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ABSTRACT 

Traditional task-based fMRI activation detection methods, 

such as the general linear model (GLM), assume that the 

fMRI signals of activated brain regions follow the external 

stimulus paradigm. Typically, these activated regions are 

detected independently in a voxel-wise fashion, and the 

interaction among voxels is nevertheless neglected. Despite 

the wide use and remarkable success of GLM, the temporal 

and spatial relationships among activated regions remain 

unveiled. In response to this challenge, we present a novel 

method that combines two-stage sparse representation 

framework and the operator modulations (integral and 

derivative) to explore the temporal and spatial organizations 

underlying fMRI-derived activations in the brain. The two-

stage sparse representation framework is designed to deal 

with big data and the functional operator is focused on 

finding the refined activation areas in the brain under task 

performances. Experiments demonstrated that diverse 

temporal and spatial organizations between activated 

regions exist and different functional operators may lead to 

different activation areas, thus significantly supplementing 

to the available principle of GLM that has been widely used 

in the human brain mapping field. 

 

Index Terms— Functional Operator, Activation 

Detection, Nested Sparse Codings. 

 

1. INTRODUCTION 

Voxel-based activation detection in task-based fMRI has 

been widely used in the human brain mapping field. For 

instance, the general linear model (GLM) [1, 2] has been 

commonly used to determine activated voxels in task-based 

fMRI images due to its effectiveness, simplicity, robustness 

and wide availability [1, 3]. However, the behavior of the 

functioning brain is largely at network level [4], involving 

multiple distinct brain regions which continuously interact 

with each other. For example, some small regions belonging 

to the activation areas may participate in several functional 

brain networks during the fMRI scan. Thus, it is not enough 

to represent the activation areas only by the single spatial 

pattern which is obtained by GLM. In order to provide a 

better understanding of the organizational mechanism of the 

functional brain and inspired by the theory of proportional-

integral-derivative (PID) controller [5] which has been used 

in many research studies (e.g. in [6]), in this work we have 

presented a novel concept of functional brain operators and 

its corresponding analysis framework, aiming at the further 

refinement of the traditional activation detection results. The 

proposed framework utilizes the operators of integral and 

derivative for the temporal characterizations of the brain 

networks, which are the fundamental functions in the signal 

processing field. 

 

Inspired by the successes of using sparse representation 

in pattern recognition [7, 8] and in functional brain imaging 

analysis [9, 10], in this work, the nested dictionary learning 

method [11] has been chosen for the analysis of fMRI 

signals, which is a two-stage framework by coupling the 

dictionary learning results from individual datasets into a 

second-stage dictionary learning routine. It has been shown 

in our prior studies [11] that it could potentially deal with 

the common problems in fMRI signal processing including 

inter-subject variability [12], big data, and noise [13]. 

 

In brief, in this work, we will first apply the nested 

sparse coding representation framework on the given fMRI 

dataset. Then the functional operators will be applied to the 

nested dictionary learning results, aiming to identify brain 

regions that: 1) have been detected by the GLM-based 

activation detection method but actually belong to different 

modulation types (integral, derivative, or unmodulated); and 

2) have not been detected by the GLM-based activation 

detection method but have revealed by the functional 

operator analysis. 

 

2. METHODS 

2.1. Overview 

 

As shown in Fig. 1, input fMRI signals will be first analyzed 

by nested dictionary learning and sparse coding method to 

obtain its atomic basis functional components with specified 

temporal and spatial patterns (a). Then the second-order 

discrete integrals and derivatives of the component’s 

temporal activation pattern are obtained, deriving the 
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components’ modulated temporal activation patterns (b). At 

the same time, stimulus paradigm is convoluted with the 

hemodynamic function as the template to match with each 

modulation (c). Then the correspondence between second-

stage modulated functional components and task stimulus is 

identified by the matched pairs based on Pearson’s 

correlation value (d). Trace-back method is finally used to 

identify the first-stage functional components which have 

relationship with activation detection after applying 

operators (e). 

 

 

Fig.1. Overview of the proposed framework to identify activation 

components using the operators and nested sparse coding 

representation.      

 

2.2. Data Acquisition and Pre-processing 

 

The dataset used in this work comes from the Human 

Connectome Project (HCP) Q1 release [14]. The acquisition 

parameters of fMRI are: 90×104 matrix, 220mm FOV, 72 

slices, TR=0.72s, TE=33.1ms, flip angle=52°, BW=2290 

Hz/Px, 2.0mm isotropic voxels. Preprocessing pipelines 

includes motion correction, spatial smoothing, temporal pre-

whitening, slice time correction, and global drift removal. 

More detailed data acquisition and preprocessing are 

referred to [14]. In this work, fMRI data from seven tasks 

are used: working memory (WM) (405 volumes), gambling 

(253 volumes), language (316 volumes), emotion processing 

(176 volumes), motor (284 volumes), social cognition (274 

volumes) and relational processing (232 frames).   

 

2.3. Sparse representation of whole brain fMRI signals  

 

2.3.1 First-stage sparse coding  

In the first stage, the effective online dictionary learning 

algorithm [7] is chosen to learn a dictionary with sparsity 

constraint from the whole-brain fMRI signals of each 

subject. The time length is t and voxel numbers are 

represented by n. The algorithm would learn a meaningful 

and over-complete dictionary D [10, 11]. The dictionary is 

consisting of k atoms (m>t, m<<n). The input matrix M is 

represented by dictionary D and corresponding sparse 

loading coefficient matrix α. In this way, each signal from 

M can be represented by the most relevant atoms in the 

dictionary D we learned. In previous studies, e.g., in [15], 

the assumption is well recognized that in fMRI data, each 

voxel’s fMRI signal is a linear combination of several 

atomic components. Thus, each signal from M will be 

represented by the most relevant atoms in the resultant 

dictionary D.  

 

To be clearer, we use equations below to explain the 

basic steps. For the input fMRI signals, set 𝑴 =

[𝑚1, 𝑚2, … 𝑚𝑛] ∈ ℝ𝑡×𝑛
and the loss function for the 

dictionary learning algorithm to minimize is defined in Eq. 

(1) with a 𝑙1regularization that yields to a sparse constraint 

to the loading coefficient α (constrained by non-negativity), 

where λ is a regularization parameter to trade-off the 

regression residual and sparsity level:   

𝑚𝑖𝑛
𝐷𝜖ℝ𝑡×𝑘,𝛼𝜖ℝ𝑘×𝑛 

1

2
||𝑴 − 𝐷𝛼||𝐹 + 𝜆||𝛼||1,1   (1)   

To prevent D to be arbitrarily large and lead to trivial 

solution of optimization, its columns are constrained by Eq. 

(2). 

𝐶 ≜ {𝐷𝜖ℝ𝑡×𝑘    𝑠. 𝑡.   ⩝ 𝑗 = 1, … 𝑘, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1}   (2)   

To achieve the optimization, the procedure is done by 

iteratively updating D and α in Eq. (1). From the equations 

above, there are two important parameters we concerned. 

The value of λ and dictionary size k1, which are determined 

experimentally in literature studies (λ=0.1, k1=400) [9, 10]. 

When the dictionary learning step is finished, the resulting 

𝐷 matrix contains temporal variations for each component, 

while the corresponding sparse loading coefficient matrix α 

contains the spatial distribution for each component.   

 

2.3.2 Second-stage sparse coding method 

Since we already have the first-stage dictionary learning 

results, our task is to obtain group-wise characterization of 

the dictionaries that could reveal the distinctive organization 

patterns among a group of subjects. So we need to build a 

new input for the second-stage dictionary learning. Thus, we 

combine all the subjects’ D matrix into one big data matrix. 

We named it M*, and then it will be used as the input for 

second-stage sparse-coding representation. In the second 

round, the parameters are λ=0.1, k2=50, aiming to obtain a 

group-wise common dictionary D* and the corresponding 

loading coefficients α*, which could reflect the groupwise 

temporal and spatial organization patterns of the given 

dataset. Compared with the original fMRI data which are 

defined on the whole brain voxels, two-stage framework 

achieves a huge size reduction while still maintaining the 

major functional characterization for each individual [11]. 

More importantly, noises and undesired voxel-wise signal 

fluctuations are largely removed in M*, thus we can ensure 

that most of the common dictionaries can represent the 

groupwise consistent functional activities, and their 

differences are more likely to be originated from the 

intrinsic features of functional brain activity patterns. Since 

first-stage components can be represented by linear 

combination of several functional components in the second 

stage, the most important reason that we need nested sparse 
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representation method is that we can track back the 

functional components in the first-stage to identify whether 

they have strong relationships or not. 

 

2.4. Using Pearson correlation to identify functional 

components in the second stage 
 

After obtaining the second-stage functional components, we 

use the commonly used Pearson’s correlation to measure the 

temporal correlation between functional components and 

task design. Here, the temporal signals of the functional 

components need to be applied by operator functions 

(integral and derivative) and the signals of the task design 

need to be convoluted by Hemodynamic Response Function 

(HRF). Then the second stage component which has the 

highest correlation with convoluted task design will be 

picked up. That is, for each task, we will pick up two 

second-stage function components, one for each operator. 

Then the second-stage components will be used to identify 

functional components in the first-stage, and the details are 

shown in Section 2.5. 

 

2.5. Trace-back method to identify function components 

in the first-stage 

 

Based on the identified common functional components on 

the second-stage dictionary learning, the relationship 

between functional components is at individual subject level. 

In order to check the components in subject’s level, we need 

to apply the D and α from the first-stage dictionary learning. 

As we know, for each component in the second stage, it 

corresponds to a vector in α, and this vector has 400 values 

with correspondences to 400 components. In most cases the 

value equals to 0, because this is a sparse matrix, where 0 

represents that this signal will not be represented by the 

correspondence component. When the value becomes larger, 

the relationship will become close. In this paper, we 

experimentally set up a threshold (T=0.2) to pick up the 

dictionary atoms which has high relationship with the 

functional component we identified from the second-stage. 

After we pick up the dictionary atoms from the first-stage 

dictionary learning, we can obtain the spatial map and other 

details from the exact component. Here we emphasize that 

with the help from the groupwise second-stage functional 

components, the track-back method can help us identify the 

first-stage functional components that have strong 

correlation. Though these components may have almost 

different temporal signals, their signals may consist of 

several basic second-stage functional components.  

 
Fig.2. Time series of common functional components (blue) before 

(left) and after (right) applying the functional operators. Their 

corresponding contrast curve is plotted as yellow for reference. (a): 

Integration of component from emotion dataset; (b): Integration of 

component from gambling dataset; (c): Integration of component 

from language dataset; (d): Derivative of component from emotion 

dataset; (e): Derivative of component from gambling dataset; (f): 

Derivative of component from WM dataset. 

   

3. RESULTS 

3.1 Modulated functional components identified from 

HCP Q1 dataset 

 

By applying the proposed framework on fMRI datasets of 

the seven tasks in HCP Q1 release, we have obtained the 

first and second level sparse representation of fMRI data. By 

using the Pearson correlation to identify functional 

components in the second stage, we compared all the 

modulated time series with the task stimulus and found that 

there are strong correlations between the integral-modulated 

components and stimulus (average correlation value: 

0.71±0.04, p<0.05), as well as relatively weaker correlation 

of the derivate-modulated components (average correlation 

value: 0.25±0.05, p<0.05). One example is shown in Fig. 2, 

illustrating the identified task-evoked functional component 

modulation and their original temporal activation pattern 

from three different tasks. The improvement by applying the 

operator on the functional components shows the possible 

existence of brain networks responding to the external 

stimulus through modulation. 
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3.2 Refinement of activation detection result by 

functional operators 

 

By using the trace-back method in Section 2.5, we have 

obtained the individual-level functional components 

corresponding to the group-level results which are likely to 

be modulated according to the analysis in Section 3.1. One 

illustration of the individual-level results is shown in Fig 3. 

From the relationships between spatial distributions of 

GLM-based activation detection results and the functional 

operator analysis results, we argue that the activation 

detection result is actually an aggregation of functional 

networks at various modulation levels. In other words, the 

response of the functional brain to the external stimulus 

could be non-linear and represented in the state space, where 

the traditional linear activation detection could not 

differentiate such modulations. For example, the spatial 

overlap ratio between the activation detection result and 

components identified by integral operator is 60.85%, and 

the spatial overlap between activation detection result and 

derivative operator is 51.87%, where integral and 

derivative-modulated component would have different 

spatial maps. Parts of the parietal cortex are activated in 

integral-modulated component, but rarely activated in 

derivative-modulated components. However, near angular 

areas and parts of the frontal cortex (pars triangularis and 

middle frontal area) are more involved in derivative-

modulated components compared with integral-modulated 

components. As further shown in Fig. 3(c), the original 

temporal pattern of the components from functional operator 

results do not necessarily follow task design, thus there also 

exist regions that are not presented in the activation 

detection result but in the operator-modulated components. 

 

Fig.3. Example of the emotion task. (a) Activation detection result 

by GLM. (b) Functional component by integral operator analysis. 

(c) Functional component by derivative operator analysis. 

 
Fig.4. Example of the supplementary areas supported by operators. 

(a) Integral operator (b) Derivative operator  

 

 
Fig.5. Another example of the supplement areas supported by 

operators. (a) Integral operator (b) Derivative operator  

 

For example, the temporal pattern of the two operator-

modulated components in Fig.4 have strong correlation with 

external stimulus (after modulation), but their spatial 

patterns are not included in the GLM activation results. 

Though the temporal patterns of operator-modulated 

components in Fig.5 are quite different, both of them could 

be identified by the proposed framework. 

 

4. DISCUSSION AND CONCLUSION 

In this work, we have introduced the concept of “functional 

operator”, aiming to provide a refinement and supplement to 

the GLM-based activation detection methods. The current 

concept and the corresponding framework contain two 

operators, the integral and derivative, which could provide 

three diversifications for the traditional GLM-based 

activation detection results and could be helpful in refining 

the detailed activation areas. We envision that the operator-

based modelling could provide a new perspective in 

functional brain analysis, as the relationship across regions 

could be represented in the functional state-space based on 

their corresponding operators. 
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