterative and alter-
native fashion with the sparse coding AAA∗. Subsequently, the
coefficient matrix AAA = [AAAf ;AAAl] is calculated by using
OMP based on the designed dictionary matrix DDD consisting
of the fixed dictionary DDDf and the learned dictionary DDDl ,
where AAAf is the Kf × V coefficient matrix related to the
task-driven network and AAAl is the Kl × V coefficient matrix
related to the intrinsic network, e.g., resting-state network.
Finally, we denoise the signal matrix SSS which is denoted as
S̄̄S̄S ← DDD×AAA.

C. PARAMETER TUNING
When running the DLSC-based denoising method, the
parameters of the dictionary size K , the sparsity λ and the
threshold Cth for constructing the matrix SSSr need to be tuned.
However, there is no theoretical criterion for determining the
parameters K and λ for the dictionary learning analysis in
neuroscience studies [31]. And for the parameter Cth, the
correlation strength of the fMRI signals with the stimulus
varies across different tasks, thus it is difficult to find a univer-
sal standard for a good threshold for separating task-related
and task-free voxels. Therefore, we perform a grid-search for
finding the best parameter combinations with K = 300 to
500 (step size 100), λ = 5 to 50 (step size 5) and Cth =
0.1 to 0.4 (step size 0.1). Finally we choose (K , λ,Cth) =
(400, 40, 0.1) based on visual inspection of the GLM results
where denoised signals are used as input, as well as the
empirical parameters reported previously [23], [31], [32]. The
GLM activation maps with the different parameter combina-
tions during the grid-search can be found in Supplemental
Fig. 2, Fig. 3 and Fig. 4. The dictionary size K of 400 is
in accordance with the theoretical finding in [14] that the
learned dictionary shall be over-complete. In our case, the
dictionary size should be larger than the number of frames of
fMRI image (284). For the threshold value Cth, it is observed

in the grid-search experiment that the GLM results are not
significantly affected by the correlation threshold, while the
computational time for denoising rapidly decreases as a low
Cth reduce the size of the submatrixSSSr . On the other hand, for
dictionary learning it is required that Vr ≥ Kl (i.e. number of
samples in the input matrix is larger than the dictionary size)
to avoid redundancy of the learned dictionaries. Therefore,
we set the threshold Cth as its minimum possible value of 0.1
in this work.

III. RESULTS
In this work, the proposed DLSC-based denoising method
is applied on the synthetic data generated by the Gaussian
noise-based simulation, as well as the HCP motor tfMRI
dataset. In both experiments, the denoising performances
are evaluated based on the results from functional localiza-
tion analysis (activation detection) and functional connec-
tivity analysis. For comparison, we also adopt the temporal
non-local means (tNLM) [8] method, which has been widely
used to effectively reduce the local fluctuations to obscure
larger scale behavior, for denoising the same set of fMRI
data. Following [8], we set the distance parameter of tNLM as
11 and the smoothing level as 0.72 that empirically provides
the best result on the HCP Motor tfMRI dataset. The GLM
analysis is performed using SPM12 software [11], with six
event-related designs (visual cue, LF, LH, RF, RH, T) for
HCPMotor task and their stimulus paradigms convolved with
the canonical HRF basis function. Except for the infinite
masking threshold and high-pass filtering with a cutoff period
set to be the maximum interval of the stimulus repetition,
the default SPM settings are used in all processing steps,
e.g., global AR(1) auto correlation correction, Microtime
resolution 16 andMicrotime onset 8. The t-statistic is applied
by setting the p-value to 0.001 (uncorrected for multiple
comparison test), and setting the zero-spatial extent threshold
voxel.

A. MODEL VALIDATION AND PERFORMANCE
COMPARISON ON SYNTHETIC DATA (REAL DATA WITH
MANUALLY CONTROLLED ADDED NOISE)
In this work, we validate the effectiveness of the proposed
model based on its denoising performance on synthetic data
where various levels of Gaussian noise are added to the
real fMRI dataset. Specifically, synthetic fMRI signals are
generated by contaminating one HCP Motor tfMRI data
from a randomly-selected subject with additive zero-mean
Gaussian noise N (0, σ 2). Various standard deviations (σ =
100, 200 and 300) are tested in this study, resulting in syn-
thetic data with average Signal-to-Noise Ratio (SNR) of
38.26dB, 32.21dB and 28.69dB respectively. The effective-
ness of denoising is evaluated based on the brain func-
tional activation detection results of the GLM [33], [34] with
SPM12 software [11]. The basic rationale of the synthetic
data experiment is that the Gaussian noises in the contami-
nated signals will hinder the regression-based GLM analysis
and degrade the results (which has also been a challenge in
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FIGURE 2. GLM-derived activation maps of the original, synthetic (additive Gaussian noise with σ = 200) and denoised tfMRI data by DLSC-based /
tNLM-based methods for the LF and LH movements in HCP Motor tfMRI data.

practical fMRI applications), while the denoising method is
supposed to recover the original signals without introducing
any bias into the data.

The GLM activation detection results of the original, syn-
thetic (additive Gaussian noise with σ = 200) and denoised
fMRI data (by both the proposed DLSC-based method and
the tNLM-based method) of two sample movement types
(Left Foot/LF and Left Hand/LH) are illustrated in Fig. 2. For
each set of results, the glass brain visualization on the upper
panel shows the activated voxels with t-value exceeding the
threshold (corresponding to p-value = 0.001). The bottom
panel shows the activation map of the locations with the
maximal t-value overlaid on the T-1 weighted anatomical
image, where the color bar indicates the corresponding t-
value. Result visualizations with various noise levels from all
the fivemovements (LF, LH, RF, RH andT) in theHCPMotor
tfMRI data can be found in Supplemental Fig. 5 and Fig. 6.

In this experiment, the activation maps obtained by the
GLM analysis on the original, high-quality fMRI data are
regarded as ground truth. From Fig. 2 it can be found that
the activation maps estimated from the denoised data using

DLSC are more consistent with the ground truth, compar-
ing with the results from the noised data as well as the
tNLM-based denoised data. The results indicate that the orig-
inal activation maps ruined by the additive Gaussian noise
can be recovered by the proposed DLSC-based denoising
method. Moreover, most of the recovered activation detection
results after denoising by DLSC can be found in the ground
truth, showing that the preprocessing step is not introducing
any observable bias towards the GLM-based analysis.

In order to quantitatively compare the model performance,
for each movement type we analyze the spatial similarity
between pairs of activation maps estimated from the noised/
denoised signals and the activation maps estimated from
the ground truth (original) signals. The spatial similarity is
measured in terms of Dice Similarity Coefficient (DSC),
defined as:

DSC =
|X ∩ Y |
|X | + |Y |

, (4)

where | · | counts the number of voxels in one voxel
set (activation map), X is the set of voxels with
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TABLE 1. Dice Similarity Coefficient (DSC) and the improvement ratio (r ) based on the GLM activation detection experiments on synthetic fMRI data with
additive Gaussian noise.

t ≥ Tth (Tth = 3.12) in the ground truth results estimated
from the original fMRI data, while Y is the set of t ≥ Tth
voxels in the results estimated from noised/denoised data.
For example, the notation DSCDLSC measures the similarity
between the activation map estimated from the proposed
DLSC-based denoised data and that from the original ground
truth data. We further calculate the ratio between correspond-
ing DSCs to quantify the improvements of the activation
detection results by the denoising methods:

rDLSC/Noised =
DSCDLSC
DSCNoised

× 100(%), (5a)

rtNLM/Noised =
DSCtNLM
DSCNoised

× 100(%). (5b)

For example, rDLSC/Noised shows the improvement of the
DLSC-denoised results over the noised results. The similarity
measurements and the improvement ratios are summarized
in Table. We also test the denoising effect on the original
signals without noise (rows with σ = 0 in Table 1, in order
to investigate whether the proposed method can faithfully
reconstruct the data.

The similarity measurements and the corresponding
improvement ratios show that the DLSC-based denoising
method can help recovering the result activation maps
towards the ground truth, where its effectiveness increases
with noise level as seen in the rDLSC/Noised column. On the
contrary, the tNLM-based denoising decreases the similarity
of the estimated activation maps with the ground truth at
low noise levels (σ = 100 and σ = 200). This is mainly
caused by the fact that tNLM is essentially based on sig-
nal averaging (either spatially across voxels or temporally
across volumes), thus it suffers from the effect of smoothing

(or over-smoothing in certain circumstances) when perform-
ing voxel-wise estimation such as calculating DSC.

B. FUNCTIONAL LOCALIZATION: INDIVIDUAL-LEVEL AND
GROUP-LEVEL ANALYSIS ON HCP DATA
In this section the performance of the denoising methods
(DLSC-based and tNLM-based) are evaluated on the real
data from all the 68 subjects of the HCP Q1 Motor tfMRI
database. Following a similar approach as used in section III-
A, we apply GLM with SPM12 software [11] on the real
tfMRI data for estimating both the individual-wise and
group-wise activation maps, where the first and second-level
GLM analysis in SPM are used respectively. First, we com-
pare the individual-level GLM-based activation detection
results for the five movement types (LF, LH, RF, RH and
T) obtained from the raw data, DLSC-based denoised data
and tNLM-based denoised data. The GLM results of one
randomly-selected subject for fivemovement types are shown
in Fig. 3, where the locations of maximal activations, the
heatmap of the T-values and the MNI coordinates of the max-
imal activations are provided respectively. Since there is no
functional lateralization considered for the tonguemovement,
the maximal activated regions can be located in left and/or
right hemisphere. A complete list of individual-level GLM
results from all the 68 subjects can be found in Supplemental
Materials.

From Fig. 3, it can be found that the GLM results from data
denoised by both our proposed method and the tNLM-based
method are improved in correspondence with the GLM
results from the original data and correct maximal activa-
tion can be estimated, showing that denoising process is not

VOLUME 8, 2020 36733



S. Jeong et al.: Sparse Representation-Based Denoising for High-Resolution Brain Activation and Functional Connectivity Modeling

FIGURE 3. Individual-level GLM-derived activation maps of a randomly-selected subject obtained from the original Motor tfMRI data (left), DLSC-based
denoised data (middle) and tNLM-based denoised data (right). Results of the five movement types ((a) LF, (b) LH, (c) RF, (d) RH and (e) T) are listed in the
five rows respectively.

introducing any bias into the signals. Further, both methods
can lead to larger area of activated regions for the detection
than the results from original data, showing that denoising
is effectively increasing the signal quality and interpretabil-
ity of the results. In addition, comparing with tNLM, less
spatial blurring (smoothing) effect could be observed from
the results of the proposed DLSC-based denoising method.
Specifically, the boundaries of activated regions in GLM
results from the tNLM-denoised signals tend to be blurred,

resulting in large and rough clusters for certain datasets.
While our proposed DLSC-based method allows sharper and
more concentrated activation regions in the GLM results
as it utilizes inherent sparsity of the images as prior for
denoising. To better illustrate the subtle differences of the
results between the two methods, we magnify the cluster with
the maximal activations from DLSC-based and tNLM-based
denoised data in Fig. 4 below. For the quantitative com-
parison of these resulting clusters with maximal activations,
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FIGURE 4. Zoom-in of the maximal activation in the individual-level GLM-derived activation maps of a randomly-selected subject after denoising by
DLSC-based and tNLM-based methods for LF, LH, RF, RH and T movement types. The red arrow points to the voxel with maximal activation. The ratio rmax
is defined in Eq. (6).

we calculate the ratio rmax between the numbers of voxels in
the resulting clusters estimated from DLSC-based denoised
data (|XDLSC |) and tNLM-based denoised data (|XtNLM |),
indicating the size difference between the resulting clusters
derived from the two methods. The cluster is defined by the
voxels with normalized t-value larger than the pre-defined
threshold Tth (set as 12 in this work):

rmax =
|XDLSC |
|XtNLM |

× 100 (%). (6)

From Fig. 4, it can be observed that, although the overall
location and spatial pattern of the resulting cluster with the
maximal activation derived from the two methods are similar,
the tNLM-based denoising will lead to much larger clus-
ters comparing with the proposed DLSC-based method. The
measurement rmax further shows that the size of the cluster
estimated from the data denoised by DLSC is around 50%
smaller than tNLM while maintaining the accurate spatial
pattern for the results, thus the precision of the results is
effectively doubled. Considering that the size of each voxel
(2mm isotropic) is already quite large in terms of the number
of neuronal cell types it can cover, correctly pinpointing
the activation regions through denoising by the proposed
method will be a fundamental feature for high-resolution
neuroscience studies.

In addition to the individual-level GLM-based activation
detection results, we also obtain the group-level GLM acti-
vation maps from 68 subjects, as shown in Fig. 5. Com-
parison between the denoised results (both by DLSC and
tNLM) and the original results shows that clearer pattern
of activation map can be obtained after denoising, and the
two denoising methods are generating consistent results.
Specially, the group-level GLM activation maps show high
deviation between the results estimated from LF and RF
movements of the original data. Such asymmetry of the

activation detection is then corrected by both DLSC-based
and tNLM-based methods after denoising.

In order to provide a ground truth for the evaluation
and quantitative comparison for the model performance,
we extract the regions of interest (ROIs) from the parcel-
lation studies as introduced in [9] which is also performed
on the HCP Q1 dataset. As the parcellation framework uti-
lizes multiple modalities of images from the HCP database
(MRI, rsfMRI and tfMRI) and is supposed to establish the
fingerprint for precise and consistent region definition, these
ROIs are then considered as ground truth for evaluating
our activation detection results. The similarities between the
ground truth parcellation ROIs and the activation maps esti-
mated from the three different tfMRI data (original, DLSC-
denoised, tNLM-denoised) are then calculated in terms of
DSC as defined in Eq. (4), where the ground truth imageXXX is
the parcellation ROI and YYY is the spmT image obtained from
the group-level GLM analysis on the corresponding fMRI
data (original/denoised). Specifically, the outlines of ROIs are
extracted from theHCP sub-area definition provided in [9] for
each movement type, and then mapped into the volumetric
space with the depth of 2mm. Note that since the parcellation
in the left and right hemispheres for tongue movement are
separately given in the parcellation, we use the union set of
these ROIs for the comparison. The similarity measurements
in DSC are summarized in Table 2. Furthermore, in order to
provide a more intuitive comparison between the improve-
ment on DSC (i.e. similarity with the ground truth) achieved
by the DLSC-based and tNLM-based denoising methods,
we define the improvement ratios rDLSC/Ori and rtNLM/Ori
following the similar concept in Eq. (5a) and Eq. (5b), which
are also listed in Table 2:

rDLSC/Ori =
DSCDLSC
DSCOri

× 100(%), (7a)

rtNLM/Ori =
DSCtNLM
DSCOri

× 100(%), (7b)
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FIGURE 5. Group-level GLM-derived activation maps of the original data, DLSC-based denoised data and tNLM-based denoised data, for (a) LF, (b) LH,
(c) RF, (d) RH and (e) T movement types.

where DSCOri, DSCDLSC and DSCtNLM are the simi-
larity measurements between the group-level activation
maps estimated from the original, DLSC-denoised and
tNLM-denoised fMRI data with the HCP parcellation ROIs.
As seen in Table 2, in terms of DSC and improvement
ratios, the proposedDLSC-based denoisingmethod has better
capability to delineate the group-level activation detection
results towards the ground truth, comparing with the results
estimated from the original and the tNLM-denoised fMRI
data.

C. FUNCTIONAL CONNECTIVITY ANALYSIS:
CEREBROCEREBELLAR CIRCUITS IN
SOMATOMOTOR NETWORKS
In this work, we use the cerebrocerebellar circuits involved
in somatomotor networks as an example to analyze and val-
idate the effectiveness of applying DLSC-based denoising
for functional connectivity analysis. To this end, we con-
sider the ground truth functional connectivity as reported in
[2], [7] between three cerebellar seed regions of the foot,
hand and tongue movements, and eight cerebral regions
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TABLE 2. Similarity between the group-level GLM activation maps from 3 different datasets and the ground truth, measured in Dice Similarity Coefficient
(DSC), as well as the improvement ratios rDLSC/Ori and rtNLM/Ori as defined in Eq. (7). In each movement type, the threshold Tth for the t-values to define
the activation maps is selected based on visual inspection. A full list of the comparisons using various levels of Tth can be found in the Supplemental
Materials, where the proposed method is shown to be capable of outperforming tNLM-based method in most cases.

FIGURE 6. A: Cerebellar seed regions corresponding to foot, hand and tongue movements. B: Locations of M1F, S1F, M1H, S1H, M1T, S1T, FEF and PrCv
in the left cerebral cortex.

(M1F, S1F, M1H, S1H, M1T, S1T, FEF, PrCv) in each hemi-
sphere as in Fig. 6, where F, H and T indicate foot, hand
and tongue. According to [2], [7], the cerebral regions are

supposed to be highly correlated with the cerebellar seed
regions for the corresponding movement type. The frontal
eye field (FEF) and the ventral precentral cortex (PrCv) at the
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caudal frontal cortex are part of the sensory-motor pathway.
Each region consists of a single surface vertex (4 × 4mm)
centering at the MNI coordinate tabulated in [2], [7], and the
visualization is performed via BrainNet [35].

The group-averaged functional connectivity maps esti-
mated from the original data (black solid line) and the
denoised data by our proposed DLSC-based method (red
solid line) and tNLM-based method (black dashed line) are
visualized in Fig. 6b, for the foot, hand and tongue move-
ments respectively. The functional connectivity is estimated
by computing the Pearson’s correlation coefficient between
the fMRI signals defined in the contralateral cerebral and
cerebellar regions and averaging across the hemispheres.
Fisher’s r-to-z transformation and its inverse transformation
are further applied to normalize the distribution of the corre-
lations. As shown in Fig. 6b, the proposed denoising method
can strengthen the connectivity between the seed regions
associated with each movement type and the corresponding
M1 and S1 regions. The connectivities between M1F and S1F
for foot movement, M1H and S1H for hand movement, M1T
and S1T for tongue movement are increased through denois-
ing. Moreover, the strengthening effect of the DLSC-based
method is consistently more significant on the connectivities
with high correlation (which are also neuroscientificallymore
meaningful), but less on the connectivities with low correla-
tion estimated from the original signals (which are less mean-
ingful and should not present). Thus, it can be concluded that
stronger and more reliable functional connectivity patterns
can be obtained through denoising by the proposed method,
which cannot be obtained by the tNLM-based denoising
method nor without denoising at all. In addition, the corre-
lations at FEF and PrCv become much more prominent after
denoising by our method, showing that the sensory-motor
pathway associated with visual cues could be revealed only
through denoising. Such observation shows that the proposed
DLSC-based denoising method can discover connectivity
patterns which are previously indistinguishable due to the
presence of noises disruption.

IV. DISCUSSION AND CONCLUSION
In this work, we have studied the DLSC-based denoising
method for the high-resolution brain activation localization
and functional connectivity inference. Experimental results
obtained from synthetic and real dataset show that the pro-
posed method is capable of delineating more precise brain
activation maps on both individual and group level, as well as
providing more prominent functional connectivity patterns.
Consistent and neuroscientifically meaningful functional
localization and connectivity patterns which are previously
disrupted by noises can be revealed by the proposed method.
In-depth comparisonwith the latest non-local mean denoising
method shows that the proposed method has the intrinsic
advantage for high-resolution fMRI analysis due to its effec-
tiveness in exploiting the sparse structure of the fMRI signals
and its capability in avoiding smoothing the image. We envi-
sion that the proposed denoising method can be readily used

on both fMRI and other functional neuroimaging methods
(such as EEG) to reveal previously hidden brain architectures
for neuroscience research and increase the capability for the
brain-computer interface devices, thus offering a novel per-
spective in functional neuroimaging applications. The DLSC
denoising code implemented in MATLAB, as well as all the
supplemental figures can be found online at: https://xiangli-
shaun.github.io/DLSC4fMRI/
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