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Abstract—In this work, we conduct comprehensive com-
parisons between four variants of independent component
analysis (ICA) methods and three variants of sparse dictio-
nary learning (SDL) methods, both at the subject-level, by
using synthesized fMRI data with ground-truth. Our results
showed that ICA methods perform very well and slightly
better than SDL methods when functional networks’ spa-
tial overlaps are minor, but ICA methods have difficulty in
differentiating functional networks with moderate or signif-
icant spatial overlaps. In contrast, the SDL algorithms per-
form consistently well no matter how functional networks
spatially overlap, and importantly, SDL methods are signif-
icantly better than ICA methods when spatial overlaps be-
tween networks are moderate or severe. This work offers
empirical better understanding of ICA and SDL algorithms
in inferring functional networks from fMRI data and pro-
vides new guidelines and caveats when constructing and
interpreting functional networks in the era of fMRI-based
connectomics.

Index Terms—Resting state fMRI, functional network, in-
dependent component analysis, sparse dictionary learning.
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I. INTRODUCTION

S INCE the introduction of Independent Component Analy-
sis [1]–[6]. During the past decade, ICA has become one

of the (ICA) a few decades ago, ICA has achieved great suc-
cesses in separating independent blind sources from observed
mixtures dominant methods in functional magnetic resonance
imaging (fMRI) data modeling and analysis, particularly for in-
ferring brain networks. Though comprehensive reviews of ICA
methods for fMRI data modeling are beyond the scope of this
paper, here we briefly discuss a few exemplar ICA works that
are most relevant to this paper. McKeown, in 2000, provided a
hybrid ICA (HYBICA) that combined the advantage of pow-
erful data-driven techniques and a priori hypotheses to guide
the fMRI data analysis [7]. In 2001, Calhoun et al. introduced
an effective group ICA (GICA) approach for fMRI data mod-
eling [8]–[10]. An interesting observation of these early ICA
methods is that they attempted to explore the efficiency of ICA
on fMRI data analysis based on simulated experiments. These
works used two different simulated experiments that employed
independent sources to generate simulated data and then exam-
ined the reconstruction performance of ICA [8]–[10]. A few
years later, a probabilistic ICA (PICA) approach and other vari-
ant ICAs were introduced and optimized for fMRI data analysis
[11], [76]–[79]. The PICA was applied on fMRI data acquired
at resting state, and it was demonstrated that PICA is an ef-
fective and robust tool for the identification of low-frequency
resting-state oscillation patterns from fMRI data acquired at
various spatial and temporal resolutions [11], [12]. Additional
mathematic introductions of these ICA method are referred to
Supplemental materials.

However, there is growing concern that ICA methods might
have potential limitations in inferring brain networks when
functional networks have significant spatial overlaps. From a
neuroscience perspective, it has been demonstrated that corti-
cal microcircuits are not independent and segregated in space,
but they rather overlap and interdigitate with each other, given
the convergent and divergent axonal projections in the brain
and heterogeneous activities of intermixed neurons in the same
brain region [13]–[15]. Multiple investigators have discussed
and explicitly demonstrated extensive overlaps of large-scale
functional networks (FNs) in the brain [14], [16]–[18]. Further-
more, many studies have already described and modeled spa-
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tial overlaps of two or more FNs, indicating that fMRI signal
mixes individual voxels into two or more FNs in the overlap-
ping regions [19]–[29]. Several other research groups reported
that task-evoked brain networks, such as in emotion, gambling,
language and motor tasks, have large overlaps with each other
[14], [16]–[18], [30]. More recently, several research groups sys-
tematically described and examined the important issue of FN
overlaps [31]–[38]. These FN overlap studies raise an important
question to ICA methods: can the ICA and its variant methods
effectively and sufficiently separate blind source components
when/if these components have strong temporal correlations or
large spatial overlaps, given the basic assumption in ICA that
those decomposed components should be as independent as
possible [4], [5]?

Alternatively, sparse dictionary learning (SDL), such as the
online dictionary learning (ODL) algorithm [39], stochastic co-
ordinate coding (SCC) algorithm [40], [41] and KSVD [57],
has been successfully applied to reconstruct concurrent brain
networks from both task-based and resting-state fMRI datasets
[41]–[44]. In this category of SDL-based methods, briefly, fMRI
signals from all voxels within the whole brain are extracted and
are then reorganized as a big 2-dimensional matrix, where the
number of columns represents the total brain voxels and the
number of rows stands for the time points. The 2D data matrix
is then decomposed into the production of an over-complete
dictionary basis matrix (each atom representing a functional
network) and a reference weight matrix (representing this net-
work’s spatial volumetric distribution). A particularly important
characteristic of this SDL framework for fMRI data modeling
is that the reference weight matrix naturally reveals the spatial
overlap and interaction patterns among those reconstructed brain
networks [42]–[44]. In general, the SDL framework effectively
provides compact high-fidelity representation of the whole brain
fMRI signals and reveals meaningful spatial patterns such as
brain FNs [41]–[50], [80]. For example, extensive experiments
on the Human Connectome Project (HCP) Q1 fMRI datasets
have demonstrated that the SDL methodology can effectively
and robustly uncover multiple functional networks, including
both task-evoked networks (TENs) and resting-state networks
(RSNs) from task fMRI data that can be well-characterized and
interpreted in spatial and temporal domains. In particular, these
well-characterized TENs and RSNs networks are quite repro-
ducible across different tasks and individuals (results publicly
available on our website [42], [43] and exhibit substantial spa-
tial overlap with each other, thus forming the Holistic Atlases
of Functional Networks and Interactions [42], [43].

From a mathematics perspective, SDL is different from ICA,
despite that both algorithms use linear matrix decomposition.
The objective function for SDL, generally, is considered as
a convex optimization problem based on �1 or �2 norm re-
gression by using alternatively optimization. However, the ob-
jective for ICA is usually to maximize a negentropy [4], [5],
which indicates that ICA needs to maintain the independence
of components from each other. From a human neuroscience
perspective, a variety of cortical regions and networks ex-
hibit strong functional diversity and heterogeneity; that is, a
cortical region could participate in multiple functional do-

mains/processes and a functional network might recruit various
heterogeneous neuroanatomical areas [13]–[17], [30]. Mean-
while, the number of functional networks that a cortical region
is involved in at a specific moment is sparse, typically from sev-
eral to one or two dozen [13], [30], [51]. Therefore, a computa-
tional modeling framework that can simultaneously investigate
both functional network heterogeneity and sparsity, instead of
independence, seems more desirable, such as the SDL meth-
ods [41]–[44]. Therefore, the next natural question is: is SDL
methodology truly better than ICA methodology? Or, do SDL
and ICA have their own superiority in different contexts?

Unfortunately, there have been very few experimental com-
parisons between ICA and SDL in the literature so far. Recently,
a series of our research works have focused on the application of
SDL on resting-state fMRI and/or task-based fMRI [41]–[44].
In this paper, we design a series of simulated experiments to
qualitatively and quantitatively compare three variants of SDL
(ODL, SCC and KSVD algorithms) with four variants of ICAs
(basic ICA, fast ICA, fast radical ICA and efficient ICA), by
examining the spatial overlap level, cross-validation and statis-
tics analysis. Specifically, five sets of simulated experiments
with ground-truth are designed to compare the network recon-
struction performances by three SDL and four ICA methods.
Our results showed that ICA methods perform very well and
slightly better than SDL methods when functional networks’
spatial overlaps are minor, but ICA methods have substantial
difficulty in separating functional networks with moderate or
significant spatial overlaps. In comparison, the SDL algorithms
perform consistently well no matter how functional networks
spatially overlap, and importantly, SDL methods are signifi-
cantly better than ICA methods when spatial overlaps between
networks are moderate or severe. In general, our works offer
better understanding of ICA and SDL algorithms in inferring
functional networks from fMRI data, and provides new guide-
lines and caveats when constructing and interpreting functional
networks in the era of fMRI-based connectomics.

II. MATERIALS AND METHODS

In this section, we will firstly introduce the algorithms of two
variants of Sparse Dictionary Learning including Online Dic-
tionary Learning and Stochastic Coordinate Coding, as well as
the four variants of Independent Component Analysis methods
(see Section II-A). Secondly, we will introduce our methods
for fMRI data synthesis (see Section II-B), based on which the
quantitative comparisons among different algorithms will be
performed. In general, 4 ICAs and 3 SDLs employed in our fol-
lowing simulated experiments are all at subject-level. Since the
vital idea in this paper is to examine the spatial reconstruction
performance of ICAs and SDLs based on human brain networks
at different overlap levels, we do not concentrate on the compar-
ison of time course reconstruction. We should emphasize that,
if more factors (e.g., overlap level or random noise) are intro-
duced simultaneously in all simulated experiments, it is difficult
to clarify which factor is the dominant one that influences the re-
construction performance in the simulated experiments. This is
why only overlap level is included in the series of simulated ex-
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Fig. 1. The computational framework of SDL at subject-level applying
on whole-brain fMRI signals for identification of FNs. (a) The aggregated
whole-brain fMRI signals matrix S of a single subject. (b) The result
dictionary matrix D. For the dictionary matrix, each column is a dictionary
atom representing the temporal pattern identified by a single subject’s
fMRI data. (c) The result sparse coefficient matrix α. Each row in α
represents the involvement of the corresponding dictionary atom in the
whole brain functional activity, which can be further mapped back to 3-D
volume space for representing the spatial distribution pattern of the FN.
The whole coefficient matrix is decomposed after obtained dictionary,
based on a single subject’s fMRI signal.

Fig. 2. The computational framework of basic spatial ICA for inferring
FNs from whole-brain resting-state fMRI signals. (a) The aggregated
whole-brain fMRI signals matrix S from an individual. (b) ICA decom-
poses the signal matrix S into mix matrix D and spatially independent
components. (c) The obtained matrix α of spatially independent compo-
nents. Furthermore, each row of α can be mapped back to brain volume
to represent the spatial pattern of an FN.

periments. To examine ICAs and SDLs more comprehensively,
additional experiments including random noise and comparison
of time course reconstruction are provided in Supplementary
materials.

A. ODL and SCC Algorithms for Brain Network Inference

The computational framework of identifying functional net-
works (FNs) from whole-brain fMRI signal using SDL is illus-
trated in Fig. 1. At the first step, the whole-brain fMRI signal
is aggregated into a 2D data matrix S ∈ Rt×n containing t time
points on n voxels [see Fig. 1(a)]. Then, S is decomposed into
an over-complete dictionary matrix D ∈ Rt×m and a sparse co-
efficient matrix α ∈ Rm×n [see Fig. 1(c)], i.e., S = D × α by
applying the ODL or SCC methods [39]–[44]. Specifically, each
column of D is a dictionary atom representing the temporal pat-
tern of a FN and the corresponding row of α can be mapped
back to brain volume in order to identify the spatial distribution
pattern of the FNs [see Fig. 2(c)].

Mathematically, the learning process is performed as follows:
defining the empirical cost function of S considering the aver-
aged loss of regression. Indeed, if we assume that the param-
eter si represents the simple vector/column of a single matrix,
the following (1) is considered as a traditional sparsity model;
meanwhile, if we assume that the parameter si represents a com-
bination of multiple fMRI signal matrices, the following (1) is

considered as a group-wise sparsity model:

fn (D) Δ=
1
n

n∑

i=1

� (si,D) (1)

where is i-th simulation data. Defining the loss function �(si,D)
or the sparse representation:

� (si,D) =
1
2

min ‖si − Dα‖2
2 + λ‖αi‖1 (2)

where αi is i-th column of α. The �1-regularization will shrink-
age the solution which leads to a sparse solution of α. The
parameter λ is selected to achieve tradeoff between regression
fidelity versus sparsity. The computational framework of ODL
[39] targets to solve (2) to learn D by alternatively optimizing
D and α while fixing the other., It should be noted that while
(2) is non-convex (i.e., difficult to find global optimum) [39].
Once D is successfully learned, α can be obtained by solving
the �1-regularized linear least-squares problem based on D [39].
The ODL applies least angle regression (LARS) to train the dic-
tionary. However, when the dimensionality of the data is high,
the LARS can become very time-consuming. Therefore, ODL
adopts the parallel computation to solve the problem. Based on
our extensive experiments [42]–[44], [49], ODL has been shown
as a robust and effective method to identify the FNs from both
resting-state and task-based fMRI data.

While the underlying mathematical model of SCC is sim-
ilar to ODL [as in (1) and (2)], SCC utilizes a Fast-Iterative
Shrinkage-Thresholding Algorithm (FISTA) [52] for reduc-
ing the computational cost and improving its speed. It uses
stochastic gradient descend (rather than computing the full gra-
dient) to update the dictionary and coefficient matrix. More
importantly, SCC algorithm utilizes a screening operator to skip
atom with 0 coefficient during the optimization, which greatly
accelerate the training process [40], [41]. Moreover, SCC solves
the l − 1 norm problem in (2) by using shrinkage-thresholding
function to simplify the training process. Our experiments have
shown that SCC can achieve reasonably good performance for
FN identification [41].

B. Four Variants of ICA Methods for Brain
Network Inference

ICA has been widely used for fMRI data modeling and
analysis [8]–[10], [19], [23], [24], [30], [53]–[55]. In gen-
eral, ICA attempts to decompose the presumably independent
signal sources that are mixed together. The primary assump-
tion in ICA is the decomposed components’ independence in
space (non-systematically overlapping networks) or time (non-
systematically varying networks) [8]. Mathematically, the sep-
aration of blind sources from the mixed observation is done by
performing a matrix decomposition (5). The concept for apply-
ing ICA for the FN identification is shown in Fig. 2.

Comparing with the computational framework for SDL, the
matrix D in (5) is fundamentally different. Specifically, for the
application on the fMRI field, the dictionary learned in SDL is
over-complete, which indicates that the dictionary size should
be larger than the temporal length (i.e., total number of 3-D im-
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Fig. 3. Computational pipeline for fMRI data synthesis from resting-
state fMRI data in experiment 1.

ages). For example, in our previous work, we set the dictionary
size as 400 to identify the meaningful spatial maps from the
task-based fMRI data with temporal length of 284 [42], [43].
However, for spatial ICAs, the number of independent com-
ponents (ICs) should be smaller than the temporal length. In
practice, spatial ICA methods adopt the automatic estimation
principle for ICs and the estimated number is usually substan-
tially smaller than the temporal length [54]. More importantly,
D in SDL [see Fig. 1(b)] can represent the temporal activities
of the FNs. For example, in our prior work, it was reported
that specific dictionary atoms have very high similarity with
the task-design paradigm curves [42], [43]. Similarly, ICA can
also reflect the temporal task design via task-based fMRI [63],
[72], [73].

C. Experiment Design for Simulated fMRI Data

In this section, we describe the details of three fMRI data syn-
thesis experiments to generate the ground-truth data for quanti-
tative comparisons. The spatial overlap of all ground-truth data
is measured by the Jaccard similarity coefficient to construct the
simulated data with different overlap level. The details of the
parameters tuning for SDLs are discussed in the Supplemental
materials. Briefly, we employ the estimation of maximum value
of sparse tradeoff [69] and rank estimator propose in LAMAFIT
[70] to avoid capriciousness. For all ICAs in the simulated exper-
iments, only the number of potential independent components is
set the same as the number of ground truth, and other parameters
are set by default.

Specifically, experiment 1 aims to generate the synthesized
fMRI data from resting-state fMRI data, as illustrated in Fig. 3.
Firstly, we randomly select the resting-state fMRI signals from
10 subjects [see Fig. 3(a)]. For each subject, we then identify
the 10 well-characterized resting state networks (RSNs) by FSL
Melodic ICA tools [see Fig. 3(b)]. The templates [see Fig. 3(c)]
are derived using (3), based on corresponding individual net-
works [see Fig. 3(b)]. The detailed visualization and explana-
tion of these 10 RSNs can be referred to Supplemental Fig. 1.

Fig. 4. Computational pipeline for fMRI data synthesis from task-based
fMRI data in experiment 2.

RSN templates are derived by the group-wise statistically deter-
mined RSNs using FSL Melodic [see Fig. 3(c)]. After that, 10
time series from the dictionaries derived from resting-state fMRI
data in our prior studies [42], [43] are randomly selected [see
Fig. 3(d)]. We also provide the simulated experiments using time
course identified by Melodic ICA, which can be viewed in our
Supplementary documents. The simulated results demonstrate
that we obtain the similar results, compared with following 6
simulated experiments. The temporal length of the time series
is 1, 200. Given the influence of dictionary correlation [63], we
maintain the correlation of random selected temporal dictionary
atoms below 10%. Finally, synthetic fMRI signals are com-
puted by multiplying the 10 time series with the 10 templates
[see Fig. 3(e)]. In experiment 1, the range of spatial overlap
between the 10 RSN networks is 0.00%–14.74%, using (4).

Templatej =
1
10

10∑

i=1

individual networki,j (3)

Experiment 2 aims to generate synthesized fMRI data from
task-based fMRI data, as illustrated in Fig. 4. Firstly, 10 subjects’
task-based fMRI datasets are randomly selected [see Fig. 4(a)].
Then 10 task-evoked networks are identified by FSL FEAT us-
ing HCP motor task fMRI data [see Fig. 4(b)]. The detailed
visualization and explanation of these 10 task-evoked networks
can be referred to Supplemental Fig. 2. The templates are then
derived by the group-wise statistically determined task-evoked
networks using FSL FEAT [see Fig. 4(c)]. Similar to experiment
1, 10 time series are randomly selected from the dictionaries ob-
tained in our previous study [see Fig. 4(d)]. The temporal length
of the time series is 284. Considering the correlation of dictio-
nary atoms [63], we examine the correlation of random selected
temporal dictionary, and select these atoms whose correlations
below 10%. The synthetic fMRI signals are then computed as
shown in Fig. 4(e). In experiment 2, the range of spatial over-
lap between the 10 task-evoked networks is 0.07%–70.00%,
using (4).
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Fig. 5. Computational pipeline for fMRI data synthesis from 3 task-
based fMRI data in experiment 3.

Experiment 3 aims to generate synthesized fMRI data with
significantly overlapping functional networks, as illustrated in
Fig. 5. Firstly, three task-based fMRI datasets (Emotion, Gam-
bling and Working Memory) are selected from 10 random sub-
jects. The 10 task-evoked networks are identified by FSL FEAT
from the 3 task-based fMRI data [see Fig. 5(b)]. The detailed
visualization and explanation of these 10 task-evoked networks
can be referred to Supplemental Fig. 3. After that, 10 template
networks are computed by averaging the task-evoked networks
across 10 subjects [see Fig. 5(c)]. As shown in Supplemen-
tal Fig. 3, five pairs of these 10 task-evoked networks show
significant spatially overlap with each other. 10 time series are
randomly selected from the dictionaries obtained in our previous
study (Lv et al., 2015a, b) [see Fig. 5(d)], with temporal length
of 284. To avoid the high correlation of dictionaries atoms [63],
at first, we calculate the correlation of random selected tempo-
ral dictionary atoms, and only the dictionary atoms’ correlation
below 10% are selected in our simulated experiment. Synthetic
fMRI datasets for experiment 3 are then computed as shown
in Fig. 5(e). In this experiment, the range of spatial overlap
between 10 networks is 30.00%–90.00%, using (4).

III. RESULTS

Based on the synthesized fMRI data at subject-level with
ground truth discussed above, three SDL algorithms and four
ICA variants are applied to reconstruct functional networks from
such synthesized fMRI data. Additional comparison, including
all ICAs and ODL, SCC, KSVD is discussed in our Supple-
mentary document. The matching corresponding reconstructed
networks is to calculate spatial overlaps with the released stan-
dard templates [42], [43], [71]. Through all simulated experi-
ments, the spatial overlaps between reconstructed networks by
SDL/ICA algorithms with ground truth networks in the above-
mentioned simulations are used to measure the performances of
these compared algorithms. A Jaccard similarity coefficient is

Fig. 6. Reconstructed RSNs by 2 SDL (ODL and SCC) algorithms and
4 ICA (EFICA, FICA, FRICA, and ICA) algorithms based on experiment 1.
The spatial overlap between the reconstructed RSN and the template is
also provided as the upper left corner of each sub-figure.

applied to calculate the overlap as below [64]:

R =
IndividualMap ∩ Tempalte
IndividualMap ∪ Template

(4)

To be specific, a large R indicates the individual reconstructed
network is more similar to the template; if R is equal to 1, the
networks should be considered as the same; otherwise, a small R
means that the individual map is more different from template.
We can find the maximum value of R, which demonstrates that
we can match the components across multiple subjects. More
details of matching procedure can be viewed in our previous
research work [42], [43]. In these synthesis experiments, we
set the IC number as the same as the number of ground truth
and adopt the other default parameters, according to GIFT ICA
tools [19], [55]. For ODL, the sparsity level is set as 0.01; the
dictionary size is set as 10, and the iteration number is set as 500
[42]–[44]. The details of SDL parameter tuning are included in
the Section II of the Supplementary document.

A. Comparison Results on Synthesized fMRI Data in
Experiment 1

As mentioned before, experiment 1 synthesized RSNs
with spatial overlaps ranging from 0% to 14.74%, which is
considered as minor level of overlap. The network reconstruc-
tion results by EFICA/FICA/FRICA/ICA and ODL/SCC are
shown in Fig. 6. Specifically, the first column shows three
representative slices from RSN templates in Fig. 1, in the
Supplementary document. Then, in the second to fifth column,
the reconstructed RSNs in the same slices by 4 variant ICA
(EFICA/FICA/FRICA/ICA) are presented, respectively. The
last two columns present the reconstructed RSNs by ODL and
SCC. In Fig. 6. Each row represents one RSN network, and
the detailed visualization of these 10 RSNs are provided in
Supplemental Fig. 1. In addition, all slices of the reconstructed
RSNs by ICA algorithms and SDL algorithms are available on
our webpage: http://hafni.cs.uga.edu/SDL_ICA_Comparison/
RSN/SDL_ICAs_V1_ReconstructionCompare_RestingSpatial
Map_presentation.html

In Fig. 7, we provide the quantitative comparisons for SDL
and ICA algorithms. In general, the overlaps between recon-
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Fig. 7. Quantitative comparisons of 10 reconstruction RSNs obtained
by ICA algorithms and SDL algorithms. The 10 light blue, orange, gray
and yellow bars represent the overlap values obtained by EFICA, FICA,
FRICA and ICA, respectively, compared with the 10 ground truth RSNs.
The 10 dark blue and green bars represent the overlap values obtained
by ODL and SCC, respectively, compared with the 10 ground truth RSNs.

structed spatial patterns by ICAs/SDL and those 10 RSNs tem-
plates are all larger than 80%. Specifically, the average overlap
values between reconstructed spatial maps and RSNs templates
for EFICA, FICA, FRICA, ICA, ODL and SCC are 88.98%,
87.30%, 90.46%, 91.76%, 83.87%, and 80.36%, respectively.
It is evident that ICA algorithms perform slightly better than
SDL algorithms. Also, it is clear that ODL and SCC have sim-
ilar reconstruction performances, and all reconstructed spatial
patterns by ODL and SCC have large overlaps compared with
the ground truth RSNs, as shown in Fig. 6. Moreover, in ex-
periment 4, we examine the performance of reconstruction for
another vital SDL algorithm named KSVD. Given the ground
truth shown in Supplementary material Fig. 1, we compare the
performance between ODL, SCC and KSVD, qualitatively and
quantitatively.

B. Comparison Results on Synthesized fMRI Data in
Experiment 2

The synthesized task-evoked networks in experiment 2 have
spatial overlaps ranging from 0% to 70%, which is considered
as the moderate level of overlap. The network reconstruction
results by EFICA/FICA/FRICA/ICA and ODL/SCC are
shown in Fig. 8. In details, the first column shows three
representative slices from task-evoked templates in Supplemen-
tary Fig. 2. Then, in the second to fifth column, the reconstructed
task-evoked networks in the same slices by 4 variants of ICA
(EFICA/FICA/FRICA/ICA) are presented, respectively. The
last two columns present the reconstructed task-evoked
networks by ODL and SCC. In Fig. 8. each row represents one
task-evoked network, and the detailed visualization of these 10
task-evoked templates are provided in Supplemental Fig. 2. In
addition, all slices of the reconstructed task-evoked networks
by ICA and SDL algorithms are available on our webpage:
http://hafni.cs.uga.edu/SDL_ICA_Comparison/TaskEvoked/
SDL_ICAs_V1_SimulationReconstruction_MOTORTaskMap
_presentation.html.

In Fig. 9, we provide the quantitative comparisons for SDL
and ICA algorithms. In general, the average overlap values be-
tween reconstructed task-evoked network spatial maps and tem-
plate networks for EFICA, FICA, FRICA, ICA, ODL and SCC
are 26.17%, 38.56%, 34.18%, 17.98%, 45.29%, and 44.80%,

Fig. 8. Reconstructed task-evoked networks by 2 SDL (ODL and SCC)
algorithms and 4 ICA (EFICA, FICA, FRICA, and ICA) algorithms based
on experiment 2. The spatial overlaps between the reconstructed task-
evoked networks and the template are also provided as the upper left
corner of each sub-figure.

Fig. 9. Quantitative comparison for 10 reconstruction task-evoked net-
works obtained by ICAs and SDL with 10 task-evoked networks. The
10 light, orange, gray and yellow bars represent the overlap values ob-
tained by EFICA, FICA, FRICA and ICA, compared with the ground truth
task-evoked networks. The 10 dark blue and green bars represent the
overlap values obtained by ODL and SCC, compared with the ground
truth task-evoked networks.

respectively. It can be seen that the results by SDL algorithms
are significantly better than ICA methods. Meanwhile, ODL and
SCC have similar reconstruction performances, and all recon-
structed network spatial patterns by ODL and SCC have larger
overlaps compared with the ground truth task-evoked networks,
as shown in Fig. 8. Furthermore, we do the further analysis
on the reconstruction performance of 4 variant ICAs (EFICA,
FICA, FRICA, ICA) and 3 variant SDLs (ODL, SCC, KSVD)
by another 6 group-wised task-evoked networks from Language
and Relational task as the ground truth, in the experiment 5. The
simulated data is produced by the same framework discussed in
Fig. 4 in this paper. Then all algorithms are adopted to decom-
pose the simulated data. The visualization of ground truth can
be viewed in Supplementary Fig. 2.

C. Comparison Results on Synthesized fMRI Data in
Experiment 3

It was mentioned before that the synthesized task-evoked
networks in experiment 3 have spatial overlaps ranging
from 30% to 90%, which is considered as the significant or
severe level of overlap. The network reconstruction results
by EFICA/FICA/FRICA/ICA and ODL/SCC are shown in
Fig. 10. Specifically, the first column shows three representative
slices from task-evoked templates in Supplementary Fig. 3.
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Fig. 10. Reconstructed task-evoked networks which have severe over-
laps by 2 SDL (ODL and SCC) and 4 ICA (EFICA, FICA, FRICA, and
ICA) algorithms based on experiment 3. The spatial overlaps between
the reconstructed task-evoked networks and the template networks are
also provided as the upper left corner of each sub-figure.

Fig. 11. Quantitative comparison for 10 reconstruction networks ob-
tained by ICAs and ODL with 10 task-evoked networks with strong over-
lap. The coloring schemes are similar as those in Figs. 7 and 9.

Then in the second to fifth column, the reconstructed
task-evoked networks in the same slices by 4 variant ICA
(EFICA/FICA/FRICA/ICA) are presented, respectively. The
last two columns present the reconstructed task-evoked net-
works by ODL and SCC. In Fig. 10, each row represents one
task-evoked network, and the detailed visualization of these 10
task-evoked templates are provided in Supplemental Fig. 3. In
addition, all slices of the reconstructed task-evoked networks
by ICA and SDL algorithms are available on our webpage:
http://hafni.cs.uga.edu/SDL_ICA_Comparison/TaskEvoked_
StrongOverlap/SDL_ICAs_V1_SimulationReconstruction_
OverlapRateMap_presentation.html

In Fig. 11, we show the quantitative comparisons for SDL
and ICA algorithms. On average, the overlap values between
reconstructed network spatial maps and network templates
for EFICA, FICA, FRICA, ICA, ODL and SCC are 28.73%,
18.18%, 19.47%, 4.92%, 53.65%, and 50.66%, respectively.
Again, it is clear that the SDL algorithms perform significantly
better than ICA algorithms. Meanwhile, ODL and SCC have
similar network reconstruction performances, and all recon-
structed network spatial patterns by ODL and SCC have much
larger overlap compared with the ground truth task-evoked net-
works, as shown in Fig. 10. What is more, in our Supplementary
material, we compare the reconstructive performance of 7 al-
gorithms (4 ICAs and 3 SDLs) by using the extreme strong
group-wised task-evoked networks from WM task. We generate
the simulated data by the same framework shown in Fig. 5 in

Fig. 12. Reconstructed RSNs which have small overlaps by using 3
SDL (ODL, SCC and KSVD) algorithms, based on the 10 RSN templates
of experiment 1. The spatial overlaps between the reconstructed RSNs
and the template networks are also provided as the right bottom of each
sub-figure.

this paper. And then all 7 algorithms decompose the simulated
data and reconstruct the group-wise task-evoked networks. Be-
sides, these constructed networks have the spatial overlap range
70%–85%, and will be adopted to generate the ground truth
which is a very difficult task for all 7 algorithms.

In the following sections, we present additional experiments
4, 5 and 6, which concentrates on the qualitative and quantitative
comparison with ODL, SCC and KSVD with other 4 variant
ICAs. All synthesized fMRI data in experiments 4, 5 and 6
is generated via the same framework discussed in Section II,
part C.

D. Comparison Results on Synthesized fMRI Data as
Experiment 4

As mentioned before, in this section, since KSVD is a vital
method using singular value decomposition (SVD) to train the
dictionary at the early stage of SDL method, we provide the
qualitative and quantitative analysis of three variant SDLs such
ODL, SCC and KSVD using the same synthesized fMRI signal
in experiment 1.

In Fig. 12, based on selected 10 RSN templates, shown as
Supplementary Fig. 1 as our ground truth in experiment 1, we
compare the performance of reconstruction by 3 SDLs including
ODL, SCC and KSVD. The qualitative and quantitative com-
parison is presented in the following Figs. 12 and 13, in an effort
to comprehensively analyze the performance of functional net-
works (FNs) reconstruction by SDLs and ICAs, by comparing
with the results shown in Figs. 6 and 7 in this paper.

It can be learned that the results of KSVD algorithm is very
similar to ODL and SCC. For RSN templates such as #6 and
#7, the reconstructed networks by KSVD have the larger spatial
overlap, compared with ODL and SCC. Meanwhile, for RSN
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Fig. 13. Quantitative comparison for 10 reconstruction networks ob-
tained by ODL, SCC and KSVD with 10 RSN templates with small over-
lap. The 10 blue, orange and gray bars represent the overlap values
obtained by ODL, SCC, and KSVD, respectively, compared with the 10
ground truth RSNs.

template #9, the ODL and SCC have better reconstruction per-
formances than KSVD. In a conceptual level, the method of
training dictionary of KSVD is fundamentally based on SVD,
which is also an important method applied widely for ICA.
So, KSVD can provide a qualified reconstruction performance
when the RSN templates have a small overlap. By increasing
the spatial overlap of RSN templates in our experiments, the
performance of KSVD should be degrading, compared with
ODL and SCC. We provide the quantitative analysis for these
reconstruction results shown in Fig. 13.

E. Comparison Results on Synthesized fMRI Data as
Experiment 5

In the experiment 5, there are totally 6 task-evoked networks
identified by the FSL FEAT from the HCP language and re-
lational task in our previous HAFNI project. Since we aim to
examine the reconstruction performance of 3 SDLs and 4 ICAs
as the experiment 2, we select 6 task-evoked networks based on
6 averaged networks (cope #1-#6) as the reference networks.
Meanwhile, based on our previous HAFNI project, we adopt
6 randomly selected time series dictionaries from task-based
fMRI as the temporal signals as the experiment 2. The visual-
ization of the 6-selected task-evoked networks is provided in
Fig. 4 in the Supplementary material.

In Fig. 15, we provide the qualitative comparisons for SDL
and ICA algorithms. In general, the average overlap values be-
tween reconstructed task-evoked network spatial maps and tem-
plate networks for EFICA, FICA, FRICA, ICA, ODL, SCC and
KSVD are 24.82%, 33.24%, 33.61%, 23.90%, 60.67%, 35.13%,
and 17.86%, respectively. In general, it can be clearly seen that
the results by ODL and SCC algorithms are better than ICA
methods. The reconstruction performance of KSVD is not as
good as ODL and SCC. And, ICA and KSVD have the similar
reconstruction performance, since both ICA and ODL adopts
SVD to train the weight matrix or dictionary; SVD is very sen-
sitive to strong correlated components such as template #15 and
#16. Meanwhile, ODL and SCC have similar reconstruction per-
formances in template #14, #15 and #16, and all reconstructed
network spatial patterns by ODL and SCC have larger overlaps
compared with the ground truth task-evoked networks, as shown
in Fig. 14.

Fig. 14. Reconstructed task-evoked networks by 3 SDL algorithms and
4 ICA (EFICA, FICA, FRICA, and ICA) algorithms based on experiment 2.
The spatial overlaps between the reconstructed task-evoked networks
and the template are also provided as the right bottom of each sub-figure.

Fig. 15. Quantitative comparison for 10 reconstruction networks ob-
tained by 3 SDL (ODL, SCC and KSVD) algorithms and 4 ICA (EFICA,
FICA, FRICA, and ICA) algorithms with 6 task-evoked templates with
moderate overlap. The 6 blue, orange, gray and yellow bars represent
the overlap values obtained by EFICA, FICA, FRICA and ICA, respec-
tively, compared with the 6 ground truth task-evoked networks in Sup-
plementary Fig. 4. The 6 red, green and purple bars represent the over-
lap values obtained by ODL and SCC, respectively, compared with the
6-ground truth task-evoked networks.

F. Comparison Results on Synthesized fMRI Data as
Experiment 6

In the following experiment, we focus on examination of
reconstruction performance via very strongly overlapped syn-
thesized fMRI signal and cross-validation. We select 4 very
strongly overlap FNs from working memory task (cope #1-cope
#4). The spatial overlap between each other is approximately
90% so that it is easy to differentiate the reconstruction per-
formance of 3 SDLs and 4 ICAs in the extreme case. And we
employ a repeated random sub-sampling validation, also known
as the Monte Carlo cross-validation, to examine the reconstruc-
tion performance for all ICAs and SDLs [68]. This method
randomly splits the dataset into training and validation data. For
each such split, the model is fit to the training data, and predic-
tive accuracy is assessed using the validation data. The results
are then averaged over the splits [68]. ICA and SDL are different
from classification algorithms, both algorithms are data-driven,
since they do not require the training process to provide the
model parameters such as the deep neural network adopted
for the classification. However, the random cross-validation
can provide an opportunity to examine the influence for ICAs
and SDLs. In this experiment, we employ the very strongly
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Fig. 16. (a) Averaged reconstructed task-evoked networks by 3 SDL
(ODL, SCC and KSVD) algorithms and 4 ICA (EFICA, FICA, FRICA,
and ICA) algorithms using Monte Carlo cross-validation, based on the
extreme strong overlap templates shown in Supplementary Fig. 5. The
spatial overlaps between the reconstructed task-evoked networks and
the template are also provided as the upper left corner of each sub-
figure. (b) Averaged reconstructed task-evoked networks by 3 SDL (ODL,
SCC and KSVD) algorithms and 4 ICA (EFICA, FICA, FRICA, and
ICA) algorithms without using Monte Carlo cross-validation, based on
the extreme strong overlap templates shown in Supplementary Fig. 5.
The spatial overlaps between the reconstructed task-evoked networks
and the template are also provided as the upper left corner of each
sub-figure.

overlap components; therefore, we can be better understanding
the difference between 4 ICAs and 3 SDLs by compared the
reconstruction results. To be detailed, we repeated the Monte
Carlo cross-validation for 100 times in total, and, in each split,
we only randomly take 10% data as the sub-sampling (tempo-
ral sub-sampling) from 10 subjects’ simulated fMRI signal as
the input simulated task-based fMRI data. In the Fig. 16(a), we
present the averaged identified reconstructed brain networks us-
ing 4 ICAs and 3 SDLs at subject-level. And in the Fig. 16(b),
we provide the averaged reconstructed results using the same
repeated random cross-validation method and parameters but no
temporal sub-sampling. Also, we have provided all reconstruc-
tion results for each simulated subject from #1 to #10, using
Monte Carlo cross-validation. All comparisons can be viewed
in Supplementary Figs. 8–17.

In Fig. 16(a) and (b), we show the qualitative comparisons for
SDL and ICA algorithms. Using Monte Carlo cross-validation,
ICAs can provide much better reconstruction results. Some

Fig. 17. Quantitative comparison for 4 reconstruction networks ob-
tained by 3 SDL (ODL, SCC and KSVD) and 4 ICA (EFICA, FICA, FRICA,
and ICA) algorithms with 4 ground truth task-evoked networks with ex-
treme strong overlap, using 10% repeated random cross-validation (part
(a)) and without repeated random cross-validation (part (b)). The 4 blue,
orange, gray and yellow bars represent the overlap values obtained by
EFICA, FICA, FRICA and ICA, respectively, compared with the 6-ground
truth task-evoked networks. The 4 red, green and purple bars repre-
sent the overlap values obtained by ODL, SCC and KSVD, respectively,
compared with the 4 ground truth task-evoked networks.

reconstruction overlap (ground truth #1 and #2 of FICA) is
even comparable with SDLs. But, without using Monte Carlo
cross-validation, it is clear that the SDL algorithms ODL and
SCC perform significantly better than ICA algorithms. Mean-
while, ODL has the best reconstruction performances in these
very strongly overlapped templates in both two parts of this
experiment, and all reconstructed network spatial patterns by
ODL have much larger overlap compared with the ground truth
task-evoked networks, as quantitatively shown in Fig. 17.

As a result, our conclusion is that ICA can perform efficiently
only using massive repeated cross-validation, which indicates
the ICA can achieve the comparable reconstruction with SDLs
only using repeated random cross-validation that is very time
consuming. It is also worth noticing that ODL is very robust,
whether employed or unemployed the repeated cross-validation
method. Obviously, to explore the current massive human
brain fMRI data, SDLs, especially for ODL, have the obvious
superiority.

G. Statistics Analysis on Experiment 1, 2 and 3 via
Multiple Subjects

As discussed before, we generated 10 different subjects’ sim-
ulated resting-state and tsk-based fMRI data to compare the
reconstruction performance of ICAs and SDLs. Hereby we
provide the further statistics analysis by two-sample t-test. In
Fig. 18, we provide the t-test between each two algorithms from
ICAs and SDLs in the experiment 1, 2 and 3, respectively. By
review all three matrices, the p-value pair of ICAs and SDLs is
continuously decreased. In the last matrix, most p-value pairs
of ICAs and SDL are decreased to small values (<0.05), which
further indicates that the significant differences between ICAs
and SDLs, when these two types of methods are applied on the
very strongly overlapped data.
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Fig. 18. Statistics analysis of reconstruction accuracy (spatial over-
lap) on all 10 subjects’ simulated fMRI data in experiments 1 (a), 2 (b)
and 3 (c) discussed before in our paper. We employ the two-sample
t-test (alpha = 0.05) to examine the difference between each subject’s
spatial overlap obtained by two algorithms. And we visualize the aver-
aged p-value of each pair of two algorithms using two-sample t-test. For
example, a single element in first row and fifth column in matrix (a) rep-
resents the averaged p-value based on the t-test applied on 10 subjects’
reconstruction accuracy obtained by ODL and EFICA.

IV. CONCLUSION

In this study, we proposed three simulation experiments to
synthesize fMRI data with ground-truth in order to compare
the network reconstruction performance by three SDL and four
ICA algorithms. Overall, SDL algorithms can provide consis-
tently high reconstruction accuracy for all kinds of fMRI data
including both resting state fMRI and task-based fMRI data,
no matter how strong spatial overlaps brain networks have. Our
recommendation is that SDL algorithms are more universally
efficient in reconstructing brain networks in various combina-
tions of scenarios in the era of fMRI-based connectomics, given
the known extensive overlaps of large-scale functional networks
in the brain [14], [16]–[18], [30].

However, it should be pointed out that SDL algorithms have
their own caveats. First of all, there are lacking solid theoretic
guidelines on how to select and optimize the parameters such as
the sparsity level and dictionary size. Future efforts should be
devoted to investigating the optimal ways to estimate and select
such key parameters [41]–[44]. In addition, in the future, we
will employ group-wise and structured sparsity to perform fur-
ther comparison with corresponding ICA methods [74], [75].
Second, the regularity and variability of those reconstructed
functional brain networks by SDL algorithms across different
fMRI scans and individual brains should be assessed and mod-
eled [44], [46], [49], [65]. Finally, it is worth noting that SDL
methods are still the so-called “shallow” models [66], [67]. In
contrast, deep neural network structures, such as the recently de-
veloped Deep Convolutional Auto-Encoder (DCAE) [67], can
take the advantages of both data-driven approach and hierarchi-
cal feature abstraction ability. We envision that deep learning
models would potentially further improve SDL methods in re-
constructing functional brain networks in the future.
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