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 

Abstract— Objective: Various studies in the brain mapping field 

have demonstrated that there exist multiple concurrent functional 

networks that are spatially overlapped and interacting with each 

other during specific task performance to jointly realize the total 

brain function. Assessing such spatial overlap patterns of 

functional networks (SOPFNs) based on fMRI has thus received 

increasing interest for brain function studies. However, there are 

still two crucial issues to be addressed. First, the SOPFNs are 

assessed over the entire fMRI scan assuming the temporal 

stationarity, while possibly time-dependent dynamics of the 

SOPFNs is not sufficiently explored. Second, the SOPFNs are 

assessed within individual subjects, while group-wise consistency 

of the SOPFNs is largely unknown. Methods: To address the two 

issues, we propose a novel computational framework of 

group-wise sparse representation of whole-brain fMRI temporal 

segments to assess the temporal dynamic spatial patterns of 

SOPFNs that are consistent across different subjects. Results: 

Experimental results based on the recently publicly released 

Human Connectome Project grayordinate task fMRI data 

demonstrate that meaningful SOPFNs exhibiting dynamic spatial 

patterns across different time periods are effectively and robustly 

identified based on the reconstructed concurrent functional 

networks via the proposed framework. Specifically, those 

SOPFNs locate significantly more on gyral regions than on sulcal 

regions across different time periods. Conclusion: These results 

reveal novel functional architecture of cortical gyri and sulci. 

Significance: Moreover, these results help better understand 

functional dynamics mechanisms of cerebral cortex in the future. 

 
Index Terms—Brain functional dynamics, cortical gyri and 

sulci, functional network, group-wise sparse representation, task 

fMRI 
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I. INTRODUCTION 

here have been significant interests in the brain mapping 

field to study brain function using in-vivo neuroimaging 

techniques such as functional magnetic resonance imaging 

(fMRI) [1]-[3]. Specifically, task fMRI (tfMRI) records 

functional brain activities during a specific task performance 

[1]-[3]. Based on tfMRI data and associated data processing 

and analysis approaches, tremendous efforts have been devoted 

to identify brain regions and networks that are activated and 

functionally involved during a specific task performance 

[1]-[4]. Recently, a variety of studies (e.g., [5]-[11]) have 

reported an interesting finding that during a specific task 

performance, there exist concurrent functional networks 

(including both task-evoked and intrinsic connectivity 

functional networks), each of which locates across specific 

neuroanatomical areas on the human cerebral cortex. 

Importantly, these concurrent functional networks are spatially 

overlapped and interacting with each other. Those overlapped 

(common) brain regions among multiple concurrent functional 

networks, which are formally defined as spatial overlap 

patterns of functional networks (SOPFNs) in this paper (an 

example illustration of the SOPFNs is in Fig.1a), have been 

demonstrated particularly important for the total brain function 

realization (e.g., [8], [12]-[16]). For example, our recent work 

[8] successfully performs a novel computational framework of 

sparse representation of whole-brain fMRI signals to infer a 

comprehensive collection of concurrent functional networks in 

the whole brain and to assess the SOPFNs of those multiple 

concurrent functional networks, and coins ‘Holistic Atlases of 

Functional Networks and Interactions’ [8]. Moreover, the 

studies in the neuroscience field (e.g., [12]-[16]) also 

demonstrate that there are certain brain regions (i.e., SOPFNs) 

that are involved in multiple concurrent neural 

processes/functional networks during a specific task 

performance, and that exhibit strong functional diversity. In 

short, assessing the SOPFNs has received increasing interest 

for brain function studies. 

Although significant achievements have been done for 

SOPFNs analysis in previous studies (e.g., [8], [11]-[16]), there 

are still two crucial issues to be addressed (to the best of our 

knowledge) as illustrated in Fig. 1. First, the multiple 
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concurrent functional networks and associated SOPFNs are 

merely assessed based on the entire fMRI scan data assuming 

the temporal stationarity (Fig. 1a), while possibly 

time-dependent dynamics of the spatial patterns of functional 

networks and associated SOPFNs has not been sufficiently 

explored yet. The assumption of temporal stationarity of the 

functional networks and SOPFNs’ spatial patterns might be 

problematic since neuroscience studies [17] have suggested 

that the function of the brain is dynamic both spatially and 

temporally. That is, the dynamically changing functional 

interactions between different cortical regions mediate the 

moment-by-moment functional switching in the brain [17]. As 

shown in Fig. 1b, there is considerable variability of the spatial 

patterns of the same corresponding functional networks 

identified across different time periods, suggesting the different 

involvement of certain regions in the corresponding functional 

networks across different time periods. As a consequence, there 

is also considerable variability of the spatial patterns of 

associated SOPFNs across different time periods (Fig. 1b). 

Essentially, previous studies (e.g., [8]) under the temporal 

stationary assumption would merely identify the functional 

networks and associated SOPFNs from the entire time length 

(Fig. 1a), and ignore the considerable spatial pattern variability 

of those corresponding networks and associated SOPFNs 

across different time periods (Fig. 1b), making it incapable of 

assessing the temporal dynamic spatial patterns of the SOPFNs 

precisely. Second, the multiple concurrent functional networks 

and associated SOPFNs are assessed within individual subjects 

and the averaged SOPFNs across different subjects are 

analyzed afterwards in previous studies (Fig. 1a). Although 

effective in analyzing the consistent SOPFNs across different 

subjects, other effective computational methodologies can be 

introduced to obtain accurate spatial locations of the functional 

networks and associated SOPFNs which are group-wise 

consistent across individual subjects (Fig. 1b). 

To address the above-mentioned two issues, in this paper, we 

propose a novel computational framework of group-wise sparse 

representation of whole-brain fMRI temporal segments to 

assess the temporal dynamic spatial patterns of SOPFNs that 

are consistent across different subjects (as illustrated in Fig. 

1b). Our technical contributions in this paper are two-fold: 1) 

Instead of merely identifying temporal stationary concurrent 

functional networks and associated one SOPFN based on entire 

fMRI scan data (Fig. 1a), we adopt the widely-used sliding time 

window approach (e.g., [18]-[21]) to divide the entire tfMRI 

signals into consecutive temporal segments, to identify the 

concurrent functional networks and associated SOPFNs 

separately based on each of the temporal segments, and to 

assess temporal dynamic spatial patterns of the SOPFNs across 

different temporal segments (Fig. 1b). 2) Instead of identifying 

functional networks and associated SOPFNs within individual 

subjects (Fig. 1a), we propose a novel group-wise sparse 

representation of specific corresponding temporal segments 

across individual subjects via an effective online dictionary 

learning algorithm [22] to obtain the group-wise consistent 

functional networks and associated SOPFNs within each 

specific temporal segment (time period) (Fig. 1b). In brief, the 

rationales of adopting sparse representation approach to 

identify functional networks and associated SOPFNs are as 

follows. Since a brain region might be involved in multiple 

concurrent neural processes (e.g., [12]-[16]), its associated 

tfMRI signal could be composed of various components. 

Moreover, recent studies have successfully adopted dictionary 

learning and sparse representation framework to identify 

functional networks based on the assumption that each fMRI 

signal is linearly and sparsely composed of dictionary 

components (e.g., [7]-[11], [23]-[25]). The most crucial 

characteristics of sparse representation approach compared 

with other decomposition approaches, e.g., independent 

component analysis [26], is that sparse representation does not 

have explicit assumption that temporal patterns of different 

components are statistically maximal independent [27]. 

Our other contributions in this paper are as follows. First, for 

the first time in the brain mapping field (as far as we know), we 

assess the temporal dynamic spatial distribution difference of 

SOPFNs across different time periods between cortical gyral 

and sulcal regions. The rationales are as follows. The human 

cortical folding, which is highly convoluted as convex gyri and 

concave sulci, is one of the most crucial features of cerebral 

cortex [28]. Recent studies from both micro- and macro- scale 

have reported that there are structural and functional 

differences between gyri and sulci [11], [29]-[34]. Especially, 

our recent work [11] has demonstrated that the task-based 

heterogeneous functional regions (i.e., the regions that are 

activated during multiple tasks conditions and are involved in 

multiple task-evoked systems during a specific task 

performance) which are identified based on entire tfMRI scan 

data (assuming temporal stationarity) have significant spatial 

pattern distribution difference between cortical gyri and sulci. 

This has inspired us to explore the possible temporal dynamic 

spatial pattern distribution difference of the SOPFNs across 

different time periods between cortical gyral and sulcal regions 

in this paper, which might help shed light on understanding 

functional architecture and dynamics mechanisms of cerebral 

cortex in the future. Second, we apply the proposed 

computational framework on the recently publicly released 

high-quality Human Connectome Project (HCP) grayordinate 

tfMRI data [35]-[37]. The HCP grayordinate tfMRI data in the 

standard MNI152 space not only has both high spatial and 

temporal resolution, but also maintains the correspondence 

established across individual subjects, making our results 

relatively reliable and reproducible for other labs and studies. 

II. MATERIALS AND METHODS 

A. Dataset and Preprocessing 

There are seven different tfMRI datasets including emotion, 

gambling, language, motor, relational, social, and working 

memory in the HCP (Q1 release) [35]-[37]. The seven tasks 

together are designed for comprehensive and systematic 

mapping of core functional nodes and functional networks 

across a wide range of cerebral cortex [36]. The detailed task 

designs of the seven datasets are referred to [36]. There are 64 

subjects in total and each subject has the seven tfMRI scans. 



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2598728, IEEE
Transactions on Biomedical Engineering

 3 

The major tfMRI acquisition parameters are 220 mm/52°/0.72 

s/33.1 ms of FOV/flip angle/TR/TE, 90×104×72 by dimension, 

2.0 mm isotropic voxels [36]. Pre-processing of the tfMRI data 

is referred to [37]. Specifically, we adopt the pre-processed 

tfMRI data in standard grayordinate space [37]. In the standard 

MNI152 space, gray matter is modeled as cortical surface 

vertices and subcortical voxels which termed as ‘grayordinate’. 

All subjects have the same number (64984) of ‘grayordinates’ 

(cortical surface vertices) in the standard space [37]. Each 

grayordinate has the anatomical information that belongs to 

gyri/sulci [37]. Those grayordinates as well as the associated 

tfMRI signals not only have both high spatial and temporal 

resolution, but also have reasonably precise correspondence 

across individual subjects [37], thus benefiting the group-wise 

sparse representation of corresponding temporal segments 

across individual subjects, and assessment of temporal dynamic 

spatial patterns of group-wise consistent SOPFNs as well as the 

spatial pattern distribution of SOPFNs on gyral/sulcal regions 

in this paper. 

B. TfMRI Temporal Segments Extraction 

In our proposed framework, we first extract a series of 

consecutive temporal segments of whole-brain tfMRI signals 

for each individual subject and each of the seven tfMRI 

datasets, respectively. Specifically, as illustrated in Fig. 2, for 

subject i, the tfMRI signals of whole-brain grayordinates are 

extracted [37], [11], normalized to zero mean and standard 

deviation of 1 [22], and aggregated into a signal matrix 𝐗𝑖 ∈
ℝ𝑡×𝑛 with t time points and n grayordinates (Fig. 2a). Then, the 

sliding time window approach, which has been widely and 

effectively applied for functional brain temporal dynamics 

analysis (e.g., [18]-[21]), is adopted and defined in Eq. (1) to 

segment 𝐗𝑖  into a series of consecutive temporal segments 

𝐗𝑖,𝑤𝑗 ∈ ℝ𝑙×𝑛 within the time window 𝑤𝑗  which starts at time 

point 𝑡𝑗 and has unified window length (number of time points) 

l: 

𝐗𝑖,𝑤𝑗 = {𝐱𝑖,𝑞|𝑡𝑗 ≤ 𝑞 < 𝑡𝑗 + 𝑙, 𝑡𝑗 = 1, . . , (𝑡 − 𝑙 + 1)}
 

(1) 

where 𝐱𝑖,𝑞 is the vector of values of q-th row of 𝐗𝑖  at time point 

q. In total, there are (𝑡 − 𝑙 + 1)  corresponding temporal 

segments (time windows) for each individual subject and each 

of the seven tfMRI datasets. We choose the value of window 

length l=20 via experimental results similar as in [18], [19] 

based on the criterion that l should be both smaller than any of 

the task paradigm design (Fig. 2c) and large enough to reflect 

brain response [18], [19]. More details about the parameter 

selection of l are in Supplemental materials. 

C. Group-wise Sparse Coding of TfMRI Temporal Segments 

Once we obtain the tfMRI temporal segments, the next step 

is to perform group-wise dictionary learning and sparse coding 

of each corresponding tfMRI temporal segments across a group 

of subjects to obtain a comprehensive collection of group-wise 

consistent dictionary components within each temporal 

segment (time period). The dictionary learning and sparse 

representation framework has been demonstrated efficient and 

effective in both characterizing the low-dimensional structure 

of tfMRI data and identifying the multiple concurrent 

functional brain networks based on tfMRI data (e.g., [7]-[11], 

[23]-[25], [38]). As illustrated in Fig. 3a, the conventional 

sparse representation framework in previous studies (e.g., 

[7]-[11], [23]-[25], [38]) is merely performed on each 

individual subject. That is, for a specific temporal segment 

𝐗𝑖,𝑤𝑗 ∈ ℝ𝑙×𝑛 of an individual subject i at time window wj, 𝐗
𝑖,𝑤𝑗  

is represented as an over-complete dictionary matrix 𝐃𝑖,𝑤𝑗 ∈

ℝ𝑙×𝑚 (m is the dictionary size, 𝑚 > 𝑙 and 𝑚 ≪ 𝑛) and a sparse 

coefficient weight matrix 𝛂𝑖,𝑤𝑗 ∈ ℝ𝑚×𝑛  (Fig. 3a) via an 

effective online dictionary learning algorithm [22]. Specifically, 

the temporal segment vector 𝐱𝑘

𝑖,𝑤𝑗
 (k=1,...n) in k-th column of 

𝐗𝑖,𝑤𝑗  is approximately represented as 𝐱𝑘

𝑖,𝑤𝑗
= 𝐃𝑖,𝑤𝑗 × 𝛂𝑘

𝑖,𝑤𝑗
, 

where 𝛂𝑘

𝑖,𝑤𝑗
 (k=1,...n) is the k-th column of 𝛂𝑖,𝑤𝑗  corresponding 

to the sparse coefficient weight vector of 𝐱𝑘

𝑖,𝑤𝑗
. Note that from 

brain science perspective, each dictionary component 𝐝𝑘

𝑖,𝑤𝑗
 

(k=1,...m) in k-th column of 𝐃𝑖,𝑤𝑗  represents the temporal 

activity of k-th functional network component, and 

corresponding 𝛂𝑘

𝑖,𝑤𝑗
 (k=1,...m) in k-th row of 𝛂𝑖,𝑤𝑗  can be 

mapped back to the cortical surface to obtain the spatial pattern 

of k-th functional network component (Fig. 3b). However, as 

the conventional sparse representation framework is performed 

on each individual subject, the group-wise consistency of the 

reconstructed functional network components across different 

subjects is not well guaranteed. 

To solve this problem, in this work, we adopt a novel 

group-wise dictionary learning and sparse representation 

framework based on our recent work [38] to reconstruct 

group-wise consistent functional networks within each time 

window. As illustrated in Fig. 3c, considering a group of I 

subjects at time window 𝑤𝑗 , the corresponding temporal 

segments [𝐗1,𝑤𝑗 , . . , 𝐗𝑖,𝑤𝑗] of all subjects are arranged into a big 

matrix 𝐗𝐼,𝑤𝑗 ∈ ℝ𝑙×(𝑛×𝐼) . 𝐗𝐼,𝑤𝑗  is then represented as an 

over-complete dictionary matrix 𝐃𝐼,𝑤𝑗 ∈ ℝ𝑙×𝑚  (  𝑚 > 𝑙  and 

𝑚 ≪ (𝑛 × 𝐼)) and a sparse coefficient weight matrix 𝛂𝐼,𝑤𝑗 ∈

ℝ𝑚×(𝑛×𝐼) using the online dictionary learning algorithm [22]. 

𝐃𝐼,𝑤𝑗  and 𝛂𝐼,𝑤𝑗  are calculated as follows. An empirical cost 

function of 𝐗𝐼,𝑤𝑗  considering the average loss of regression to 

all temporal segments 𝐱𝑘

𝐼,𝑤𝑗
 ( 𝑘 = 1, … (𝑛 × 𝐼)) is defined in Eq. 

(2). 

𝑓𝑛×𝐼(𝐃𝐼,𝑤𝑗) =
1

𝑛 × 𝐼
∑ min

𝛂𝑘

𝐼,𝑤𝑗
∈ℝ𝑚

1

2
‖𝐱𝑘

𝐼,𝑤𝑗

𝑛×𝐼

𝑘=1

− 𝐃𝐼,𝑤𝑗𝛂𝑘

𝐼,𝑤𝑗
‖

2

2

+ 𝜆 ‖𝛂𝑘

𝐼,𝑤𝑗
‖ 

(2) 

where 𝑙1-norm regularization and parameter λ are adopted to 

trade-off the regression residual and sparsity level of 𝛂𝑘

𝐼,𝑤𝑗
, 

respectively. To make the coefficients in 𝛂𝐼,𝑤𝑗  comparable, 

there is a constraint for 𝐝
𝑘

𝐼,𝑤𝑗
 (k=1,...m) in k-th column of 𝐃𝐼,𝑤𝑗  

as defined in Eq. (3).  

𝐶 = {𝐃𝐼,𝑤𝑗 ∈ ℝ𝑙×𝑚𝑠. 𝑡. ∀𝑘 = 1, … 𝑚, (𝐝
𝑘

𝐼,𝑤𝑗
)𝑇𝐝

𝑘

𝐼,𝑤𝑗
≤ 1}

 
(3) 

The whole problem in Eq. (2) is then rewritten as a matrix 

factorization problem in Eq. (4) and solved by effective online 
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dictionary learning algorithm and associated publicly released 

toolbox [22] to learn the dictionary 𝐃𝐼,𝑤𝑗 . More details are in 

[22]. 

min
𝐃

𝐼,𝑤𝑗∈𝐶,𝛂
𝐼,𝑤𝑗∈ℝ𝑚×(𝑛×𝐼)

1

2
‖𝐗𝐼,𝑤𝑗 − 𝐃𝐼,𝑤𝑗𝛂𝐼,𝑤𝑗‖

𝐹

2
+ 𝜆‖𝛂‖1,1

 
(4) 

Once 𝐃𝐼,𝑤𝑗  is learned and fixed, 𝛂𝐼,𝑤𝑗  is calculated as an 

𝑙1-regularized linear least-squares problem [22]. The values of 

two major parameters dictionary size m and regularization 

parameter λ in Eq. (4) are experimentally determined (m=50 

and λ=1.5) based on the criterion of consistency of 

reconstructed functional networks across subject groups [7], [8]. 

More details about the parameter selection are in Supplemental 

materials. 

As shown in Fig. 3d, in order to obtain the group-wise 

consistent spatial patterns of reconstructed functional networks 

across a group of subjects, we calculate the common sparse 

coefficient weight matrix 𝐏𝐼,𝑤𝑗 ∈ ℝ𝑚×𝑛 based on the learned 

𝛂𝐼,𝑤𝑗 ∈ ℝ𝑚×(𝑛×𝐼)  as follows. First, since the dictionary 

learning and sparse representation framework maintains the 

organization of all temporal segments across I subjects in the 

input 𝐗𝐼,𝑤𝑗 , the learned 𝛂𝐼,𝑤𝑗  also preserves the spatial 

information of temporal segments across I subjects. We 

therefore decompose 𝛂𝐼,𝑤𝑗  into I sub-matrices 

[𝛂1,𝑤𝑗 , . . , 𝛂𝑖,𝑤𝑗 ∈ ℝ𝑚×𝑛] corresponding to I subjects (Fig. 3c). 

The element (𝑟, 𝑠) in each sub-matrix stores the corresponding 

coefficient value of the s-th grayordinate to the r-th dictionary 

in 𝐃𝐼,𝑤𝑗  for each subject. Second, since we aim to obtain the 

common coefficient values which are non-zero across different 

subjects based on the sparse matrices [𝛂1,𝑤𝑗 , . . , 𝛂𝑖,𝑤𝑗 ∈ ℝ𝑚×𝑛], 

we perform t-test of the null hypothesis (𝑟, 𝑠) = 0 for (𝑟, 𝑠) 

across I subjects [38] to obtain the common sparse coefficient 

weight matrix 𝐏𝐼,𝑤𝑗 ∈ ℝ𝑚×𝑛 (Fig. 3d), in which element (𝑟, 𝑠) 

stores the p-value representing statistically coefficient value of 

the s-th grayordinate to the r-th dictionary across all I subjects. 

Third, we transform all the values in 𝐏𝐼,𝑤𝑗  from p-value to 

z-score just for visualization facilitation [38]. Note that larger 

z-score indicates smaller p-value. Moreover, we only keep the 

values in 𝐏𝐼,𝑤𝑗  that are larger than 1.65 (corresponding to 

p-value that is smaller than 0.05) and set all other values that 

are smaller than 1.65 to 0 [38]. More details about the statistical 

measurements and corrections are referred to [38]. Finally, 

𝐩𝑘

𝐼,𝑤𝑗
 (k=1,...m) in k-th row of 𝐏𝐼,𝑤𝑗  is mapped back to the 

cortical surface to obtain the group-wise consistent spatial 

pattern of k-th functional network component at time window 

wj (Fig. 3d). 

D. Identification of Group-wise Consistent Functional 

Networks and Associated SOPFNs within Different Time 

Windows 

Once we obtain the spatial patterns of all functional network 

components, the next step is to identify those meaningful 

group-wise consistent concurrent functional networks based on 

current brain science knowledge within different time 

windows. We adopt the similar methods in [7]-[11], [38] to 

characterize and identify both task-evoked and intrinsic 

connectivity functional networks within different time 

windows. Specifically, we adopt the traditional general linear 

model (GLM)-derived activation maps as the task-evoked 

networks templates, and the intrinsic connectivity network 

(ICN) templates provided in [39] as references. The spatial 

pattern similarity is then defined as the spatial pattern overlap 

rate R 

𝑅(𝑆, 𝑇) =
|𝑆 ∩ 𝑇|

|𝑇|  
(5) 

where S and T are cortical spatial maps of a network component 

and a task-evoke/intrinsic network template, respectively. Note 

that S and T are converted from continuous values to discrete 

labels (values smaller than 0 are labeled as 0, and others are 

labeled as 1). For each network template, the top five network 

components with highest spatial pattern similarity defined in 

Eq. (5) are recorded. A group of experts visually inspect all top 

five network components to ensure the robustness of the 

identification via Eq. (5) and to finally determine one network 

component with highest spatial similarity with the network 

template as the corresponding group-wise consistent 

task-evoked/intrinsic network at a specific time window 

[7]-[11], [38]. Note that the identified functional networks 

based on the proposed group-wise sparse representation are 

independent of GLM or ICA approaches. In order to 

characterize and interpret those meaningful functional 

networks based on current brain science knowledge, we just 

utilize the traditional GLM-derived activation maps as the 

task-evoked networks templates, and the ICA-derived ICN 

templates as references to characterize those meaningful 

functional networks. It should also be noted that since we aim 

to assess the temporal dynamics of spatial patterns of SOPFNs 

based on identified corresponding functional networks across 

all time windows, we adopt a relatively strict criterion to only 

keep those functional networks that are successfully identified 

across all time windows (i.e., spatial pattern overlap rate R of a 

corresponding functional network is larger than 0.2 [8] across 

all time windows) while with potential spatial pattern 

variability. It is possible that certain functional networks 

disrupt at specific time windows while recover again at other 

time windows. The dynamics assessment of the spatial patterns 

of such functional networks would be another interesting work 

in the future. 

The identification of SOPFNs is straightforward. It is 

defined as the set of all common cortical vertices 

(grayordinates) 𝑔𝑖  involved in the spatial patterns of all 

identified concurrent functional networks at a specific time 

window 𝑤𝑗  in Eq. (6). 

𝑆𝑂𝑃𝐹𝑁𝑤𝑗
= ∀𝑔𝑖𝑠. 𝑡. 𝑔𝑖𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 𝑎𝑡 𝑤𝑗

 
(6) 

Since each grayordinate 𝑔𝑖  has gyri/sulci information 

[35]-[37], those grayordinates of SOPFNs are counted for gyri 

and sulci, respectively, and thus the spatial pattern distribution 

of SOPFNs on cortical gyral/sulcal regions at a specific time 

window can be assessed. Finally, the temporal dynamic spatial 

patterns of the SOPFNs as well as the temporal dynamic spatial 

pattern distribution on gyri/sulci are assessed based on the 

identified SOPFNs across different time windows. 
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III. RESULTS 

For each of the seven tfMRI datasets, we equally divided all 

64 subjects into two groups (32 each) and applied the proposed 

framework on each of the two subject groups to test the stability 

and reproducibility of our framework, and to verify the 

reliability and meaningfulness of identified temporal dynamic 

spatial patterns of SOPFNs as well as the temporal dynamic 

spatial pattern distribution difference of SOPFNs on gyri/sulci. 

Three parts of experimental results are reported in the 

following, respectively. 

A. Concurrent Group-wise Consistent Functional Networks 

across Different Time Windows 

We identified concurrent group-wise consistent functional 

networks which exist across all time windows based on each of 

the seven tfMRI datasets. Fig. 4 shows the spatial maps of 

identified functional networks in one subject group of emotion 

tfMRI data. Two networks (Fig. 4b-4c) that exist across all time 

windows are identified in emotion tfMRI data based on the 

proposed relatively strict criterion since the major aim of this 

paper is to assess the dynamic spatial patterns of SOPFNs 

across all time windows based on the functional networks. 

Specifically, the first network (Fig. 4b) mainly locates at the 

visual cortex and has reasonable spatial pattern similarity with 

the GLM-derived spatial pattern, thus can be viewed as the 

task-evoked network. The second network (Fig. 4c) mainly 

locates at medial prefrontal gyrus, bilateral supramarginal 

gyrus, and anterior/posterior cingulate cortex, and is widely 

known as the default mode network (DMN) [39]. We can see 

that for each of the two networks across different time 

windows, albeit similar in overall spatial pattern, there is 

considerable variability of the spatial patterns across different 

time windows compared with the spatial pattern merely 

identified from the entire time length using sparse 

representation and GLM/ICN template. Quantitatively, the 

spatial pattern overlap rate R (Eq. (5)) across different time 

windows is 0.69±0.10 and 0.36±0.06 for the two networks, 

respectively. This finding is consistent between the two subject 

groups. More results of the reproducibility studies and the other 

six tfMRI datasets are in Supplemental Figs. 1-2 and 

Supplemental Table II. 

In short, the spatial pattern variability for the same functional 

network across different time windows suggests the 

time-dependent dynamics of spatial patterns of networks due to 

the different involvement of specific brain regions in the 

corresponding networks across different time windows [17]. It 

is also the premise to identify the spatial patterns of SOPFNs 

within each time window and to assess the temporal dynamic 

spatial patterns of SOPFNs across all time windows as detailed 

in the next section. 

B. Temporal Dynamic Spatial Patterns of SOPFNs across 

Different Time Windows 

We assessed the SOPFN based on the identified concurrent 

functional networks within each time window using Eq. (6). 

Then the regularity and variability of spatial patterns of 

SOPFNs across different time windows were examined and 

compared. Fig. 5 shows the spatial maps of SOPFNs in emotion 

tfMRI data. We can see that there is considerable spatial pattern 

variability of SOPFNs across different time windows in 

Supplemental Fig. 5. We further categorized all time windows 

into three types as illustrated in Fig. 5a. Specifically, time 

window type 1 only involves task design 1, time window type 2 

only involves task design 2, and time window type 3 involves 

both two task designs. The mean spatial patterns of SOPFNs of 

time windows within each of the three time window types are 

shown in Fig. 5b. We can see that there are reasonably certain 

common spatial patterns of SOPFNs (with relatively higher 

density as highlighted by red arrows) located at the bilateral 

parietal/temporal/frontal lobe and visual association cortices 

across the three time window types and across two subject 

groups. Moreover, such common spatial patterns of SOPFNs 

are also relatively consistent across the other six tasks as 

illustrated in Fig. 6. More results are in Supplemental Fig. 3. 

This finding is in agreement with previous studies reporting 

that frontal and parietal lobes include multiple-demand patterns 

associated with diverse cognitive demands [12], [16], and that 

visual association cortex is a heterogeneous collection of visual 

areas and is involved in higher level of processing [40]. 

More interestingly, we can see the considerable spatial 

pattern variability of SOPFNs across different time window 

types (Fig. 5b and Fig. 6) in terms of pattern density in the 

common regions (bilateral parietal/temporal/frontal lobe and 

visual association cortices) from visual inspection, indicating 

the possible time-dependent dynamics of spatial patterns of 

SOPFNs. This phenomenon is not explored in previous studies 

which assume the temporal stationarity (e.g., [8], [12], [16], 

[40]). Quantitatively, we defined and assessed the ‘overlap 

percentage’ (ratio of vertex number of overlapped region to the 

total vertex number of concurrent functional networks) of 

SOPFNs within each time window. We first performed the 

one-way ANOVA across all three TW types, then performed 

three pair-wise t-test comparison between any two of the three 

TW types as post-hoc multiple comparisons, and finally 

performed correction for multiple comparisons (Bonferroni 

correction) for the post-hoc tests. Table I demonstrates that the 

mean overlap percentage is statistically significantly large in 

time window type 1, small in time window type 2, and 

moderate in time window type 3 (involving both two task 

designs). This result is consistent across the two subject groups. 

Specific significant overlap percentage differences are also 

found in the other six tasks as demonstrated in Supplemental 

Table III. In short, there is both regularity and variability of the 

identified temporal dynamic spatial patterns of SOPFNs across 

different time windows. Specifically, the spatial patterns of 

SOPFNs have reasonable common regions across different 

time windows (in agreement with previous studies assuming 

temporal stationarity) while with temporal dynamic spatial 

patterns in terms of significantly different overlap percentage 

across different time windows. 

C. Temporal Dynamic Spatial Pattern Distribution Difference 

of SOPFNs between Gyral and Sulcal Regions 

To further explore the temporal dynamics of spatial patterns 

of SOPFNs across different time windows, we assessed the 

spatial pattern distribution of identified SOPFN on gyral/sulcal 

regions within each time window, and investigated the possible 

temporal dynamics of spatial pattern distribution of SOPFNs on 

gyral/sulcal regions across different time windows. Fig. 7 
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shows the spatial pattern distributions of SOPFNs on 

gyral/sulcal regions in emotion tfMRI data. We can see that 

there is considerable spatial pattern distribution variability of 

SOPFNs on gyral and sulcal regions across different time 

windows as highlighted by black arrows in Fig. 7a. We further 

assessed the mean spatial pattern distributions of SOPFNs of 

time windows within each of the three time window types on 

gyral/sulcal regions as illustrated in Fig. 7b. We can see that 

similar as the results in Figs.5-6, there are reasonably certain 

common spatial pattern distributions of SOPFNs (with 

relatively higher density as highlighted by red arrows) at both 

gyral and sulcal regions of the bilateral 

parietal/temporal/frontal lobe and visual association cortices 

across the three time window types and across two subject 

groups. Such common spatial patterns of SOPFNs on gyral and 

sulcal regions are also relatively consistent across the other six 

tasks as shown in Fig. 8. More results are in Supplemental Fig. 

4. 

More interestingly, from visual inspection, we can see the 

considerable spatial pattern distribution variability of SOPFNs 

on gyral/sulcal regions across different time window types (Fig. 

7b and Fig. 8) in terms of pattern density on gyral/sulcal regions 

of the common regions (bilateral parietal/temporal/frontal lobe 

and visual association cortices), indicating the possible 

time-dependent dynamics of spatial pattern distributions of 

SOPFNs on gyral/sulcal regions. This finding is not explored in 

previous studies assuming the temporal stationarity (e.g., [8], 

[12], [16], [40]). Quantitatively, we calculated the distribution 

percentage of SOPFNs on gyral/sulcal regions within each time 

window and reported the results in Table II and Fig. 9. We first 

performed the one-way ANOVA for the distribution percentage 

between gyri and sulci, and then performed corrections for 

multiple comparisons. The distribution percentage on gyral 

regions is statistically significantly larger than that on sulcal 

regions across all time windows (p<0.05). The mean ratio of 

distribution percentage on gyri vs that on sulci across all time 

windows is reported in Table II. Moreover, as illustrated in Fig. 

9, it is interesting that there are considerable peaks/valleys for 

the distribution percentage value on gyri/sulci during the 

specific time window type across the entire scan, indicating the 

temporal dynamics of spatial pattern distributions of SOPFNs 

on gyral/sulcal regions across different time windows. In short, 

there is both regularity and variability of the spatial pattern 

distributions of time-dependent SOPFNs on gyral/sulcal 

regions. Specifically, the spatial pattern distributions of 

SOPFNs on gyral/sulcal regions have reasonable common 

regions across different time windows (in agreement with 

previous studies assuming temporal stationarity) while with 

temporal dynamics in terms of significantly larger distribution 

percentage on gyral regions than that on sulcal regions as well 

as interesting peaks/valleys alternations across different time 

windows. 

It should be noted that the identified temporal dynamic 

spatial patterns of SOPFNs (Figs. 5-6) and the temporal 

dynamic spatial pattern distributions of SOPFNs on 

gyral/sulcal regions (Figs. 7-9) are reasonably consistent across 

the two subject groups and across all seven tfMRI datasets, and 

in agreement with previous neuroscience studies as detailed 

above, which is a reasonable verification of reliability and 

meaningfulness of the reported findings. 

IV. DISCUSSION  

We identified two major functional networks (task-evoked 

and DMN) that are consistently exist in all time windows 

during the scan. Our explanations are as follows. During the 

task fMRI scan, it is straightforward that the task-evoked 

networks are consistently activated under specific task stimulus 

during the whole scanning period. The DMN, which is the most 

studied ICN, has been demonstrated fundamental for brain 

functions and existing in both task fMRI and resting state fMRI 

data. It is therefore reasonable that the DMN has been identified 

in every time window during the whole scan in this paper. In 

short, the identified consistent task-evoked network and DMN 

during the whole scan while with considerable spatial pattern 

variability in this paper are reasonable from neuroscience 

perspective. For the other ICNs (including resting state 

networks and the set of functionally connected brain networks 

in either resting state or task), to the best of our knowledge, 

previous studies focus on the exploration of those ICNs in the 

whole scan period, while the dynamics of those ICNs (e.g., if 

consistently exist or show dynamics across different time 

windows) during the scan period is largely unknown. That is 

also one of the motivations and novelties of this paper to 

investigate the dynamics of the functional networks as well as 

SOPFNs. Based the proposed framework in this paper, we 

identified the most confident two networks (task-evoked and 

DMN) that consistently exist across all time windows using a 

relatively strict criterion. This finding is reproducible across 

two subject groups and seven task fMRI datasets. Given the 

lack of ground truth in brain mapping, the reproducibility is a 

reasonable verification of reliability and meaningfulness of the 

reported findings. In the future, we can investigate the 

dynamics of those ICNs which are not identified based on the 

relatively strict criterion in this paper, i.e., different 

involvement of sub-regions during different time windows 

within the same ICN, which might be another interesting work 

for ICN dynamics analysis. This will also lend more evidence 

for understanding functional brain dynamics mechanism from 

the neuroscience perspective. 

We reported significant spatial pattern distribution 

difference of SOPFNs between cortical gyri and sulci across 

time windows. The justification of the findings are two-fold. 

First, these findings (Section III C) are reproducible between 

two different subject groups and consistent across seven 

different task fMRI datasets. Given the lack of ground truth in 

brain mapping, the reproducibility and consistency across 

different subjects and datasets is a reasonable justification of 

the reported significant SOPFN difference between cortical 

gyri and sulci across time windows. Second, the findings in this 

paper and our previous works [11, 34] can be mutually 

supported. Specifically, [11] has demonstrated that under 

temporal stationarity assumption, the SOPFNs mainly locate on 

bilateral parietal/temporal/frontal lobe and visual association 

cortices across different subjects and datasets. Moreover, the 
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SOPFNs locate significantly more on gyri than sulci under 

temporal stationarity in the whole scan period. In this paper, the 

analysis of temporal dynamics of SOPFNs also shows that 

SOPFNs mainly locate on the same regions (bilateral 

parietal/temporal/frontal lobe and visual association cortices) 

across different subjects and datasets which is in agreement 

with [11] but with considerable spatial pattern distribution 

variability across different time windows considering the 

temporal dynamics. Moreover, in general, the distribution of 

SOPFNs locates more on gyri than sulci across different time 

windows which is also in agreement with [11] but with 

considerable peaks/valleys for the distribution percentage value 

on gyri/sulci across different window types. This paper extends 

the cortical architecture exploration (in terms of SOPFN 

distribution analysis on gyri/sulci) from temporal stationary 

[11] to temporal dynamics, indicating that gyri might 

participate more in those spatially overlapped and interacting 

concurrent functional networks (neural processes) than sulci 

under temporal dynamics. Moreover, [34] has demonstrated 

that the resting state functional connectivity is strong between 

gyral-gyral regions, weak between sulcal-sulcal regions, and 

moderate between gyral-sulcal regions, indicating that ‘gyri are 

functional connection centers (hubs) that exchange information 

among remote structurally-connected gyri and neighboring 

sulci, while sulci serve as local functional units that 

communicate directly with their neighboring gyri and indirectly 

with other cortical regions through gyri’ [34]. This paper and 

[11, 34] all indicate that there is significantly functional 

difference between gyri and sulci in terms of SOPFN 

distribution (this paper and [11]) or functional connectivity 

[34]. Moreover, they all indicate and are mutually supported 

that gyri might participate more in cortical functional 

processing than sulci in terms of significantly more distribution 

of SOPFNs (this paper and [11]) or strong functional 

connectivity [34], while sulci also serve crucial roles in cortical 

functional processing. In short, this paper reveals a novel 

functional architecture of cortical gyri and sulci in terms of 

significantly more distribution of SOPFNs on gyri than on sulci 

in a temporal dynamics way, and can lend further support 

evidence to and are mutually supported by our previous studies 

[11, 34]. 

The verification of true dynamic functional connectivity 

analysis using proper statistical test is fundamental and crucial, 

and has received significant attentions in the brain mapping 

field. For example, it is fundamental to any dynamic functional 

connectivity model that if fluctuations are due to statistical 

uncertainty or due to true changes in population measures [41]. 

In this paper, we focused on the computational framework for 

temporal dynamics assessment of SOPFNs in this work. We 

argue that the reproducibility across different subjects and 

datasets under proper statistical test is a reasonable validation 

of the reported dynamics of SOPFNs on gyri and sulci. There 

are certain issues to be further investigated. For example, why 

are there peaks/valleys for the distribution percentage value of 

SOPFNs on gyri/sulci during the specific time windows in Fig. 

9? Fully understanding of the unsolved concerns relating to the 

mechanisms of functional dynamics of cerebral cortex may 

need more evidence and clues from micro- or macro- scale 

analysis of brain structure and function in the future. 

V. CONCLUSION  

We proposed a novel computational framework of 

group-wise sparse representation of whole-brain fMRI 

temporal segments to assess temporal dynamics of spatial 

patterns of SOPFNs which are consistent across different 

subjects. Experimental results demonstrate that the distribution 

percentage of identified SOPFNs on gyral regions is 

statistically larger than that on sulcal regions across all time 

windows. These results suggest the possible functional 

difference between gyri and sulci, and provide a foundation to 

better understand functional brain dynamics in the future. 

Our future work is as follows. First, we will investigate the 

temporal dynamic spatial pattern distribution of SOPFNs on 

gyral/sulcal regions in a finer scale based on our recent 

developed A-DICCCOL system [42] consisting of more than 

five hundred consistent cortical landmarks with gyral/sulcal 

and structural fiber connection pattern correspondence across 

individual subjects. Second, we will apply the proposed 

framework on resting state fMRI data (e.g., the recently 

publicly released datasets HCP including 900 subjects, 

Fcon1000, etc.) to explore the temporal dynamics of spatial 

patterns of SOPFNs in ‘resting state’. Third, we will apply the 

proposed framework on disease datasets such as Alzheimer 

Disease, Autism, schizophrenia, etc. to explore the possible 

regularity and variability of temporal dynamics of spatial 

patterns of SOPFNs between specific disease and normal 

controls, which can be potentially adopted as disease specific 

biomarkers. 
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Table I 

OVERLAP PERCENTAGE (MEAN±STD) OF THE THREE TIME WINDOW (TW) TYPES 

AND THE STATISTICAL COMPARISON ACROSS DIFFERENT TIME WINDOW TYPES 

IN EMOTION TASK.  

Overlap 

percentage 

TW type 1 TW type 2 TW type 3 

Group 1 0.12±0.16 0.05±0.01 0.07±0.03 

Group 2 0.09±0.05 0.06±0.02 0.07±0.03 

t-test 

type 1 > 

type 2 

type 1 > 

type 3 

type 3 > 

type 2 

Group 1 

tstat 2.070 2.871 2.029 

df 62 128 118 

corrected p-value 0.043 0.007 0.043 

Group 2 

tstat 2.557 1.778 1.866 

df 62 128 118 

corrected p-value 0.020 0.065 0.065 

Bold and underlined values indicate p-values smaller than 0.05. tstat: t-statistic; 

df: degree of freedom. 
 

 

Table II 
MEAN RATIO OF DISTRIBUTION PERCENTAGE ON GYRI VS THAT ON SULCI 

ACROSS ALL TIME WINDOWS IN TWO SUBJECT GROUPS OF SEVEN TASKS.  

 Emotion Gambling Language Motor 

Group 1 1.47 1.60 1.46 1.32 

Group 2 1.45 1.55 1.38 1.33 

 Rational Social WM  

Group 1 1.59 1.46 1.67  

Group 2 1.49 1.47 1.66  

 

 
 

Fig. 1. SOPFNs assessment in (a) previous studies and (b) our proposed 

framework. There are n tfMRI signals for each individual subject. Each signal 
has t total time points. In (b), there are I subjects in total. Each temporal 

segment (time period) has unified l time points. The four steps labeled as 1 to 4 

are detailed in Section II. 
 

 
 

Fig. 2. tfMRI temporal segments extraction. (a): The cortical surface and 
whole-brain tfMRI signal matrix Xi of subject i. The tfMRI signal of an 

example grayordinate is shown and highlighted by the blue frame. (b): 

Examples of extracted two consecutive temporal segments within time 
windows wj and wj+1 (highlighted by yellow and blue frames, respectively). The 

first one starts at time point tj and the second one starts at time point tj+1. (c): 

Example of tfMRI emotion task paradigm. The blocks of the two task designs 
are interleaved during the entire fMRI scan time t. Window length l is smaller 

than the length of any of the blocks of the two task designs. 

 

 
 

Fig. 3. (a) Conventional sparse representation of a specific temporal segment of 
an individual subject. (c) The proposed group-wise sparse representation of 

specific corresponding temporal segments across all subjects. (b): The spatial 

pattern of an example reconstructed functional network via mapping a specific  

row (highlighted by red) of 𝛂𝑖,𝑤𝑗  back onto the cortical surface based on 

conventional sparse representation. (d): The spatial pattern of an example 

group-wise consistent reconstructed functional network via mapping a specific 

row (highlighted by red) of 𝐏𝐼,𝑤𝑗 back onto the cortical surface based on the 

proposed group-wise sparse representation. 

 

 
 
Fig. 4. Concurrent group-wise consistent functional networks across different 

time windows in one subject group of emotion tfMRI data. (a) Task design 

curves across time windows of emotion tfMRI data. The horizontal axis is the 
time window and the vertical axis is the task design value. Twelve example 

time windows are shown. There are two task design curves in emotion tfMRI 

data. For each time window, if the task design value is non-zero in both two 
curves, there are both two tasks performed in the time window. If the task 

design value is non-zero in only one task design curve, there is only the 

corresponding task performed in the time window. Note that the task design 
curves are not convoluted with hemodynamic response function for a better 

visualization. (b) The spatial patterns of task-evoked functional networks 

identified within the twelve example time windows. The corresponding 
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networks identified from entire time length via sparse representation and GLM 

are also shown. (c) The spatial patterns of default mode networks (DMN) 
identified within the same twelve example time windows. The corresponding 

networks identified from entire time length via sparse representation and the 

DMN template [39] are also shown. (b) and (c) are color-coded by the z-scores 
values as illustrated in Section II C. 

 

 
 
Fig. 5. Temporal dynamic spatial patterns of SOPFNs across different time 

windows based on emotion tfMRI data. (a) Task design curves across time 

windows. The horizontal axis is the time window and the vertical axis is the 
task design value. The same twelve example time windows as in Fig. 4 are 

shown. There are three time window types as shown and divided by black 

dashed lines. Note that the task design curves are not convoluted with 
hemodynamic response function for a better visualization. (b) The mean spatial 

patterns of SOPFNs of time windows within each of the three time window 

types in each of the two subject groups. The common spatial patterns of 
SOPFNs with relatively higher density are highlighted by red arrows; (b) are 

color-coded by the z-scores representing SOPFNs values as illustrated in 

Section II C. 
 

 

 
 
Fig. 6. The mean spatial patterns of SOPFNs of time windows within each of 

the different time window types in one subject group of the other four tfMRI 

datasets in (a)-(f), respectively. The common spatial patterns of SOPFNs with 
relatively higher density across different time window types and different tasks 

are highlighted by red arrows. TW represents time window. (a)-(f) are 

color-coded by the z-scores as illustrated in Section II C. The detailed time 
window types of each task are in Supplemental Fig. 3. 
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Fig. 7. Temporal dynamic spatial pattern distributions of SOPFNs on gyral 

(G)/sulcal (S) regions in emotion tfMRI data. (a) Spatial pattern distributions of 
SOPFNs on gyral/sulcal regions in six example time windows (Fig. 5a). The 

major regions are highlighted by black arrows. (b) The mean spatial pattern 

distributions of SOPFNs across time windows within each of the three time 
window types on gyral/sulcal regions in each of the two subject groups. The 

common spatial patterns of SOPFNs on gyral/sulcal regions with relatively 

higher density are highlighted by red arrows. Note that the surfaces illustrating 
the SOPFNs in (a)-(b) are color-coded by the z-scores as illustrated in Section II 

C. The two surfaces in (a)-(b) illustrating the gyri/sulci are color-coded by the 

principal curvature value with gyri has higher principal curvature. 
 

 
 

Fig. 8. The mean spatial pattern distributions of SOPFNs across time windows 
within one example time window type on gyral/sulcal regions in one subject 

group of the other six tfMRI datasets. The common spatial patterns of SOPFNs 

with relatively higher density across different tasks are highlighted by red 
arrows. Note that the surfaces illustrating the SOPFNs are color-coded by the 

z-scores as illustrated in Section II C. The one example surface illustrating the 

gyri/sulci is color-coded by the principal curvature value with gyri has higher 
principal curvature. 

 

 
 

Fig. 9. The temporal dynamic distribution percentage of SOPFNs on gyri 
(green curve) and sulci (orange curve) across all time windows in the two 

groups of the seven tasks shown in (a)-(g), respectively. In each sub-figure, the 

horizontal axis is the time window and the vertical axis is the distribution 
percentage value. The details of task design curves (represented by different 

colors) are in Supplemental Fig. 2. Note that the task design curves are not 

convoluted with hemodynamic response function for a better visualization. 
Note that at a specific time window, the sum of percentage values of gyri and 

sulci equals 1. 


