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ABSTRACT 

 

Functional network analysis based on matrix 

decomposition/factorization methods including ICA and 

dictionary learning models have become a popular approach 

in fMRI study. Yet it is still a challenging issue in interpreting 

the result networks because of the inter-subject variability 

and image noises, thus in many cases, manual inspection on 

the obtained networks is needed. Aiming to provide a fast and 

reliable functional network identification tool for both normal 

and diseased brain fMRI data analysis, in this work, we 

propose a novel supervised dictionary learning model based 

on rank-1 matrix decomposition algorithm (S-r1DL) with 

sparseness constraint. Application on the Autism Brain 

Imaging Data Exchange (ABIDE) database showed that S-

r1DL can fast and accurately identify the functional networks 

based on the given templates, comparing to unsupervised 

learning method. 

 

Index Terms—functional network identification, 

supervised learning, autism spectrum disorder(ASD), 

network based diagnosis 

 

1. INTRODUCTION 

 

In recent functional neuroimaging studies, matrix 

decomposition-based data driven methods have been widely 

applied, including Independent Component Analysis (ICA) 

[1] and dictionary learning [2] [3]. The main purpose of these 

methods is to discover and reconstruct the intrinsic functional 

organization patterns, modeled by “functional networks”, 

from fMRI data. Such functional networks are defined by a 

collection of brain regions with specific temporal/spatial 

properties (e.g. in dictionary learning, the spatial maps of 

those regions are constrained by sparseness), and are used to 

characterizes the brain’s functional aggregation behavior into 

neuroscientifically meaningful atomic elements. A series of 

important functional networks have been discovered by these 

methods in literatures, including the Default Mode Network 

(DMN) and other well-established resting-state networks 

(RSNs) [4]. However, the identification procedure of the 

functional networks from a given individual dataset is not 

trivial. It is still a great challenge to identify a functional 

network that is corresponding to the pre-defined spatial 

template (e.g. DMN) from the decomposition results. Faced 

with the vast diversity within the individual brains and their 

decomposed functional networks, visual inspection or 

manual check have been typically adopted for accurate 

network identification [5], in addition to the template 

matching based on spatial map similarities. Several automatic 

approaches were developed incorporating temporal and 

spatial patterns from paradigm templates to identify 

corresponding networks [6]–[8]. Advanced techniques 

employing machine learning algorithms were also applied for 

network identifications by using representing networks in 

multi-dimensional space as signatures [9]. Yet most of the 

current works for network identification are training-based, 

thus the performance is depended on the (usually limited) 

data availability. In addition, the machine learning methods 

often add another layer of complexity into the decomposition 

model, leading to increased time cost and decreased 

robustness. Therefore, a fast and robust pattern-specific 

functional network identification modeling is highly 

demanded for supporting the high-throughput neuroimaging 

bigdata analytics and aiding the clinical diagnosis of brain 

disorders based on functional brain imaging data.  

 

One of the popular applications of network-based analysis on 

diagnosis purposes is on the Autism Spectrum Disorder 

(ASD) datasets, which has gained great interest from research 

communities to obtain insights on the causes and find 

potential treatments. Many analytical techniques have been 

developed for analyzing the fMRI data from ASD subjects. 

Functional abnormalities involved in multiple anatomical 

regions have been discovered [10]. Region of interest (ROI), 

seed-based correlation techniques were developed to analyze 

the connectivity of specific brain networks [11], [12]. 

However, seed ROI selections have a huge influence on the 

analysis results, which may invoke investigator-specific 

(seed size or location) or subject-specific (different functional 

localization) problems [13]. ICA methods have been applied 

to identify patterns of the underlying signal sources [1], 

uncovering the spontaneous activity of the human brain [14]. 

But as mentioned above, separating physiological noise 

components from the ‘true’ neural components or identifying 

specific functional networks are challenging for explaining 
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the ICA results [15], thus limit its potential applicability in 

ASD data analysis.  

 

Inspired by many flexible frameworks that can supervise the 

learning procedure with neuroscience knowledge [16], [17], 

and recognizing the needs for a fast functional network 

identification tool and based on the previous success in using 

dictionary learning for fMRI analysis [3], in this work, we 

proposed a supervised dictionary learning model guided by 

the pre-defined templates. The model extended the scalable 

fast rank-1 dictionary Learning (r1DL) [18] by simply and 

efficiently initializing rows of coefficient matrix as template 

networks (TN), aiming to discover the functional network 

from the massive voxel-wise fMRI data correspondent to the 

template using a fast rank-1 matrix decomposition algorithm. 

The model results on the Autism Brain Imaging Data 

Exchange (ABIDE) database show that S-r1DL can fast and 

accurately identify the functional networks based on the 5 

templates related with ASD dysfunctional abnormities. 

 

2. MATERIALS AND METHODS 

2.1. Supervised Dictionary Learning based on Rank-1 

Decomposition 

I In this work we used the resting-state fMRI (rsfMRI) data 

from the Autism Brain Imaging Data Exchange (ABIDE) 

database [19]. The rsfMRI data were collected from 79 ASD 

patients and 105 normal controls from NYU Langone 

Medical Center. The acquisition parameters were as follows: 

240mm FOV, 33 slices, TR=2s, TE=15ms, flip angle=90°, 

scan time=6mins, voxel size=3×3×4mm. In order to have a 

balanced dataset for the later classification analysis, we used 

78 subjects from patients and 78 subjects from normal 

controls. Data preprocessing includes motion correction, 

spatial smoothing, temporal pre-whitening, slice time 

correction, global drift removal, and linear registration to the 

MNI space. 

We used 5 network templates for the supervise 

dictionary learning which are reported with ASD-related 

dysfunctional abnormalities in literatures [10]. These 

templates include regions of: 1) Fusiform Gyrus, which has 

been reported with hypoactive in ASD patients [10]; 2) 

Inferior Frontal Gyrus (IFG), the left part of IFG was reported 

to have decreased activation in ASDs compared to controls ; 

3) Anterior Cingulate Cortex (ACC), which has been reported 

to have decreased activation in adults with autism [20]; 4) 

Posterior Cingulate Cortex (PCC), where significantly lower 

connectivity was reported in ASDs during resting state [21]. 

In addition, Default Mode Network (DMN) has also been 

examined and discussed by enormous ASD researches [22]. 

Templates defining the 4 brain regions were extracted from 

the Harvard-Oxford atlas [23], templates defining the DMN 

was obtained by the group-wise Independent Component 

Analysis (ICA) [4]. 

 

2.2. Data Acquisition and Pre-processing 

In this work, the functional network decomposition and 

identification is achieved by supervised rank-1 dictionary 

learning method, by extending the data-driven rank-1 

dictionary learning algorithm [18]. Given the input data 

matrix S of dimension T×P, where for fMRI data T is the 

temporal length measured in volumes and P is the total 

number of voxels, we aim to learn a series of basis vector 

pairs [u, v] from S with the following energy function: 

𝐿(𝑢, 𝑣) = ‖𝑆 − 𝑢𝑣𝑇‖𝐹 , s. t. ‖𝑢‖ = 1, ‖𝑣‖0 ≤ 𝑟.    (1)  

Eq. 1 indicates that u and v are supposed to span (i.e. outer 

product) a rank-1 matrix which approximates S, while at the 

same time the total number of non-zero elements in v is 

smaller or equal to the pre-defined sparsity constraint r. The 

minimization of Eq. 1 is followed by the alternative updating 

of u and v. Given vector v as constant, the estimation of 

vector u is just a matrix-vector multiplication: 

𝑢 = argmin
𝑢

‖𝑆 − 𝑢𝑣𝑇‖𝐹 =
𝑆𝑣

‖𝑆𝑣‖
. (2) 

While given vector u as constant, the estimation of vector v 

involves vector-matrix multiplication and a vector 

partitioning to find the r number of largest elements in v: 

𝑣 = argmin
𝑣

‖𝑆 − 𝑢𝑣𝑇‖𝐹 , 𝑠. 𝑡. ‖𝑣‖0 ≤ 𝑟. (3) 

The alternative updating is finshed when the results have 

converged: 

‖𝑢𝑗+1 − 𝑢𝑗‖ < 𝜀, 𝜀 = 0.01. (4) 

In the analysis of fMRI data, u which is a T×1 vector 

characterize the temporal pattern of the decomposed 

functional network over a total of T time points, while v 

which is a P×1 vector characterize the spatial pattern of the 

network over the P number of voxels.  

 

As we are also aiming for identifying the network that 

resembles the given spatial template defined in the P×1 vector 

TN (or the absence of that template network from the data), 

the estimated v representing the spatial pattern is supposed to 

be as similar to TN as possible, thus extending the above 

rank-1 dictionary learning to the supervised rank-1 dictionary 

learning (S-r1DL) framework. There exist various methods 

in supervising the learning process and pulling the updating 

of v towards TN. Based on preliminary studies we found that 

simply initializing v as TN could work well for the network 

identification purpose. Also, the initialization strategy has 

advantages over other supervised learning methods as its 

results are the most faithful representation of the input data. 

Specifically, before the updating loop v is set to TN before 

starting the estimation of u in the updating loop. The result v 

is compared with TN based on the spatial overlap rate (SOR): 

𝑆(𝑣, 𝑇𝑁) =
∑ 𝑚𝑖𝑛(𝑣𝑖 , 𝑇𝑁𝑖)
𝑃
𝑖=1

∑ (𝑣𝑖 + 𝑇𝑁𝑖)/2
𝑃
𝑖=1

 (5) 
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which is the ratio of the sum of the minimum value in each of 

the i-th voxel over the summation of the averaged values of 

each i-th voxel of network defined in v and template defined 

in TN. We then determine whether the network has been 

identified based on the SOR using an empirically-determined 

threshold of 0.2. SOR value smaller than 0.2 indicates that 

supervised learning result deviates too far from the 

initialization thus the template network could not be 

identified from the data S. After identifying the first 

functional network, the algorithm will deflate the input 

matrix S to its residual R by subtracting from the rank-1 

matrix spanned by [u, v]: 

𝑅𝑛 = 𝑅𝑛−1 − 𝑢𝑣𝑇 , 𝑅0 = 𝑆, 1 < 𝑛 ≤ 𝐾, (6) 

then learn the next pair of dictionary basis following steps 

described in Eq. 2~4, to the total number of K dictionaries. 

The learning of the consequent dictionaries can be supervised 

(using another TN) or unsupervised where the vector u is 

initialized by randomly selecting one signal from R. In this 

study, we perform the network identification individually for 

each template. Thus for one input data S we will perform the 

learning individually for 5 times (as we are using 5 

templates). The algorithm pipeline of the S-r1DL framework 

using one template is illustrated in Fig. 1(a). 

 

For comparison, we also tested the performance of 

unsupervised dictionary learning. In order to identify the 

functional networks correspondent to the template TN from 

the learning results, we calculated the SOR value between TN 

and each of the network using Eq. 5, then selected the 

network with the maximum SOR value. This method has 

been used extensively for the network-based analysis both in 

our previous studies and in various literatures [24]. The 

algorithm pipeline of the unsupervised r1DL framework for 

functional network identification is illustrated in Fig. 1(b). 

 

 
Figure 1. (a) Illustration of the algorithm pipeline of the S-

r1DL model with the visualization of the spatial maps of one 

sample template network (marked as “TN”) and the result 

network defined in v1. (b) Illustration of the alternative 

strategy based on the unsupervised r1DL model. The same 

template network is visualized as “TN”. The identified 

network based on spatial overlap method is defined in vn and 

also visualized.  

 

3. EXPERIMENTAL RESULTS 

3.1. Functional network identification result based on 5 

templates 

By performing the S-r1DL on the rsfMRI data of 156 subjects 

(78 normal controls, 78 patients) from the ABIDE dataset 

using 5 templates, we identified the corresponding 5 

functional networks (or the absence of them) on each subject. 

An illustration showing the network identification result of 

one sample subject is shown in Fig. 2 below.  

 

 
Figure 2. (a) Visualization of the 5 template networks (from 

top to bottom): Fusiform, IFG, ACC, PCC and DMN. (b) 

Visualization of the functional networks identified by the S-

r1DL method based on the 5 templates.  

 

On the other hand, we have observed substantial variations 

among the spatial patterns of the identified functional 

networks across different subjects. Taken Fusiform Gyrus as 

an example, this network was identified (with SOR value 

greater than 0.2) from 23 normal control subjects and 34 

patient subjects out of the total 156 subjects. The spatial 

patterns of all the networks are summarized in Fig. 3, 

showing that individual results are highly deviated, but still 

capable of being identified by the S-r1DL model. The number 

of subjects with the identified functional networks 

correspondent to the 5 templates are listed in Table. 1, 

showing consistent observation with the literature reports 

regarding the hyper/lower activities in these regions except 

the DMN. As in our study it was found that DMN could be 

recovered as one of the most dominant networks from almost 

all the subjects regardless of their group.  

 

Table. 1. Number of subjects (out of 78) in each of the normal 

control (NC) and ASD patient group with the identified 

functional networks based on the 5 templates. Results from 

S-r1DL are listed in the top two rows, results from 

unsupervised r1DL are listed in the bottom two rows. 

Method Group Fusiform  IFG ACC PCC DMN 

S-r1DL 
NC 23 56 64 48 78 

Patient 34 47 63 36 73 

r1DL 
NC 17 52 53 45 78 

Patient 22 48 60 31 77 
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3.2. Performance comparison between supervised and 

unsupervised learning 

For comparison, we have also performed the unsupervised 

dictionary learning by r1DL on the same dataset using K=100 

which supposed to be large enough to cover all the potential 

functional networks during resting-state. The correspondent 

functional networks based on the 5 templates were then 

identified by the SOR maximization method described in 2.1. 

Results from the unsupervised learning show that most of the 

functional networks identified by the S-r1DL can be found in 

the 100 networks learned by r1DL (with SOR value greater 

than 0.2), as listed in Table. 1. The spatial patterns of the 

identified functional networks by the two methods are also 

very similar, with the average SOR value greater than 0.7. 

The consistent results from the supervised and unsupervised 

learning validates the accuracy of the S-r1DL, showing that 

the supervised learning process was not biased towards the 

template.  

 

However, it is worth noting that the time cost for analyzing 

one subject using one template is only around 2 seconds by 

S-r1DL. Thus for analyzing the whole group of ABIDE 

dataset, it only took around 6 minutes to finish the network 

identification of one template. On the other hand, as we need 

to learn all the 100 functional networks from each individual 

dataset using the unsupervised learning and calculate their 

SOR value with the template, the time cost is much greater. 

It would take more than 10 minutes to analyze one subject 

using one template, and around 30 hours to finish the analysis 

on the whole group of data. 

 

4. CONCLUSION 

 

In this work we proposed the supervised dictionary learning 

model based on rank-1 matrix decomposition aiming at 

identifying functional networks from fMRI data based on pre-

defined network templates. While we have observed 

differences in the networks identified from normal control 

and patient subjects, we are still investigating the intrinsic 

alterations in the spatial patterns that causing such difference 

at individual level. More detailed analysis of the 

identification process including study on decomposition 

residuals would be needed before we can perform effective 

and accurate diagnosis based on the functional network 

identification results. Another important issue we are trying 

to address in the ongoing work is on the large spatial 

variations of the functional networks across individuals 

which has been observed in the results. Such large variability 

will decrease the accuracy of the spatial similarity 

measurements (e.g. the SOR used in this work). In that sense, 

traditional network identification methods including manual 

inspection which is similar to the unsupervised learning 

scheme used in this work could be suffered from the 

inaccurate template matching caused by inter-subjects 

variability and registration. While S-r1DL has been shown to 

be capable of recovering the highly deviated functional 

networks, we are developing algorithms to re-align the 

identification results in order to enable more accurate 

comparisons. 
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