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ABSTRACT 

Recent advancement of deep learning-based algorithms has 

greatly improved the field of medical image analysis and 

computer-aided diagnosis/prognosis. Convolutional Neural 

Network (CNN) has shown superior accuracy and 

generalizability in performing prediction/classification tasks, 

thanks to its good utilization of the grid-like structure of input 

images in Euclidean space. In practice, one of the challenges 

in using classical CNN is the multi-size nature of medical 

images, which is especially prominent when the input images 

are from specific target region of interest (ROI) (e.g. tumor). 

Image sizes of those ROIs can vary a lot across patients, 

making the images difficult to be analyzed by CNNs where 

constant-sized inputs are expected. To address this challenge, 

we propose the Deep Voxel-Graph Convolution Network 

(DVGCN). DVGCN represents input images as their affinity 

graph and performs graph convolution to extract 

discriminative features. It then utilizes a sortpooling layer to 

sort the nodes and unifies the feature size used for prediction 

across images, thus solves multi-size challenge without 

explicitly resizing images. DVGCN is tested on 3D Positron-

Emission Tomography (PET) images to predict the patient's 

cancer staging, its performance is compared with classical 

3DCNN (with image padding) and radiomics models.  

 

Index Terms—graph convolutional network, multi-size 

image analysis, computer-aided diagnosis 

 

1. INTRODUCTION 

Computer-aided diagnosis/prognosis based on images has 

been the central focus and ultimate goal of medical image 

analysis in both research and clinical practice. Convolutional 

Neural Networks (CNNs) [1] have rapidly become the 

method of choice for analyzing medical images, and obtained 

promising performance in various applications [2]. The 

algorithmic foundation of CNN lies in its capability of 

learning complex, low-to-high level representation of the 

input images based on spatial contextual localization defined 

on regular voxel grid. Classical CNN-like frameworks take 

advantage of several good properties of such Euclidean space, 

while at the same time being limited by its spatial regularity. 

One major yet often underestimated challenge in using CNNs 

is the multi-size nature of medical images. The challenge is 

especially prominent when performing computer-aided 

diagnosis/prognosis on a specific target region of interest 

(ROI) (e.g. tumor), where the region can be of varying sizes 

across patients. As common CNN needs to take constant-

sized images as input in order to ensure that is convolutional 

kernels will extract image features of the same lengths, when 

dealing with multi-size images the network needs to either 

adopt patch-based or image padding approach (i.e. smaller 

images are padded by empty pixels/voxels to become larger 

images). Patch-based network suffers from localized view of 

the images (limited by patch size) and reduced resolution 

(limited by patch stride). Image padding, on the other hand, 

could be a viable solution yet with its own limitation due to 

imbalanced feature extraction caused by size variation, which 

will be investigated in detail later in this work.  

To address the challenge of multi-size image input, while 

inspired by the flexibility of graph-based image analysis (e.g. 

graph cutting for segmentation [3]), we propose the Deep 

Voxel-Graph Convolution Network (DVGCN). Graph 

Convolution Networks (GCN) extends the classical CNNs to 

non-Euclidean space [4], utilizing either graph spectral [5] or 

propagation of features among neighborhood nodes [6]. 

DVGCN represents images as their graph counterparts by 

constructing the affinity graphs [7] from images. It then 

performs node-wise graph convolution [8] to extract graph 

features in a similar fashion as in classical convolutional 

filters, with added SortPooling operation [9]. We apply the 

proposed DVGCN on 3D Positron-Emission Tomography 

(PET) images for the diagnosis of binary patient labels of 

lung cancer staging. For performance evaluation, we also 

implement: 1) 3DCNN (with image padding) which is the 

current standard approach for image-based classification 

tasks; and 2) Radiomics-based model [10], which is the 

commonly applied approach in oncology and radiology [11].  

 

2. MATERIALS AND METHODS 

2.1. Affinity Graph Representation 

To represent multi-size PET images as graphs, we construct 

the undirected graph 𝐺  based on grouping algorithm [12]. 

Each voxel in the image (to the total number of 𝑛 ) is 

represented by a node in a graph. Based on the similarity 

across voxels as well as their distance, nodes are connected 

by edges with corresponding weights. In this work, the edge 

weight 𝑊𝑖,𝑗 between voxel 𝑖 and 𝑗 within a neighborhood of 

(5,5,5) is defined based on the intensity similarity term and 

spatial proximity term: 
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𝜎𝑊
)
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In Eq.1 ‖·‖  is the Euclidian norm, 𝑟(𝑖, 𝑗)  is the distance 

between voxel 𝑖 and 𝑗, 𝑝(𝑖) is voxel value of a node. 𝜆 is set 

to 𝑝(𝑖) + 𝑝(𝑗), reflecting the fact that in PET images voxels 

with higher values are more important (indicating higher 

uptake). 𝜎𝑅 , 𝜎𝑊 are constants to weight the importance 

between intensity similarity term and spatial proximity term, 

which are set to 1 (i.e. same importance) in this work. 

Weights calculated for each edge in the graph are then 

thresholded, so that edges with weights lower than 20% 

percentile are removed (i.e. only top 20% edges in the graph 

are retained). Weight of the edge between voxel pairs that are 

not within the (5,5,5) neighborhood (i.e. far away from each 

other) is set to zero. Sample illustrations of graph 

representation with various sizes are shown in Fig. 1.  

 

 
Figure. 1. (a) Visualization of a 2D slice of PET image from one 

sample subject with larger ROI, and (b) graph representation of it 

with edges colored in blue connecting each node. (c) Visualization 

of a 2D slice of PET image from another sample subject with smaller 

ROI, and (d) graph representation of it. 

 

For each node in the affinity graph, we also define extra 

features upon it in addition to its voxel value, including node 

degree, mean affinity value (by averaging edge weights 𝑊𝑖,𝑗 

connecting to this node), and heterogeneity value centered at 

this node [13]. Node degree and mean affinity value 

characterize importance of the given node in the graph. 

Heterogeneity feature, which is calculated based on local 

variations in voxel image values, characterizes local texture 

features of the node [13]. 

 

2.2. Deep Voxel-Graph Convolution Network 

By representing the given 3D images with various sizes by 

their corresponding affinity graphs, we can then perform deep 

graph convolution and classification through the proposed 

model ("Deep Voxel-Graph Convolution Network", or 

DVGCN). DVGCN firstly performs graph-based convolution 

to extract substructure features of each vertex [8], similar to 

traditional convolution operations defined in Euclidean space 

where local-to-global image features are extracted. 

Specifically, given an affinity graph matrix 𝐺 ∈ ℝ𝑛×𝑛 with 𝑛 

nodes, and the node feature matrix 𝑋𝑡 ∈ ℝ𝑛×𝑐 with 𝑐 number 

of attributes defined on each node, the graph convolution 

operation between the t-th and t+1th layer is defined as: 

𝑍𝑡+1 =  𝑓(𝐷̃−1𝐺̃𝑋𝑡𝑊𝑡), (2) 

where 𝐺̃ = 𝐺 + 𝐼 is the graph adjacency matrix with added 

self-loops, 𝐷̃ is the diagonal degree matrix of 𝐺̃ , 𝑊𝑡 ∈

ℝ𝑐×𝑐′
are the trainable graph convolution parameters which 

are shared among all vertices, 𝑓 is the nonlinear activation 

function (rectified linear units ReLU is used for DVGCN), 

and 𝑍𝑡+1 ϵ ℝ𝑛×𝑐′
 is the output of t-th layer containing 𝑐′ 

number of attributes for each node. In Eq. 2, information 

(attributes) in each node 𝑋𝑡  is firstly transformed by the 

trainable parameters 𝑊. The transformed information is then 

normalized by the node degrees defined in 𝐷̃ and propagated 

to the neighbors of this node as well as itself based on 𝐺̃. 

Finally, pointwise nonlinear activation function 𝑓 is applied 

to the new information (attributes) of the graph. In DVGCN 

we further use SortPooling layer [9] inspired by the 

Weisfeiler-Lehman (WL) algorithm defined in [14], which 

sorts nodes based on graph topology. Node ordering by WL 

algorithm in DVGCN is consistent across graphs (i.e. nodes 

in two graphs will be assigned by similar order if they have 

similar graph structure), thus enables analysis of different 

graphs without explicit correspondence of their nodes. The 

output of SortPooling is pooled features from k number of 

nodes in the graph, where k is a user-defined integer. If n>k, 

SortPooling will delete the last (n-k) rows from the feature 

matrix; if n<k, it will add (k-n) number of zero rows into the 

feature matrix. In this way, we truncate/extend the size of 

extracted features from n to k, unifies input into next 

classification layer to the same size of k, and effectively 

solves the multi-size problem of the input images. After 

SortPooling, we use 1-D convolutional layers to sequentially 

filter the features and learn local patterns of the node 

sequence. Finally, several fully connected layers followed by 

softmax is used to make the binary prediction of labels.  

 

 
Figure. 2. Illustration of the DVGCN analytics pipeline. In the 

network used for this study, outputs from three graph convolution 

layers are concatenate and feed into the SortPooling layer. The 

sorted and pooled features are then passed to 1-D convolution and 

fully connected layers to predict the binary label of the input image. 
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2.3. Alternative Methods: 3D convolution neural 

networks (3DCNN) and Radiomics Models 

To evaluate the performance of DVGCN against other 

commonly-applied methods for image-based computer aided 

diagnosis , we implement and test the 3D convolution neural 

networks (3DCNN), as well as radiomics models, on the 

same dataset. As 3DCNN needs constant-sized input, images 

will be padded to the same size before analysis. The 3DCNN 

used in this work takes 3D PET image of size 36*32*24 as 

input. It consists of five 3D convolution layers and two fully 

connected layers for the prediction, following a similar 

network structure used in our previous work [15]. We also 

implement a classification model based on radiomics features, 

which is the commonly applied approach in oncology and 

radiology [11]. We firstly extract radiomics features from 

ROIs following guidelines in [16], including intensity 

distribution, spatial patterns (texture), tumor geometry, etc. 

The extracted features are then used to train a three-layer 

neural network for predicting the final labels of each patient.  

 

3. RESULTS 

We use the pubic available Lung Cancer dataset [17] from the 

Cancer Imaging Archive (TCIA) [18] for the model 

development and validation. The dataset contains 135 

patients with clinical information, PET images, and the 

corresponding ROI (region of interest) definition for the 

potential tumor regions. Images within the ROI are used as 

input for DVGCN and radiomics analysis. The same images 

are padded to the same size to be used as input for 3DCNN. 

Sizes of ROI vary a lot across different subjects, from 140 

voxels to 25296 voxels. Visualizations of the largest and the 

smallest ROI (on 2D slices) can be found in Fig. 1. We use 

the label of Cancer Staging by American Joint Committee on 

Cancer (AJCC) from the patient information as prediction 

output. AJCC Staging is a classification system developed by 

the American Joint Committee on Cancer for describing the 

extent of disease progression in cancer patients [19]. Patients 

with cancer will be assigned a number (I~IV) reflecting the 

development of cancer. In this work patients of stage I and II 

are marked as "early stage/0", and those of stage III and IV 

are marked as "late stage/1".  

For training and testing all the three models, in each 

experiment we randomly select 100 subjects for training and 

35 for testing. The experiment is repeated for 10 times and 

we use the averaged result across 10 experiments to evaluate 

the network performance. As number of samples with label 

of "0" or "1" differs a lot for AJCC Staging labels, resulting 

in the majority class (i.e. label with much more samples) and 

minority class, we adapt imbalance adjustment strategy [20] 

for balancing the training set. Specifically, during the 

network training, every time a different bootstrap sample is 

drawn from the training set to fit the network, samples of 

minority class will be copied and used in every partition, 

while samples of majority classes will be randomly sampled 

without replacement.  

Network structure of DVGCN used for the experiment 

contains four graph convolution layers, each of the first three 

layers have 32 output channels, while the fourth layer has a 

single output channel. Every convolutional layer is followed 

by batch normalization. Outputs from all the four graph 

convolution layers, to the total of 97 output channels, are 

sorted by pooled by the SortPooling layer. Parameter k of the 

SortPooling is set so that 10% of the input graphs will have 

nodes more than k, thus their nodes will be truncated. For the 

rest 90% of the graphs, extra nodes with zero values will be 

padded to them. Two fully-connected layers with dropout is 

connected to SortPooling layer to get the final prediction 

label for each input image. 

 

Table 1. Performance of DVGCN, DVGCN without graph 

information (DVGCN*), DVGCN without extra node feature 

(DVGCN**), 3DCNN and radiomics model for predicting patients' 

labels of AJCC Staging. 

Label Method Accuracy Sensitivity Specificity 

AJCC 

Staging 

DVGCN 0.837 0.861 0.813 

DVGCN* 0.792 0.692 0.891 

DVGCN** 0.760 0.792 0.729 

3DCNN 0.711 0.642 0.779 

Radiomics 0.821 0.662 0.981 

 

Performance of DVGCN, 3DCNN and Radiomics model on 

the lung cancer PET images, measured by accuracy/ 

sensitivity/specificity of the predictions, are listed in Table 1. 

It should be noticed that testing data is balanced in a similar 

approach as for training data. It can be found that DVGCN 

outperforms both 3DCNN and radiomics models in the 

prediction of patient labels. We hypothesize that 

improvement of DVGCN over 3DCNN can be caused by: 1) 

Topology of the affinity graphs can be a useful addition to the 

image itself. More importantly, the SortPooling operation of 

DVGCN effectively solves the multi-size problem through 

sorting of the nodes. To validate this, we apply DVGCN for 

the same prediction but without graph information (i.e. set the 

affinity graphs of all images to empty graph). Result are 

denoted by DVGCN* in the table, showing decrease of 

prediction accuracy of DVGCN. 2) In DVGCN, values in 

each graph nodes contains rich graph and image features 

(node degree, node mean affinity, image heterogeneity) in 

addition to the voxel values. These features can be helpful in 

its prediction of patient labels. To validate, we remove these 

extra features (node degree, mean affinity and heterogeneity) 

from the nodes and only retain the voxel values. Results are 

donated by DVGCN** in the table, also show performance 

decrease comparing with DVGCN model with full features.  
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4. CONCLUSION 

To address the challenge of multi-size image analysis for 

computer-aided diagnosis, in this work we develop and 

implement a graph-based deep learning model Deep Voxel-

Graph Convolution Network (DVGCN). The proposed model 

shows good performance on the testing dataset consisting of 

3D Positron-Emission Tomography (PET) images and their 

patient labels, with good flexibility of incorporating more 

image/graph features, and the advantage of utilizing 

topological structure of the images. Currently the method is 

only used for predicting one type of patient label (i.e. 

staging), while we are formulating a multi-task framework 

for simultaneous prediction of multiple patient labels. We are 

further investigating patterns in the extracted graph features, 

in order to identify key factors in the graphs that are affecting 

the prediction results, which will be valuable to radiologists 

and physicians. We are also testing DVGCN on more datasets 

consisting of multi-modal 2D/3D images for its 

generalizability in different application scenarios. Source 

code of DVGCN is available at our GitHub page: 

https://github.com/XuandongZhao/DVGCN. 
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