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ABSTRACT 

We proposed a series of new radiomic features for PET 

image analysis base on graph theory and network analysis. 

Current PET radiomic features are mostly developed or 

transferred from CT images analysis which mainly focus 

on texture information. PET images usually contain 

functional information with lower resolution. Thus current 

radiomic features lack interpretability and specificity for 

PET image quantification. Meanwhile, a large number of 

texture features have similar definitions which cause 

severe redundancy for analysis and classification task. We 

proposed novel radiomic features based on graph theory 

that can specifically represent PET image characters. 

Using a set of tools in graph analysis, a new series of PET 

radiomic features that reveal different attributes of tumor, 

particularly intratumoral heterogeneity, are extracted. We 

applied our proposed method to lung cancer diagnosis and 

prognosis to evaluate performance of new features. Using 

ANN as classifier, our graph-based features outperformed 

traditional PET radiomic features. Furthermore, the 

combination of our features and tradition features can 

achieve an even better performance. It indicates that our 

graph-based features reveal significant and unique 

information of tumor in PET images. 

  

Index Terms � radiomics, 18F-FDG PET, graph 

theory, network analysis, quantitative analysis 

 

1. INTRODUCTION 
 

Positron emission tomography/computed tomography 

(18F-FDG PET/CT) is a well-established approach for 

cancer evaluation owing to its great specificity and 

sensitivity, and becomes popular in clinical routine and 

clinical trials [1, 2]. Moreover, the observation and 

quantification of 18F-FDG uptake shown as the 

standardized uptake value(SUV) has been employed to 

reveal different kinds of characteristics of tumors[3]. 

Recently, radiomic analysis for PET/CT has been widely 

studied for diagnosis and treatment evaluation of cancer 

patients owing to its advantage of providing abundant 

image-derived features. However, most of radiomic 

features focus on texture information which are more 

appropriate to quantify CT images [4, 5]. Therefore, 

current radiomic features are less specific and 

unexplainable when applied to PET images. At meanwhile, 

there are several issues and limitations of current PET 

radiomic analysis. First and the most important one is that, 

PET image, which has poor resolution, ������	
����
���


texture details in tumor region. The advantages of PET 

image rely on the functional information and distribution 

of radioactive tracer which is contemporary to those high-

resolution anatomical images. In consequence, 

conventional texture analysis is not suitable for PET 

radiomic analysis. Secondly, the basic texture features are 

generally extracted from a 2D image slices, which results 

in the loss of both spatial information and inter-plane 

interaction for 3D images [6]. Although matrix-based 

texture analysis revealed some spatial relationship of 

pixels, the features are usually calculated with statistical 

method and ������	
���	���
����
��
relationship of voxels 

[6]. Another issue of traditional texture analysis is that the 

large number of features results in high redundancy when 

fed into the classification. A typical radiomic analysis 

using texture features may refer to over 100 features, and 

sometimes with different setting, this number can reach 

1000 [7]. The complication of texture features 

significantly limits its application to clinical practice due 

to the lack of interpretation and generalizability. 

Contradictory results and controversies can be resulted 

from the complex preprocessing steps as well as numerous 

implementation choices in the workflow of radiomic 

analysis [8]. Thus, there is an urgent need to develop PET 

specific radiomic features. However, few PET-specific 

features were developed for heterogeneity or radiomic 

analysis so far. Eary et al. developed a 3D ellipsoidal 

template as prior knowledge to quantify intratumoral 

heterogeneity and spatial distribution [9]. And our 
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quantification of intratumoral heterogeneity specifically 

for PET image [10].  

In this work, we propose a novel concept of 

quantitative modeling for PET image using graph theory. 

It enables us to extract PET-specific features using 

network analysis which is a popular tool in graph theory. 

To the best of our knowledge, this is the first work to 

interpret tumor image with graph-network features. We 

hypothesize that the network-based PET features contain 

comprehensive information of both spatial and functional 

aspects and perform superior to the traditional radiomic 

features for PET image analysis. By building up a graph 

using PET image of each tumor lesion, 26 network-based 

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
Venice, Italy, April 8-11, 2019

978-1-5386-3640-4/19/$31.00 ©2019 IEEE 1311

Authorized licensed use limited to: Harvard Library. Downloaded on March 24,2021 at 18:04:58 UTC from IEEE Xplore.  Restrictions apply. 



features are extracted for quantitative analysis. Then the 

performance of our new series of features was evaluated 

for lung cancer diagnosis and treatment responses using 

��	���	��
 PET images. The comparison between the 

traditional radiomic features and proposed features was 

conducted. Furthermore, we investigated the performance 

of combined traditional and proposed features in the 

classification. And the boost of performance indicates that 

new features reveal more specific information of PET 

images that is complementary to texture features. 

 

2. METHOD AND MATERIALS 
 

2.1. Patients 

 

We study on a cohort of 133 patients who are diagnosed 

non-small-cell lung cancer (NSCLC). There are 32 female 

and 101 male subjects with averaged age 68 ± 8.8 y. For 

staging task, the patients with NSCLC were grouped as 

early and advanced malignancy based on their AJCC 

staging record. AJCC staging system (version 7) is the 

standard clinical criteria using TNM staging standard [11]. 

Depending on the TNM stage, the subjects are grouped 

into four groups, Stage I, II, III and IV. The early 

malignancy group consists of 104 subjects of stage I and 

II, while advanced malignancy group contains 24 patients 

of stage III and IV. Each patient underwent PET/CT 

imaging prior to the surgery or other treatments. All of the 

patients were followed up for treatment response after 

surgery. When evaluating the image features performance 

for treatment response task, the patients are separated into 

two groups depending on the appearance of recurrence. 

There are 28 subjects reported with recurrence including 

regional, local or distant during the follow-up period. 

Meanwhile, those ������	�
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recurrence 

at least one year after surgery were grouped as non-

recurrence, which consists of 74 subjects.  

 

 
Fig. 1. Schematic of the network construction process. 

First, 3D ROI is extracted from PET image. Afterwards, 

an unweighted association matrix is built using adjacent 

points according to distance threshold. Then the value 

difference between each two adjacent nodes is used as the 

weight for this node pair. Finally, the adjacent matrix of 

current case is constructed. The PET/CT images acquired 

before the treatment are obtained from The Cancer 

Imaging Archive (TCIA) [12]. Region of interests (ROIs) 

are manually contoured on tumor lesions by radiologists 

referring to both PET and CT images.  
 

2.2. Network 

 

The original image ROI is a 3D matrix where each voxel 

stands for a node in the graph. As illustrated in Fig 1, for 

each ROI, a graph was built up by defining the SUV as 

node value and using the difference of SUV as edges 

between each pair of nodes. We employed the weighted 

undirected network (WUN), where each edge has its 

different weight but no orientation, which reveals more 

information about the connectivity and relative position 

between linked nodes [13]. Thus, the constructed network 

contains both spatial relationship between each pair of 

nodes and the image gradient represented by SUV 

difference. Then, a stride of two was used as a threshold to 

determine valid connectivity between each pair of nodes. 

Therefore, at most 124 neighboring nodes within threshold 

will be connected for each voxel in a 3D image. Thus, the 

weight between each pair of nodes is defined as: 
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2.3. Feature Extraction 

With the constructed network, we applied the graph 

theoretical approaches to analyze the complexity and 

topological properties of this network including 

modularity, centrality, hierarchy and distribution of 

network hubs [14], which potentially refers to intratumoral 

heterogeneity. All the network-based features investigated 

are summarized in Table 1. 

Table 1 Network features and description 
Network Feature Description 

Basic Concept & Measure 

Edge Size Number of edges 

Node Size Number of nodes 

Average Weighted Degree  

Minimal/Maximal 
Spanning Tree 

Sum of edge value of minimal/ 
maximal spanning tree 

Maximal Degree Number of edges incident to the node 

Network Density Density of edges of the graph 

Weighted Network Density Weighted density of links of the graph 

Average Degree The average weighted degree across all 

nodes 
Maximal Weighted Degree The maximal weighted degree across 

all nodes 

Voxel Number Number of voxels in ROI 

Edge Density Density of edges in graph 

Eigenvalue Related  

Minimal/Maximal 
Eigenvalue 

Min/Max eigenvalues of the Laplacian 
of the graph 

Eigenvalue Distribution  

Graph Energy Sum of the absolute values of the real 
components of the eigenvalues 

Eigenvalue Distribution Proportion of the first 5% eigenvalues 
in all eigenvalue 
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Measures of Centrality 

Mean Cluster Coefficient Duncan J. Watts (1988) [15] 

Max Cluster Coefficient  

Min cluster coefficient  

Measures of Segregation 

Global Efficiency Global efficiency of the network [16] 

S Metric Sum of products of degrees across all 

edges 
Pearson Pearson degree correlation 

Newman-Girvan 

Modularity 

Newman-Girvan community finding 

algorithm 
Classical Newman Girvan 

Modularity 

Community structure in network 

Measures of Resilience 

Degree distribution Standard deviation of the value across 
all nodes 

For the performance comparison, a total of 54 

traditional radiomic features were also calculated [17]. The 

54 conventional texture features consist of 9 gray level co-

occurrence matrix-GLCM features, 13 gray level run 

length matrix-GLRLM features, 13 gray level size zone 

matrix-GLSZM features, 5 neighborhoods gray tone 

difference matrix-NGTDM features, 3 global features and 

other 14 other basic features including volume and 

SUVmean & max. 

 

2.4. Classification:  

 

An artificial neural network (ANN) was setup for 

classification, implemented in Keras framework. The 

structure of our neural network is illustrated in Figure 2. 

With each neuron connected to one feature in the input 

layer, two layers with 32 neurons and 8 neurons 

respectively were then connected, followed by the sigmoid 

activation function, to provide the classification output. 

 
Fig. 2. The structure of our artificial neural network, which 

consists of one input layer, two hidden layers and one 

output layer. 

Due to the limited sample size, the ANN classifier 

was trained and validated using five-fold cross-validation 

to make full use of our data as well as to improve the 

reliability of our result. To alleviate the model bias caused 

by class imbalance, Synthetic Minority Over-Sampling 

Technique (SMOTE) was applied independently to the 

training and testing samples for each cycle. The dropout 

rate of hidden layers was set to 0.3 to avoid overfitting [18]. 

The performance of our network was evaluated by its 

accuracy, area under curve (AUC), as well as sensitivity 

and specificity on different tasks including cancer staging 

and recurrence prediction after treatment. In order to test 

the comprehensiveness among network features and 

traditional radiomic features, we combined both feature 

series and evaluated the performance using same 

classification setup for the same tasks.   

3. RESULTS 

 

Our network features yield satisfying performance in 

diagnosis and treatment evaluation tasks, as described in 

the following subsections and summarized in Table 2. 

 
Table 2 Performance of different groups of features. 

Label Feature Accuracy AUC Sensitivity Specificity

AJCC  

staging 

Network 86.55% 0.86 76.90% 96.19% 

Traditional 82.14% 0.82 66.19% 98.10% 

Combination 92.86% 0.92 88.57% 97.14% 

Recurre

nce  

Network 80.43% 0.80 68.86% 92.00% 

Traditional 78.85% 0.74 63.33% 85.14% 

Combination 85.76% 0.85 76.86% 94.67% 

 

3.1. AJCC staging 

 

In differentiating the early from advanced malignant 

subjects, the network-based features achieved an accuracy 

of 86.55% with 76.90% sensitivity, 96.19% specificity and 

AUC of 0.86. At meantime, traditional features yielded 

82.14% accuracy with 66.19% sensitivity and 98.10% 

specificity, and the AUC is 0.82. Thus, network features 

are superior in the NSCLC staging when compared with 

traditional radiomic features. The combined features have 

the best performance (92.86% accuracy with 88.57% 

sensitivity and 97.14% specificity).  

 

3.2. Recurrence prediction 

 

For recurrence prediction task, the network-based features 

reached an accuracy of 80.43% with 68.86% sensitivity 

and 92.00% specificity, and the AUC is 0.80. At meantime, 

traditional features yielded 78.85% accuracy with 63.33% 

sensitivity and 85.14% specificity, and the AUC is 0.74. 

With the combination of both network and traditional 

features, the accuracy of recurrence prediction is boosted 

to 85.76% with 76.86% sensitivity and 94.67% specificity, 

and the AUC is 0.85. The improvement of performance in 

AJCC staging and recurrence prediction demonstrated that 

the proposed network features can reveal tumor 

characteristics represented in PET image from different 

perspectives, compared with radiomic features, and thus 

the combination of them are even more powerful. 

 

3.3. Importance of Features 

We analyzed the contribution of each features in the 

combined analysis. It refers to the weight vector W that 

connects the hidden layer and input layer [19]. Wi,j 

represents the weight between the jth hidden neuron and the 

ith input feature. We sorted the value   !���  for each 

feature when performing the above two tasks. We plot the 
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ranked features of AJCC staging task as example in Fig. 3. 

Among the top 9 features with highest importance, 6 of 

them are network based features. The most important 

feature is minimal eigenvalue of the Laplacian of the graph. 

We observed similar pattern for the recurrence predition 

task. These resutls imply that the network based features 

carry significant and unique information of PET images. A 

well-trained ANN reduces the weight of unimportant 

features automatically, which makes the feature selection 

unnecessary in our analysis. 

 

 
Fig. 3. Importance distribution of combined features in 

ANN classification for diagnostic staging 

 

4. CONCLUSION 

In summary, we presented a series of new radiomic 

features for PET image analysis based on graph theory and 

network analysis; these features could be used for AJCC 

staging and recurrence prediction of lung cancer patients. 

The superior performance of new features over traditional 

radiomic features demonstrated that the network-based 

features are more suitable to characterize the attributions 

of PET images. Furthermore, when combined with 

traditional features, the network-based radiomic features 

can achieve even better performance and thus become very 

promising tools for cancer diagnosis and prognosis.  
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