The MATLAB code for this work, including DLSC and tNML (for comparison), can be found here at GitHub.

Supplmental Materials for the manuscript "Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Brain Activation and Functional Connectivity Modeling: A Task fMRI Study"



Supplemental Figure 1. Illustration of the SPM canonical hemodynamic response function (HRF) and six stimulus curves (visual cue, LF, LH, RF, RH, T) for motor task after convolution with the HRF function.

Supplemental Figure 2. Parameter tuning experiment showing the GLM-derived activation maps of DLSC-based denoised tfMRI data for LF, LH, RF, RH and T movements with the different K number of atoms, where λ=40 and Cth=0.1. LF, LH, RF, RH, T.

Supplemental Figure 3. Parameter tuning experiment showing the GLM-derived activation maps of DLSC-based denoised tfMRI data for LF, LH, RF, RH and T movements with the different sparsity constraint λ, where K=400 and Cth=0.1. LF, LH, RF, RH, T.

Supplemental Figure 4. Parameter tuning experiment showing the GLM-derived activation maps of DLSC-based denoised tfMRI data for LF, LH, RF, RH and T movements with the different signal-selection threshold value Cth, where K=400 and λ=40. LF, LH, RF, RH, T.

Supplemental Figure 5. The GLM-derived activation maps of original, noised and denoised synthetic tfMRI data by DLSC-based and tNLM-based method with σ=100. LF, LH, RF, RH, T.

Supplemental Figure 6. The GLM-derived activation maps of original, noised and denoised synthetic tfMRI data by DLSC-based and tNLM-based method with σ=300. LF, LH, RF, RH, T.

Supplemental Figure 7. The extracted ROIs obtained from the HCP parcellation for motor tasks reported in (Glasser et al., 2016).



The complete list of individual-level GLM results from all the 68 subjects.

Subject 1: LF, LH, RF, RH, T.

Subject 2: LF, LH, RF, RH, T.

Subject 3: LF, LH, RF, RH, T.

Subject 4: LF, LH, RF, RH, T.

Subject 5: LF, LH, RF, RH, T.

Subject 6: LF, LH, RF, RH, T.

Subject 7: LF, LH, RF, RH, T.

Subject 8: LF, LH, RF, RH, T.

Subject 9: LF, LH, RF, RH, T.

Subject 10: LF, LH, RF, RH, T.

Subject 11: LF, LH, RF, RH, T.

Subject 12: LF, LH, RF, RH, T.

Subject 13: LF, LH, RF, RH, T.

Subject 14: LF, LH, RF, RH, T.

Subject 15: LF, LH, RF, RH, T.

Subject 16: LF, LH, RF, RH, T.

Subject 17: LF, LH, RF, RH, T.

Subject 18: LF, LH, RF, RH, T.

Subject 19: LF, LH, RF, RH, T.

Subject 20: LF, LH, RF, RH, T.

Subject 21: LF, LH, RF, RH, T.

Subject 22: LF, LH, RF, RH, T.

Subject 23: LF, LH, RF, RH, T.

Subject 24: LF, LH, RF, RH, T.

Subject 25: LF, LH, RF, RH, T.

Subject 26: LF, LH, RF, RH, T.

Subject 27: LF, LH, RF, RH, T.

Subject 28: LF, LH, RF, RH, T.

Subject 29: LF, LH, RF, RH, T.

Subject 30: LF, LH, RF, RH, T.

Subject 31: LF, LH, RF, RH, T.

Subject 32: LF, LH, RF, RH, T.

Subject 33: LF, LH, RF, RH, T.

Subject 34: LF, LH, RF, RH, T.

Subject 35: LF, LH, RF, RH, T.

Subject 36: LF, LH, RF, RH, T.

Subject 37: LF, LH, RF, RH, T.

Subject 38: LF, LH, RF, RH, T.

Subject 39: LF, LH, RF, RH, T.

Subject 40: LF, LH, RF, RH, T.

Subject 41: LF, LH, RF, RH, T.

Subject 42: LF, LH, RF, RH, T.

Subject 43: LF, LH, RF, RH, T.

Subject 44: LF, LH, RF, RH, T.

Subject 45: LF, LH, RF, RH, T.

Subject 46: LF, LH, RF, RH, T.

Subject 47: LF, LH, RF, RH, T.

Subject 48: LF, LH, RF, RH, T.

Subject 49: LF, LH, RF, RH, T.

Subject 50: LF, LH, RF, RH, T.

Subject 51: LF, LH, RF, RH, T.

Subject 52: LF, LH, RF, RH, T.

Subject 53: LF, LH, RF, RH, T.

Subject 54: LF, LH, RF, RH, T.

Subject 55: LF, LH, RF, RH, T.

Subject 56: LF, LH, RF, RH, T.

Subject 57: LF, LH, RF, RH, T.

Subject 58: LF, LH, RF, RH, T.

Subject 59: LF, LH, RF, RH, T.

Subject 60: LF, LH, RF, RH, T.

Subject 61: LF, LH, RF, RH, T.

Subject 62: LF, LH, RF, RH, T.

Subject 63: LF, LH, RF, RH, T.

Subject 64: LF, LH, RF, RH, T.

Subject 65: LF, LH, RF, RH, T.

Subject 66: LF, LH, RF, RH, T.

Subject 67: LF, LH, RF, RH, T.

Subject 68: LF, LH, RF, RH, T.