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Abstract—Since the human brain functional mechanism has
been enabled for investigation by the functional magnetic reso-
nance imaging (fMRI) technology, simultaneous modeling of both
the spatial and temporal patterns of brain functional networks
from 4-D fMRI data has been a fundamental but still challeng-
ing research topic for neuroimaging and medical image analysis
fields. Currently, general linear model (GLM), independent com-
ponent analysis (ICA), sparse dictionary learning, and recently
deep learning models, are major methods for fMRI data anal-
ysis in either spatial or temporal domains, but there are few
joint spatial–temporal methods proposed, as far as we know.
As a result, the 4-D nature of fMRI data has not been effec-
tively investigated due to this methodological gap. The recent
success of deep learning applications for functional brain decod-
ing and encoding greatly inspired us in this paper to propose
a novel framework called spatio–temporal convolutional neu-
ral network (ST-CNN) to extract both spatial and temporal
characteristics from targeted networks jointly and automatically
identify of functional networks. The identification of default mode
network (DMN) from fMRI data was used for evaluation of the
proposed framework. Results show that only training the frame-
work on one fMRI data set is sufficiently generalizable to identify
the DMN from different data sets of different cognitive tasks
and resting state. Further investigation of the results shows that
the joint-learning scheme can capture the intrinsic relationship
between the spatial and temporal characteristics of DMN and
thus it ensures the accurate identification of DMN from inde-
pendent data sets. The ST-CNN model brings new tools and
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insights for fMRI analysis in cognitive and clinical neuroscience
studies.

Index Terms—Deep learning, functional brain networks, func-
tional magnetic resonance imaging (fMRI).

I. INTRODUCTION

INVESTIGATIONS of the human brain’s functional mech-
anism have been enabled by in-vivo functional magnetic

resonance imaging (fMRI) technology. FMRI decomposition
methods (e.g., independent component analysis (ICA) [1], [2],
sparse representation [3], and deep learning methods [4], [5])
have significantly facilitated the analytics of the spatial and
temporal features in fMRI data [6]. As fMRI data are the
acquisition of series of 3-D brain volumes during imaging
scan procedure to recording functional temporal dynamics of
3-D spatial brain volumes, the intrinsic spatio–temporal rela-
tionships are characterized in the form of 4-D data. Thus,
a comprehensive characterization and description of 4-D fMRI
data encoding of both spatial and temporal characteristics is
significant for the understandings inside the human brain’s
organizational functional architecture.

In the current literature, methods of spatio–temporal anal-
ysis of fMRI data can be categorized into two groups from
the perspectives of 3-D spatial or 1-D temporal dimensions
of fMRI data. The first group performs the conjugate analysis
on single domain, and then performs regression of the vari-
ation patterns in the other domain in an alternative manner.
For example, temporal ICA [1], [2], [7] extracts the indepen-
dent non-Gaussian temporal elements in the 4-D fMRI data,
and then regresses out the spatial patterns of the correspond-
ing temporal elements. In another recent research, a deep
learning-based convolutional autoencoder (CAE) model [8]
are explored to characterize temporal features, and correspond-
ing spatial features are generated through regression from
temporal features. On the other hand, dictionary learning and
sparse representation methods extracts the sparse spatial maps
of the fMRI data, while the temporal correspondences of these
components are obtained through linear combinational regres-
sion. Moreover, the work proposed in [9] utilizing restricted
Boltzmann machine (RBM) also focusing analysis on spatial
features first and then the characteristics of temporal features.

Other than focusing on single dimension analysis, meth-
ods in the second group tend to perform simultaneous
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analysis on both spatial and temporal domains. Realizing the
intrinsic spatio–temporal interactions within fMRI data, this
group aims to perform analysis of the spatio–temporal fea-
tures of fMRI data comprehensively. For example, the work
in [10] exploited hidden process model with spatio–temporal
“prototypes” for modeling both domains, and it can dis-
entangle overlapping mental processes evoked by stimuli.
However, the spatio–temporal prototypes are limited to a small
“region of influence” spatial prior for specific stimulus anal-
ysis. Another research also proposed an effective approach
using recurrent neural network (RNN) to incorporate tem-
poral dynamics (and between-time-frames correlations) into
the intrinsic network (IN) modeling [11]. However, the RNN
used in that research [11] is still a prior-like constraint for
the ICA analysis. No comprehensive spatio–temporal analysis
for whole-brain analysis is available in the above-mentioned
research. Thereafter, inspired by better interpretability of the
simultaneous intrinsic spatio–temporal modeling concept and
the superior performance of deep learning frameworks, we
proposed a whole brain level spatio–temporal deep convolu-
tional neural network (ST-CNN) for 4-D fMRI data modeling.
We aim to pinpoint or extract the spatial and tempo-
ral features of targeted functional networks [e.g., default
mode network (DMN) in this paper] directly from the 4-D
fMRI data without any template matching/searching processes
involved, through the ST-CNN model. The ST-CNN model
composes two simultaneous characterizations: 1) the character-
ization on the spatial pattern of the targeted network from the
whole brain signals using a 3-D U-Net [12] and 2) the char-
acterization on the temporal dynamic patterns of the targeted
network, using a 1-D CAE [8]. Losses from the two map-
pings are merged and simultaneously back-propagated to the
two networks in an integrated framework, fulfilling simulta-
neous modeling process of both spatial and temporal domains
based on the level of whole brain signals. In the evaluation
part, our experimental results show that, the ST-CNN, without
hyper-parameter tuning, can extract dynamics of both spa-
tial and temporal pattern of the DMN accurately, even with
the presence of remarkable variabilities of cortical structures
and functions from different individuals. Further evaluations
demonstrated the sufficient generalizability of ST-CNN frame-
work for the network identification task, in that only training
the ST-CNN on motor task-evoked fMRI (tfMRI) data set,
reproducible results can be achieved on other data sets [other
tasks-evoked or resting-state fMRI (rsfMRI)]. ST-CNN can
also serve for cognitive or clinical neuroscience studies as
a useful tool, with the capability of identifying network in
a pin-point way. Furthermore, with the ability of modeling
the spatio–temporal variation patterns of the data correspond-
ing to their intrinsic intertwined nature within one integrated
framework, ST-CNN shows great potentials to offer refreshing
perspectives for understanding human brain functional orga-
nization from 4-D fMRI data. It is noted that this paper is
an significant extension from a recently accepted MICCAI
paper [13]. We extensively evaluated and validated our ST-
CNN model with larger data sets from HCP 900 release.
Besides, the rsfMRI were also tested via ST-CNN and results
show that both the spatial and temporal characteristics can be
modeled for the targeted network (DMN).

Fig. 1. ST-CNN framework. ST-CNN consists of two subnetworks: spatial
network (red part) and temporal network (green part). Combination of the two
subnets is defined using “�.”

II. METHOD AND MATERIALS

Our designed ST-CNN framework takes 4-D fMRI
data (either task-evoked or resting-state), and then generates
both of spatial map and temporal time series of brain network
as outputs simultaneously. Unlike popular CNN structures for
natural image classifications (e.g., [14]), the proposed ST-CNN
can perform convolution operations in both spatial and tempo-
ral domains simultaneously for spatial and temporal features,
making our ST-CNN a spatio–temporal convolution framework
for 4-D fMRI data modeling. The overview of this ST-CNN
framework is illustrated in Fig. 1. To train the ST-CNN, the
ground-truth DMN spatial network volumes and DMN tempo-
ral dynamics are provided via a dictionary learning and sparse
coding method [3], [15], which will be explained in detail in
the following sections.

A. Experimental Data and Preprocessing

The experimental data came from the publicly avail-
able Human Connectome Project (HCP) data set [16]
(900 release) (https://www.humanconnectome.org/study/
hcp-young-adult/document/900-subjects-data-release). The
900 subjects release includes behavioral and 3T MR imaging
data from over 900 healthy adult participants, which provided
a systematic and comprehensive mapping of connectome-
scale functional networks over a large population in [17].
The detailed imaging parameters for both task-evoked and
resting-state data are referred to [18]. The downloaded
data were already preprocessed by a pipeline including:
gradient distortion correction, motion correction, field map
preprocessing, distortion correction, spline resampling to
atlas space, intensity normalization etc. The HCP fMRI
preprocessing analysis also uses FEAT in FSL for multiple
regression with autocorrelation modeling and prewhitening
and spatial smoothing [19]. The preprocessing pipeline is
built using FSL [20] and FreeSurfer [21].

For the experiments in this paper, we used motor tfMRI,
emotion tfMRI, and rsfMRI data sets from 200 randomly
selected ones of the 900 subjects. Only 160 out of 200 subjects’
motor tfMRI data sets were used for training purposes and all
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the rest 40 subjects’ motor tfMRI, 200 subjects’ emotion tfMRI,
and rsfMRI data sets were used for pure testing to validate
the results using our framework. Actually, the 200 subjects for
three tasks have intersecting subjects, as some subjects have
missed scans for some tasks. A total of 282 subjects were
used for motor, emotion and resting state data. We just used
200 subjects from the 282 subjects pool for each task. The ages
of the 282 subjects range from 22 to 75, with a mean age range
from 27.2 to 31.3. Among 282 subjects, 119 (42%) are male
while 163 (58%) are female subjects. After preprocessing of the
data sets following the above-mentioned pipeline, all the fMRI
data are normalized to 0-1 distribution (normal distribution
with 0 mean and 1 standard deviation) as inputs according to

vi =
{

vi−mean(Vin−mask)
std(Vin−mask)

, vi ∈ Vin−mask

0, vi /∈ Vin−mask
(1)

where vi represents voxel intensity at location i; Vin−mask rep-
resents the voxels within the brain mask; mean() is the mean
function, while std() is the standard deviation function.

The dictionary learning and sparse representation
method [3], [15] was performed to decompose the fMRI
data as ground-truth for ST-CNN training for two reasons.
First, using individualized DMNs to guide the ST-CNN model
to learn from individualized features is the key to achieve the
optimized model accommodating for individual variability.
As the individual variability of each fMRI scan is huge, the
extracted DMNs are very different from each other with
individual variances. Thus, using universal ground truth (e.g.,
some DMN templates) for training is risky as the ST-CNN
may just over fit the DMN templates instead of modeling
the intrinsic fMRI signals. Second, we chose the work on
DMNs extracted by sparse representation over ICA as the
works in [22] showed that experimental results demonstrated
the sparse representation could better handle network decom-
position when the spatial overlap exists between functional
network maps. As DMN covers substantial area of regions
in the brain, this will likely have spatial overlap with other
networks. Following the caveats in [22], sparse representation
may have better performance (at least comparable) in con-
structing and interpreting DMN. The input 4-D fMRI data for
dictionary learning and sparse representation was flattened
into a 2-D matrix X ∈ Rt×n with t (length of 0-1 normalized
time points) rows by n columns, each of which represents one
brain voxel out of a total number of n flattened voxels from an
individual subject. The output contains one learned dictionary
D ∈ Rt×m and a sparse coefficient matrix α ∈ Rm×n, with
respect to, X = D × α + ε, as illustrated in [Fig. 2(a)],
where ε is the error term and m is the predefined dictionary
size, set to 400 in this experiment. The functional networks’
temporal dynamics are obtained from the dictionary atoms:
{di ∈ Rt×1|1 ≤ i ≤ m} and spatial patterns are obtained from
the coefficient matrix regressed using a fast implementation of
the LARS algorithm [23]: {αi ∈ R1×n|1 ≤ i ≤ m} (αi ∈ R1×n

are then mapped to 3-D brain volume space as spatial
functional network maps). To find the DMN among all the m
functional networks, the network with the maximum overlap
rate (2) to the well-established DMN templates [24] was
taken as its correspondence, whose corresponding dictionary
atoms were taken as the DMN temporal dynamics. These

(a)

(b)

Fig. 2. Illustration of (a) dictionary learning and sparse representation
and (b) supervised version. 4-D fMRI data was converted in a 2-D matrix
X as input. The decomposed dictionary D contains temporal dynamics in
each atom (column) and the coefficient matrix α contains the correspond-
ing spatial maps of the functional networks. For supervised version, one of
the dictionary atoms is fixed as the desired temporal dynamic curves. The
corresponding coefficient is the corresponding spatial map.

DMN temporal dynamics and spatial maps were then used as
the training and validation/comparison sets for our framework

overlap rate =
|V|∑
k=1

min(Vk, Wk)

(Vk + Wk)/2
(2)

where Vk and Wk are the activation scores of voxel k in the
spatial maps V and W, respectively. |V| is the total number of
the voxels in the spatial map.

B. ST-CNN

As shown in Fig. 1, the ST-CNN framework consists of
two parts: a spatial part and a temporal part. Unlike tradi-
tional ICA or dictionary learning and sparse representation
methods, the inputs are 4-D fMRI data without flattening the
3-D volumes into a vector thus sacrificing the spatial geometric
relationship between each voxel. Furthermore, rather than con-
jugating the updates between the spatial and temporal outputs,
the ST-CNN use a spatio–temporal combination joint to pro-
cess the spatio–temporal relationship inside the original input
4-D fMRI data and output the spatial and temporal results
simultaneously in a pin-point way for the specific function
network (DMN in this case).

1) Spatial Network: The spatial network is basically
inspired by the 2-D Unet [12] designed for 2-D biomedical
image segmentation. The key innovation of the 2-D Unet
is the feature preserving from the contracting path to the
extending path of the Unet structure. The preservation of
the features generated from the contracting path will be fed
back (copied) directly to the expansive path to assist the
accurate segmentation by providing the original image feature
information. The autoencoder-like contracting and expansive
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Fig. 3. Spatial network and temporal network structure inside ST-CNN.

structure makes Unet an end-to-end (image-to-image) frame-
work for image segmentation, which is suitable to be modified
as an end-to-end image pixel-level regression framework while
still maintaining the feature of accurate reconstruction of the
original input images. Intending to preserve the 3-D spatial
context information of the fMRI, we finally adapted the 2-D
image segmentation Unet to a 3-D image regression Unet as
our spatial network.

By extending and adapting the 2-D classification Unet to
a 3-D regression network as shown in Fig. 3, we can take
4-D fMRI data as input, each 3-D brain volume of which
along the time points is assigned with one independent chan-
nel and regress/output DMN’s spatial map. Basically, this 3-D
Unet is a symmetrical structure with a contracting path and
an expansive path. The contracting path is a structure with
successive convolutional layers, alternating with the pooling
layers (red arrows in Fig. 3 in spatial network). The expan-
sive path is arguably symmetric with the contracting path
with convolutional layers alternating with up-sampling lay-
ers. This 3-D u-shaped CNN structure is a fully convolutional
network (FCN) without fully connected layers. For the con-
tracting path among the structure, it follows the canonical
CNN architecture, which repeated two 3×3 convolution oper-
ation, each followed by a rectified linear unit (ReLU), batch
normalization layer and a down sampling max-pooling layer
of pooling kernel size of 2. We will then double the size of
the feature map channels following the down sampling pro-
cess. The expansive path symmetrizes contracting path, except
that the max-pooling layers are replaced with up-sampling
layers, and that the number of the feature map channels are
halved (except that the output layer has 1 channel as 1 3-D
map output) after each up-sampling step. There are connec-
tions between contracting path and expansive path by copying
feature maps from contracting path to expansive path to pre-
serve features and contexts from the original input images. The
loss function for training the spatial network is mean squared
error (MSE) to resemble the targeted training spatial maps of
DMN.

2) Temporal Network: The temporal network (Fig. 3 tem-
poral network) is inspired from the excellent performance of
a 1-D CAE network to deal with the time series for fMRI
modeling [8]. In this paper, we adopt a 6-layers depth 1-D
CAE to deal with the temporal features of the input fMRI. As
shown in Fig. 3 temporal network part, the 1-D CAE is also
a symmetric structure with a contractive and an expansive
path. The contractive path, namely, the encoder starts by taking

Fig. 4. Spatio-temporal combination joint illustration. The spatial output will
be used a convolutional kernel applied to the original input 4-D fMRI data.
The output of this combination joint is a time series reflecting the temporal
dynamics from the fMRI data associated with the spatial map.

input 1-D time series and convolving them using size 3 con-
volutional kernel, which yields eight feature map channels,
followed by a pooling layer for down-sampling. Then a size
5 convolutional layer is cascaded, which yields 16 feature map
channels, also followed by a pooling layer for down-sampling.
The last part of the encoder consists of a size 8 convolutional
layer, which yields feature maps of 32 channels. The expan-
sive path, namely, the decoder, takes the features output by
the encoder as input and mirrors symmetrically the encoder to
reconstruct the input time series. The loss function for training
temporal 1-D CAE network is the following negative Pearson
correlation to resemble the temporal dynamics of the training
DMN:

Temporal loss

= − N
∑N

i=1 xiyi − ∑N
i=1 xi

∑N
i=1 yi√(

N
∑N

i=1 xi
2 −

(∑N
1 xi

)2
)(

N
∑N

i=1 yi
2 −

(∑N
i=1 yi

)2
)
(3)

where x and y are the output time series and ground-truth
time series, and N is the length of the time series. ST-CNN
incorporates this 1-D CAE to generate temporal dynamics of
the DMN from the fMRI data.

C. Convolutional Spatio-Temporal Combination Joint

Since we already built networks for both spatial and tem-
poral analysis, the next question is how to connect those
two parts as an entire framework. That is, the relationship
between spatial and temporal features needed to be character-
ized. Intuitively, as the activated regions (see the red regions
of the convolutional kernel in Fig. 4) shall contain concurrent
signals, we designed a convolutional spatio–temporal combi-
nation joint (Fig. 4). Through this joint, the concurrent signal
features will be fused corresponding to the spatial map, mean-
while preserving an FCN structure. In detail, this combination
joint in Fig. 4 connects spatial network and temporal network
through a convolution operator. The combination takes the 4-D
fMRI data and the 3-D DMN generated from spatial network
as input. The spatial network generated 3-D output is taken as
a 3-D convolutional kernel to convolve with each 3-D volume
along the time frames of the input 4-D fMRI data in a valid
way without any paddings

ts ∈ R
T×1 = {t1, t2, . . . , tT | ti = Vi∗DMN ∈ R } (4)

where ti represents the single convolutional value at each time
frame, Vi represents each 3-D volume scanned at time frame
i. DMN represents the 3-D spatial map, which is also used
in the combination joint as convolution kernel. T is the total
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(a) (b)

(c)

Fig. 5. Training loss curves. (a) Stage one for spatial network training.
(b) Stage two for temporal network training. (c) Stage three for fine-tuning.

length of the time series, which is 284 in this paper. This valid
no-padding convolutional operation will yield a single value
for each time frame, resulting in a series of values as time
series for the estimated DMN, namely, ts, which will be the
input for temporal 1-D CAE, as above-mentioned.

D. Model Training Scheme

As introduced in the combination joint part, the temporal
network relies on the DMN output of the spatial network,
and we have designed a 3-step training strategy for efficiency.
At the first stage, we train spatial network only; the second
stage, we freeze the weights of the spatial network and train
temporal network only; as a simultaneous spatio–temporal
framework, during the third stage, the entire ST-CNN is fine-
tuned simultaneously. From empirical practice, we observed
that the temporal network loss is around ten times less than
the spatial network loss, thus we designed a weighted total
loss (10:1 for spatial:temporal) as the ST-CNN loss.

For the first stage, the spatial network was trained for
100 epochs until the spatial loss reaches 0.03 [Fig. 5(a)], which
indicated the output MSE with the training DMN is very small.
For the second stage, the temporal network was trained for
20 epochs when the temporal loss reached −0.97 [Fig. 5(b)],
which indicated the Pearson correlation coefficient between
the temporal output and the ground-truth is 0.97 (highly cor-
related). For the third stage [Fig. 5(c)], we can see co-operative
refinement of both spatial and temporal network. The gradient
descent optimizer is Adadelta [25].

In order to demonstrate the generalizability to different task-
evoked data and resting-state data of the ST-CNN, our training
data set was only based on the motor task tfMRI from 160 sub-
jects. The rest 40 subjects’ motor task tfMRI data and all the
200 subjects’ emotion task tfMRI and rsfMRI were used for
pure testing purpose.

E. Evaluation and Validation

To evaluate the performance of the framework, both the
spatial and temporal similarities were quantified with the

well-established DMN template spatial map and the corre-
sponding time series of the DMNs decomposed from each
individual. For the spatial similarity measurement, the overlap
rate (2) between the output spatial map and the ground truth
map was used, while the temporal similarity was measured
by the Pearson correlation coefficient [the negative value of
the temporal loss in (3)]. Qualitative evaluation will also be
done as the “ground-truth” DMN decomposed from dictionary
learning and sparse coding and identified with spatial overlap
scheme may not be perfectly reliable as “true” DMN. In the
result section, we will show some qualitative cases where the
dictionary learning and sparse coding failed to generate DMN
while our ST-CNN can successfully pinpoint the DMN.

Furthermore, to validate that the output of the ST-CNN
models the correct spatio–temporal relationship from the
4-D fMRI data rather than overfitting the DMN without
modeling the spatio–temporal relationships, we performed
a supervised dictionary learning (SDL) and sparse represen-
tation method [26] [Fig. 2(b)] to check whether our ST-CNN
framework generate spatio–temporal outputs by successfully
modeling the intrinsic spatio–temporal characteristics within
the 4-D fMRI data. The SDL and sparse representation
method [26] takes the temporal output of the ST-CNN as the
temporal supervision of the dictionary [Fig. 2(b) green part
in dictionary], and reconstruct the corresponding spatial maps
[Fig. 2(b) green part in coefficient matrix) based on the super-
vised dictionary to generate the corresponding spatial maps to
the supervision. The spatial overlap rate was utilized to check
the similarity between the spatial maps generated by ST-CNN
and the SDL and sparse representation. By this way, we can
confirm with confidence that our ST-CNN produces intrinsic
spatio–temporal dynamics of the DMN.

III. RESULTS

In this section, result analysis and performance evaluation
of the spatio–temporal output of the ST-CNN from testing
data sets are presented. ST-CNN was trained on the motor
tfMRI data from 160 subjects, while the testing data sets
includes motor tfMRI data from 40 different subjects, emo-
tion tfMRI and rsfMRI from the corresponding 200 subjects
in HCP Q900 release. In summary, testing results showed that
ST-CNN can perform DMN identification with simultaneous
intrinsic spatial and temporal characterization.

A. DMN Spatio-Temporal Identification

ST-CNN is first tested on the same task (motor) tfMRI
data from 40 different subjects. Visualizations of the identi-
fied DMN from three sample subjects are shown in Fig. 6.
Spatial output of ST-CNN resembled ground-truth spatial
maps decomposed by dictionary learning and sparse rep-
resentations (SR for brevity) (overlap rate all larger than
0.2). While the spatial pattern of DMN template was
never provided to ST-CNN (only subject-wise decomposi-
tion results were used for training), ST-CNN outputs are
more similar or at least comparable to dictionary learn-
ing method which used DMN template as input (Table I).
As reported in [27], networks with spatial overlap rate
larger than 0.1 will be considered similar to each other.
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Fig. 6. DMN identification with spatio–temporal co-learning by ST-
CNN. Randomly selected three subjects are visualized with their ground-truth
DMN spatial map (decomposed by dictionary learning and sparse representa-
tion and identified by spatial overlap with DMN template), spatial output map
from ST-CNN, and temporal dynamics of both SR and ST-CNN. For temporal
dynamics, the blue curve is the output of ST-CNN and the red curve is the
ground-truth dictionary atom corresponding to the ground-truth DMN spatial
map. The Pearson correlation of the two curves are also displayed in the top
right corner: 0.915, 0.923, and 0.9, respectively.

TABLE I
DMN IDENTIFICATION QUANTITATIVE ANALYSIS FOR THREE SAMPLE

SUBJECTS. HIGHER VALUES FOR SPATIAL OVERLAP RATES WITH

DMN TEMPLATES ARE HIGHLIGHTED IN BOLD TEXTS

Results of motor tfMRI from 40 subjects can be found at:
http://hafni.cs.uga.edu/DMN_dynamic/HCP_900/MOTOR/.

After examining all the testing results from motor tfMRI
data, we found ST-CNN perform superiorly than SR in the
following aspects: ST-CNN can identify DMN in a pinpoint
way, rather than relying on spatial overlap measurement (such
as SR/ICA). Besides, as the spatial–temporal dynamics of
DMN within fMRI data are simultaneously captured by ST-
CNN, and it can more accurately identify DMN comparing
with unsupervised approaches such as SR (which relies on
the sparsity prior of fMRI data). We measured the spatial
overlap rate between the results by ST-CNN/SR and DMN
template in motor fMRI data from all 40 testing subjects. The
result shows that ST-CNN achieved a noticeably higher mean
spatial overlap rate and lower standard deviation with DMN

TABLE II
ST-CNN SUPERIOR PERFORMANCE IN DMN IDENTIFICATION

template (0.124 ± 0.016) comparing with SR (0.107 ± 0.042).
In addition, temporal dynamics of the identified DMNs by ST-
CNN shows high Pearson correlation (averagely 0.758 across
40 subjects) with temporal dynamics of ground-truth DMNs.

In addition to the fact that ST-CNN outperformed SR on
average, we also observed cases where ST-CNN generated
obviously better DMN maps than SR (Fig. 7, quantitative
results are shown in Table II). These cases are particularly
interesting, as the ST-CNN is trained based on the results of
SR. Thus, if ST-CNN can obtain correct DMN identification
where SR fails (which is not uncommon due to various fac-
tors, as illustrated below), that would be an indication for the
superior generalizability of ST-CNN over its training data.

In case 1, only a partial DMN was identified by SR,
while posterior cingulate cortex (PCC) and inferior parietal
lobe (IPL) were partially inactivated. On the contrary, ST-CNN
identified these two regions correctly. Temporal dynamics of
the results from two models are similar (Pearson correlation
0.805), as major regions in DMN were still preserved by SR.

In case 2, DMN identified by SR show a mixed spatial pat-
tern of DMN and later visual network [24], possibly caused by
the interdigitated functional area [22] that affected decomposi-
tion results (i.e., two networks are not decomposable based on
current parameter setting of SR). Again, DMN identified by
ST-CNN maintained most of the related functional networks.
Correspondingly, temporal dynamics of SR show a significant
out-of-phase spike comparing with network identified by ST-
CNN, decreasing the Pearson correlation between these two to
0.268. This is likely caused by the extra involvement of later
visual network in SR result.

Case 3, SR DMN identification failure. As cortical microcir-
cuits overlap and interdigitate with each other [28], rather than
being independent and segregated in space, the medial visual
regions and DMN are spatially overlapped. Either incurred
by the failure of dictionary learning and sparse representation
method or the failure of spatial overlap-based DMN identifi-
cation process, the SR DMN turned out to be a medial visual
network. As a result, the ST-CNN predicted temporal dynam-
ics for DMN is quite different from the one corresponding to
the medial visual network (Pearson correlation 0.113).

B. Generalizability for Other Task fMRI Data

We trained our ST-CNN on motor tfMRI data, since the pure
testing on motor tfMRI data is not adequate for demonstrat-
ing the generalizability of the proposed framework as one can
argue that the trained ST-CNN is overfitting to motor task data.
Therefore, without any further training after purely training on
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Fig. 7. Superior DMN identification ability of ST-CNN than dictionary
learning and sparse representation (SR). Case 1, ground-truth DMN partial
spatial pattern. Case 2, ground-truth DMN mixed spatial pattern. Case 3,
ground-truth DMN identification failure.

TABLE III
DMN IDENTIFICATION QUANTITATIVE ANALYSIS BOTH SPATIALLY

(SPATIAL OVERLAP RATE, MEAN±STD) AND TEMPORALLY

(PEARSON CORRELATION) FOR HCP 900 RELEASE DATA

motor data, we deployed a test on emotion tfMRI data to test
the generalizability of ST-CNN for other tasks.

Similarly, we show the ST-CNN prediction for emotion task
from three randomly selected subjects in Fig. 8. As we can
see, the spatial output of ST-CNN successfully identified DMN
spatial maps. Using the dictionary learning and sparse repre-
sentation DMN output as ground-truth, we can also see the
temporal output of ST-CNN is highly correlated with ground-
truth. All 200 emotion tfMRI testing results are referred to
http://hafni.cs.uga.edu/DMN_dynamic/HCP_900/EMOTION/.

As analyzed in Table III, the mean spatial overlap rate of the
ST-CNN outputs with well-established DMN template is still
clearly larger than the sparse representation outputs, and the
larger standard deviation of the sparse representation results
than ST-CNN results also demonstrate that ST-CNN is much
more accurate and robust in DMN identification. Still, the
temporal similarity preserved the same level (mean Pearson
correlation 0.751) as in motor data set. Both spatial and tempo-
ral quantitative and qualitative results support that our ST-CNN

Fig. 8. DMN spatial–temporal identification generalizability to emotion
task. The spatial and temporal output of three subjects are shown above.
Ground-truth DMN spatial map (decomposed by dictionary learning and
sparse representation and identified by spatial overlap with DMN template),
spatial output map from ST-CNN, and temporal dynamics of both dictionary
learning and sparse representation and ST-CNN are listed for each column,
respectively. For temporal dynamics, the blue curve is the output of ST-CNN
and the red curve is the ground-truth dictionary atom corresponding to the
ground-truth DMN spatial map. The Pearson correlation of the two curves are
also displayed in the top right corner.

trained on one specific task has robust generalizability to
other tasks.

C. Generalizability for Resting-State fMRI Data

The DMN is vastly known for its presence during
resting state, namely, default mode [29], [30]. DMN will
also establish or internally orient tasks, which means dur-
ing task-evoked states, DMN is also present [30], [31].
Correspondences of DMN during activation and rest were also
found as full repertoire of functional networks utilized by
the brain in task-evoked states is continuously and dynami-
cally active [24]. According to literature DMN related research
studies [29]–[31], DMN tends to be an IN that constantly
exists inside human brain no matter it is healthy brain or
diseased brain [32]–[34]. Following this logic and the general-
izability of the trained ST-CNN to other task data, we further
tested our ST-CNN trained on task-evoked data for resting
state DMN modeling, which is another important reason we
designed ST-CNN to pinpoint DMN.

Similar to motor and emotion results sections, we
randomly pick three subjects’ results as a quali-
tative illustration in Fig. 9 and put all results for
DMN spatio–temporal dynamics outputs for rsfMRI at
http://hafni.cs.uga.edu/DMN_dynamic/HCP_900/RSN/. As
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Fig. 9. DMN’s spatial–temporal identification generalizability to resting
state fMRI data. The spatial and temporal output of three subjects are shown
above. Ground-truth DMN spatial map (decomposed by dictionary learning
and sparse representation and identified by spatial overlap with DMN tem-
plate), spatial output map from ST-CNN, and temporal dynamics of both
dictionary learning and sparse representation and ST-CNN are listed for each
column, respectively. For temporal dynamics, the blue curve is the output of
ST-CNN and the red curve is the ground-truth dictionary atom correspond-
ing to the ground-truth DMN spatial map. The Pearson correlation of the
two curves are also displayed in the top right corner.

shown in Fig. 9, the DMN spatial pattern is accurately cap-
tured by our ST-CNN, with posterior cingulate cortex (PCC),
medial prefrontal cortex (mPFC), and IPL activated. The
ground-truth DMN spatial maps decomposed by dictionary
learning and sparse representation clearly have high similarity
with ST-CNN outputs. It is intriguing that we still achieved
high spatial overlap rate for DMN in rsfMRI. As shown in
Table III, the average spatial overlap rate of ST-CNN output
with well-established DMN templates is higher than the
outputs from dictionary learning and sparse representation.
The main reason is similar to the analysis for motor data, that
is, dictionary learning and sparse representation method has
limited power for DMN interpretation and identifying DMN
using spatial overlap rate from hundreds of networks is not
very robust.

From the testing results from resting state data, we can con-
clude that our ST-CNN can successfully model the intrinsic
dynamics of the DMN from fMRI data and identify DMN in
a pinpoint way for different tasks as well as resting state data.
Only being trained using one task data set (motor task), the
generalizability of the ST-CNN can be demonstrated for other
task data and resting-state data. This result cross-validated the
correspondence of DMN in both task-evoked state and resting
state and suggested the ST-CNN can capture the spatial and
temporal dynamics intrinsically from any given fMRI data.

Fig. 10. ST-CNN output for synthetic fMRI data input with Gaussian noise.
Visualization of synthetic fMRI data with Gaussian noise on first column.
The synthetic data and real fMRI data have the same brain shape as boundary
mask. Spatial output: only brain background is shown, not activation for the
output. Temporal output: no active curve corresponding to spatial maps with
no activation.

D. Robustness to Noise

To further test the robustness to noise of the ST-CNN and
to further demonstrate that the ST-CNN is not just overfit-
ting DMN from “brain shaped” signals, we synthesized fMRI
data using Gaussian noises (first column in Fig. 10) within the
brain mask to test our ST-CNN framework.

The testing results showed that the trained ST-CNN is not
sensitive to noise and there is no output temporal signals and
no activation for the spatial maps, as shown in Fig. 10. The
results confirmed the robustness to noise of our trained ST-
CNN. Further, it also demonstrated that our trained ST-CNN
is not overfitting DMN according to the brain shapes, rather
modeling the intrinsic signals from the fMRI data. With the
confidence in the intrinsic 4-D modeling from the fMRI data of
ST-CNN, we further checked whether ST-CNN can model
the intrinsic spatial and temporal relationships from the fMRI
data in the next section.

E. Spatial and Temporal Relationship

As network spatial pattern and temporal dynamics are inter-
twined with each other, it is interesting to examine the rela-
tionship between spatial and temporal domains of functional
networks. In order to validate that the ST-CNN can well cap-
ture the intrinsic spatial and temporal relationship from fMRI
data, we performed an SDL method [26] (introduced in the
evaluation and validation section) onto the fMRI data by taking
ST-CNN temporal output as input supervision to reconstruct
the corresponding spatial response of that temporal supervision
to check whether the spatial response is DMN or not.

We performed SDL on all three test data sets: 1) 40 motor
task data; 2) 200 emotion task data; and 3) 200 resting state
data. We randomly picked one exemplar result per data set to
briefly illustrate the validation result for ST-CNN in Fig. 11.
The first column of Fig. 11 shows temporal dynamics of
ST-CNN, which was used to be the fixed dictionary atom
as the supervision, and the corresponding spatial outputs
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Fig. 11. Validation of ST-CNN performing supervised dictionary learn-
ing (supervised DL) method. The first column shows temporal dynamics of
ST-CNN. Using that as input, we performed supervised DL to generate the
corresponding spatial response (third column). The second column shows ST-
CNN spatial maps, which resemble the supervised DL results. Both spatial
map results display the DMN spatial pattern.

TABLE IV
VALIDATION OF ST-CNN PERFORMING SDL. THE SPATIAL OVERLAP

RATE BETWEEN ST-CNN SPATIAL OUTPUTS AND SDL SPATIAL

OUTPUTS USING ST-CNN TEMPORAL OUTPUTS AS INPUT

SUPERVISION. THE STATISTICS SHOWN BELOW ARE

MEAN VALUE ± STANDARD DEVIATION

of the SDL are shown in the third column in Fig. 11. The
ST-CNN spatial outputs are in the second column of Fig. 11.
We can clearly see that the ST-CNN spatial maps resemble
the SDL spatial maps matching DMN spatial pattern, which
means that ST-CNN captured intrinsic relationships between
temporal and spatial dynamics of DMN. We also put all
validation results for further reference: motor data valida-
tion: http://hafni.cs.uga.edu/DMN_dynamic/HCP_900/validati
on/MOTOR/; emotion data validation: http://hafni.cs.uga.
edu/DMN_dynamic/HCP_900/validation/EMOTION/; resting-
state data validation: http://hafni.cs.uga.edu/DMN_
dynamic/HCP_900/validation/RSN/. Quantitatively, we
calculated the spatial overlap rate as the similarity metric to
measure how similar the ST-CNN outputs resemble the SDL
outputs. As shown in Table IV, the mean spatial overlap rates
are all larger than 0.2, which can be considered strongly sim-
ilar according to [27]. The results statistically demonstrated
the high similarity between the ST-CNN and the SDL results,
which indicates that our proposed ST-CNN is effectively
modeling the intrinsic spatio–temporal relationship of DMN

from fMRI data. However, to achieve the same results, the
SDL methods or other equivalent methods need to take prior
knowledge such as the temporal input as supervision to obtain
the spatial output, which might hamper the application of
such methods given that we do not have any prior knowledge
of a specific data. On the contrary, once ST-CNN is properly
trained, it can produce both temporal and spatial dynamics
of DMN without any form of prior information, which paves
a much broader way for applications.

All the above qualitative and quantitative results demon-
strated that our proposed ST-CNN can model the intertwined
intrinsic spatio–temporal dynamics from 4-D fMRI data, no
matter task-evoked or resting-state data.

IV. DISCUSSION

In this paper, we proposed a novel ST-CNN to model
and analyze 4-D fMRI data and simultaneously generate
DMN spatial and temporal dynamics in a pinpoint way. This
spatio–temporal deep learning framework provided a new tool
and insight for 4-D fMRI analysis in future cognitive and clin-
ical research studies. By utilizing the proposed ST-CNN, we
aimed to solve the two challenging problems in fMRI anal-
ysis research: 1) spatio–temporal intrinsic 4-D analysis for
specific functional network (DMN in this paper) and 2) func-
tional network identification directly from fMRI data after
only basic preprocessing (e.g., gradient distortion correction,
motion correction, field map preprocessing, distortion correc-
tion, spline resampling to atlas space, intensity normalization
etc.). As we already discussed, the spatio–temporal and 4-D
simultaneous analysis for fMRI data is still an open question
and many current functional network identification methods
are still based on data decomposition technique (e.g., ICA,
dictionary learning, and sparse coding [35]–[37]). Those tech-
niques have randomized index for the extracted DMN among
all the extracted functional networks, which will impose a bur-
den for the DMN identification process, while ST-CNN is
trained specifically for DMN, which will yield the targeted
DMN directly as output without any ambiguities. Now in
the proposed ST-CNN, these two challenging open questions
can be effectively handled at the same time and the DMN
identification process is much more robust and reliable than
traditional fMRI data decomposition and network identifi-
cation techniques. More importantly, the reproducibility of
the ST-CNN is clearly demonstrated by training ST-CNN on
one task-evoked data set and applied to other task-evoked
data sets as well as resting-state data set. As for DMN regres-
sion, it is logically more reasonable to use rsfMRI data for
both training and testing. However, this is a relatively sim-
pler task as training and testing are both performed on the
same type of the data set. Considering the ST-CNN frame-
work, which is proposed to regress the DMN spatial map and
temporal response within that region, while concurrent tem-
poral response can also pose a penalty for falsely regressed
spatial regions, it really does not quite matter whether the
DMN temporal response is positively or negatively correlated
with the task design since the task design is not even uti-
lized in training ST-CNN, as long as the temporal response is
concurrent regarding to the DMN spatial response. Besides,

Authorized licensed use limited to: Harvard Library. Downloaded on March 24,2021 at 18:00:40 UTC from IEEE Xplore.  Restrictions apply. 



460 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

correspondence between task-evoked state and resting-state
has been found to be established in [24]. Therefore, the gen-
eralizability of the ST-CNN for different tasks/resting states
fMRI data is also demonstrated. The robustness to noise
and nonoverfitting analysis further exhibited the robustness
of the ST-CNN framework. With further validation on the
relationship between spatial and temporal outputs, we further
confirmed the effectiveness of the proposed ST-CNN.

In the future work, we will focus on extending the cur-
rent framework on pinpointing more functional networks from
raw 4-D fMRI data, which can be further applied on brain
disease data sets for better understanding of abnormal brain
activity. As indicated by the current research results [27], [38],
comprehensive resting-state networks including high-order and
low-order networks [39] are necessary for brain disease analy-
sis. Since the ST-CNN model is quite robust and reproducible
for various types of data only across a small range of hyper-
parameter settings, we plan to use a neural architecture search
scheme to investigate the optimal architecture of the ST-CNN
for different types of data and applications. Other simultaneous
spatio–temporal fMRI analysis models can also be inspired
from ST-CNN to accelerate the investigation of the brain’s
functional architecture.
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